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ABSTRACT
This paper proposes a new approach for approximate evaluation
of #P-hard queries over probabilistic databases. In our approach,
every query is evaluated entirely in the database engine by evaluat-
ing a fixed number of query plans, each providing an upper bound
on the true probability, then taking their minimum. We provide
an algorithm that takes into account important schema information
to enumerate only the minimal necessary plans among all possi-
ble plans. Importantly, this algorithm is a strict generalization of
all known results of PTIME self-join free conjunctive queries: A
query is safe if and only if our algorithm returns one single plan.
We also apply three relational query optimization techniques to
evaluate all minimal safe plans very fast. We give a detailed ex-
perimental evaluation of our approach and, in the process, provide
a new way of thinking about the value of probabilistic methods over
non-probabilistic methods for ranking query answers.

1. INTRODUCTION
Probabilistic inference over large data sets is becoming a central
data management problem. Recent large knowledge bases, such as
Yago [?], Nell [?], DeepDive [?], or Google’s Knowledge Vault [?],
have millions to billions of uncertain tuples. Data sets with miss-
ing values are often “completed” using inference in graphical mod-
els [?, ?] or sophisticated low rank matrix factorization tech-
niques [?, ?], which ultimately results in a large, probabilistic data-
base. Data sets that use crowdsourcing are also uncertain [?]. And,
very recently, probabilistic databases have been applied to boot-
strapping over samples of data [?].

However, probabilistic inference is known to be #P-hard in the
size of the database, even for some very simple queries [?]. Today’s
state of the art inference engines use either sampling based methods
or are based on some variant of the DPLL algorithm for Weighted
Model Counting. For example Tuffy [?], a popular implementation
of Markov Logic Networks (MLN) over relational databases, uses
Markov Chain Monte Carlo methods (MCMC). Gibbs sampling
can be significantly improved by adapting some classical relational

optimization techniques [?]. For another example, MayBMS [?]
and its successor Sprout [?] use query plans to guide a DPLL-
based algorithm for Weighted Model Counting [?]. While both ap-
proaches deploy some advanced relational optimization techniques,
at their core they are based on general purpose probabilistic infer-
ence techniques, which either run in exponential time (DPLL-based
algorithms have been proven recently to take exponential time even
for queries computable in polynomial time [?]), or require many it-
erations until convergence.

In this paper, we propose a different approach to query evalu-
ation on probabilistic databases. In our approach, every query is
evaluated entirely in the database engine. Probability computa-
tion is done at query time, using simple arithmetic operations and
aggregates. Thus, probabilistic inference is entirely reduced to a
standard query evaluation problem with aggregates. There are no
iterations and no exponential blowups. All benefits of relational
engines (such as cost-based optimizations, multi-core query pro-
cessing, shared-nothing parallelization) are immediately available
to queries over probabilistic databases. To achieve this, we com-
pute approximate rather than exact probabilities, with a one-sided
guarantee: The probabilities are guaranteed to be upper bounds to
the true probabilities, which we show is sufficient to rank the top
query answers with high precision. Our approach consists of ap-
proximating the true query probability by evaluating a fixed num-
ber of “safe queries” (the number depends on the query), each pro-
viding an upper bound on the true probability, then taking their
minimum.

We briefly review safe queries, which are queries whose data
complexity is in PTIME. They can be evaluated using safe query
plans [?, ?, ?], which are related to a technique called lifted infer-
ence in the AI literature [?, ?]; the entire computation is pushed
inside the database engine and is thus efficient. For example,
the query q1(z) :−R(z,x),S(x,y),K(x,y) has the safe query plan
P1 = πz(R 1x (πx(S 1x,y K))), where every join operator multiplies
the probabilities, and every projection with duplicate elimination
treats probabilistic events as independent. The literature describes
several classes of safe queries [?, ?] and shows that they can be
evaluated very efficiently. However, most queries are unsafe: They
are provably #P-hard and do not admit safe plans.

In this paper, we prove that every conjunctive query without self-
joins can be approximated by a fixed number of safe queries, called
“safe dissociations” of the original query. Every safe dissocia-
tion is guaranteed to return an upper bound on the true probabil-
ity and can be evaluated in PTIME data complexity. The num-
ber of safe dissociations depends only on the query and not the
data. Moreover, we show how to find “minimal safe dissociations”
which are sufficient to find the best approximation to the given
query. For example, the unsafe query q2(z) :−R(z,x),S(x,y),T (y)
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has two minimal safe dissociations, q′2(z) :−R(z,x),S(x,y),T ′(x,y)
and q′′2(z) :−R′(z,x,y),S(x,y),T (y). Both queries are safe and, by
setting the probability of every tuple R′(z,x,y) equal to that of
R(z,x) and similarly for T ′, they return an upper bound for the
probabilities of each answer tuple from q2(z). One benefit of our
approach is that, if the query happens to be safe, then it has a unique
minimal safe dissociation, and our algorithm finds it.

Contributions. (1) We show that there exists a 1-to-1 correspon-
dence between the safe dissociations of a self-join-free conjunctive
query and its query plans. One simple consequence is that every
query plan computes an upper bound of the true probability. For
example, the two safe dissociations above correspond to the plans
P′2 = πz(R 1x (πx(S 1x,y T ))), and P′′2 = πz((πzy(R 1x S)) 1y T ).
We give an intuitive system R-style algorithm [?] for enumerating
all minimal safe dissociations of a query q. Our algorithm takes
into account important schema-level information: functional de-
pendencies and whether a relation is deterministic or probabilis-
tic. We prove that our algorithm has several desirable properties
that make it a strict generalization of previous algorithms described
in the literature: If q is safe then the algorithm returns only one
safe plan that computes q exactly; and if q happens to be safe on
the particular database instance (e.g., the data happens to satisfy
a functional dependency), then one of the minimal safe dissocia-
tions will compute the query exactly. (2) We use relational opti-
mization techniques to compute all minimal safe dissociations of a
query efficiently in the database engine. Some queries may have a
large number of dissociations; e.g., a 8-chain query has 4279 safe
dissociations, of which 429 are minimal. Computing 429 queries
sequentially in the database engine would still be prohibitively ex-
pensive. Instead, we tailor three relational query optimization tech-
niques to dissociation: combining all minimal plans into one single
query, reusing common subexpressions with views, and performing
deterministic semi-join reductions. (3) We conduct an experimen-
tal validation of our technique, showing that, with all our optimiza-
tions enabled, computing hard queries over probabilistic databases
incurs only a modest penalty over computing the same query on a
deterministic database: For example, the 8-chain query runs only
a factor of < 10 slower than on a deterministic database. We also
show that the dissociation-based technique has high precision for
ranking query answers based on their output probabilities.

In summary, our three main contributions are:
(1) We describe an efficient algorithm for finding all minimal

safe dissociations for self-join-free conjunctive queries in the
presence of schema knowledge. If the query is safe, then our
algorithm returns a single minimal plan, which is the safe
plan for the query (??).

(2) We show how to apply three traditional query optimization
techniques to dramatically improve the performance of the
dissociation (??).

(3) We perform a detailed experimental validation of our ap-
proach, showing both its effectiveness in terms of query per-
formance, and the quality of returned rankings. Our experi-
ments also include a novel comparison between deterministic
and probabilistic ranking approaches (??).

All proofs for this submission together with additional illustrating
examples are available in our technical report on arXiv [?].

2. BACKGROUND
Probabilistic Databases. We fix a relational vocabulary σ =

(R1, . . . ,Rm). A probabilistic database D is a database plus a func-
tion p(t) ∈ [0,1] associating a probability to each tuple t ∈ D. A
possible world is a subset of D generated by independently in-
cluding each tuple t in the world with probability p(t). Thus, the

database D is tuple-independent. We use bold notation (e.g., x)
to denote sets or tuples. A self-join-free conjunctive query is a
first-order formula q(y) = ∃x1 . . .∃xk.(a1 ∧ . . .∧ am) where each
atom ai represents a relation Ri(xi)1, the variables x1, . . . ,xk are
called existential variables, and y are called the head variables
(or free variables). The term “self-join-free” means that the atoms
refer to distinct relational symbols. We assume therefore w.l.o.g.
that every relational symbol R1, . . . ,Rm occurs exactly once in the
query. Unless otherwise stated, a query in this paper denotes a self-
join-free conjunctive query. As usual, we abbreviate the query by
q(y) :−a1, . . . ,am, and write HVar(q) = y, EVar(q) = {x1, . . . ,xk}
and Var(q) = HVar(q)∪EVar(q) for the set of head variables, ex-
istential variables, and all variables of q. If HVar(q) = /0 then q is
called a Boolean query. We also write Var(ai) for the variables in
atom ai and at(x) for the set of atoms that contain variable x. The
active domain of a variable xi is denoted ADomxi ,

2 and the active
domain of the entire database is ADom =

⋃
i ADomxi . The focus of

probabilistic query evaluation is to compute P(q); i.e. the probabil-
ity that the query is true in a randomly chosen world.

Safe queries, safe plans. It is known that the data complexity of
any query q is either in PTIME or #P-hard. The former are called
safe queries and are characterized precisely by a syntactic property
called hierarchical queries [?]. We briefly review these results:

DEFINITION 1 (HIERARCHICAL QUERY). Query q is called hier-
archical iff for any x,y ∈ EVar(q), one of the following three con-
ditions hold: at(x)⊆ at(y), at(x)∩at(y) = /0, or at(x)⊇ at(y).

For example, the query q1 :−R(x,y),S(y,z),T (y,z,u) is hierarchi-
cal, while q2 :−R(x,y),S(y,z),T (z,u) is not, as neither of the three
conditions holds for the variables y and z.

THEOREM 2 (DICHOTOMY [?]). If q is hierarchical, then P(q)
can be computed in PTIME in the size of D. Otherwise, computing
P(q) is #P-hard in the size of D.

We next give an equivalent, recursive characterization of hier-
archical queries, for which we need a few definitions. We write
SVar(q) for the separator variables (or root variables); i.e. the set
of existential variables that appear in every atom. q is disconnected
if its atoms can be partitioned into two non-empty sets that do not
share any existential variables (e.g., q :−R(x,y),S(z,u),T (u,v) is
disconnected and has two connected components: “R(x,y)” and
“S(z,u),T (u,v)”). For every set of variables x, denote q− x the
query obtained by removing all variables x (and decreasing the ar-
ities of the relation symbols that contain variables from x).

LEMMA 3 (HIERARCHICAL QUERIES). q is hierarchical iff ei-
ther: (1) q has a single atom; (2) q has k≥ 2 connected components
all of which are hierarchical; or (3) q has a separator variable x
and q− x is hierarchical.

DEFINITION 4 (QUERY PLAN). Let R1, . . . ,Rm be a relational
vocabulary. A query plan P is given by the grammar

P ::=Ri(x) | πxP | 1[P1, . . . ,Pk
]

where Ri(x) is a relational atom containing the variables x and
constants, πx is the project operator with duplicate elimination, and
1
[
. . .
]

is the natural join in prefix notation, which we allow to be
k-ary, for k ≥ 2. We require that joins and projections alternate in
a plan. We do not distinguish between join orders, i.e. 1

[
P1,P2

]
is

the same as 1
[
P2,P1

]
.

1We assume w.l.o.g. that xi is a tuple of only variables without constants.
2Defined formally as ADomxi =

⋃
j:xi∈Var(R j )

πxi (R j).
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We write HVar(P) for the head variables of P (defined as the vari-
ables x of the top-most projection πx (or the union of the top-most
projections if the last operation is a join). Every plan P represents
a query qP defined by taking all atoms mentioned in P and setting
HVar(qP) = HVar(P). For notational convenience, we also use the
“project-away” notation, by writing π−y(P) instead of πx(P), where
y are the variables being projected away; i.e. y = HVar(P)−x.

Given a probabilistic database D and a plan P, each output tuple
t ∈ P(D) has a score(t), defined inductively on the structure of P as
follows: If t ∈ Ri(x), then score(t) = p(t), i.e. its probability in D;
if t ∈1

[
P1(D), . . . ,Pk(D)

]
where t =1

[
t1, . . . , tk

]
, then score(t) =

∏
k
i=1 score(ti); and if t ∈ πx(P(D)), and t1, . . . , tn ∈ P(D) are all the

tuples that project into t, then score(t) = 1−∏
n
i=1(1− score(ti)).

In other words, score computes a probability by assuming that all
tuples joined by 1 are independent, and all duplicates eliminated by
π are also independent. If these conditions hold, then score is the
correct query probability, but in general the score is different from
the probability. Therefore, score is not equal to the probability,
in general, and is also called an extensional semantics [?, ?]. For a
Boolean plan P, we get one single score, which we denote score(P).

The requirement that joins and projections alternate is w.l.o.g.
because nested joins like 1

[
1
[
R1,R2

]
,R3
]

can be rewritten into
1
[
R1,R2,R3

]
while keeping the same probability score. For the

same reason we do not distinguish between different join orders.

DEFINITION 5 (SAFE PLAN). A plan P is called safe iff, for any
join operator 1p[P1, . . . ,Pk

]
, all subplans have the same head vari-

ables: HVar(Pi) = HVar(Pj) for all 1≤ i, j ≤ k.

The recursive definition of ?? gives us immediately a safe plan
for a hierarchical query. Conversely, every safe plan defines a hier-
archical query. The following summarizes our discussion:

PROPOSITION 6 (SAFETY [?]). (1) Let P be a plan for the query
q. Then score(P) = P(q) for any probabilistic database iff P is safe.
(2) Assuming #P 6=PTIME, a query q is safe (i.e. P(q) has PTIME
data complexity) iff it has a safe plan P; in that case the safe plan
is unique, and P(q) = score(P).

Boolean Formulas. Consider a set of Boolean variables X =
{X1,X2, . . .} and a probability function p : X → [0,1]. Given a
Boolean formula F , denote P(F) the probability that F is true
if each variable Xi is independently true with probability p(Xi).
In general, computing P(F) is #P-hard in the number of vari-
ables X. If D is a probabilistic database then we interpret ev-
ery tuple t ∈ D as a Boolean variable and denote the lineage
of a Boolean q :−g1, . . . ,gm on D as the Boolean DNF formula
Fq,D =

∨
θ :θ |=q θ(g1)∧ ·· · ∧ θ(gm), where θ ranges over all as-

signments of EVar(q) that satisfy q on D. It is well known that
P(q) = P

(
Fq,D

)
. In other words the probability of a Boolean query

is the same as the probability of its lineage formula.

EXAMPLE 7 (LINEAGE). If F = XY ∨ XZ then P(F) = p(1−
(1−q)(1−r)) = pq + pr− pqr, where p = p(X),q = p(Y ), and
r = p(Z). Consider now the query q :−R(x),S(x,y) over the data-
base D = {R(1),R(2),S(1,4),S(1,5)}. Then the lineage formula is
Fq,D = R(1)∧S(1,4)∨R(1)∧S(1,5), i.e. same as F, up to variable
renaming. It is now easy to see that P(q) = P

(
Fq,D

)
.

A key technique that we use in this paper is the following re-
sult from [?]: Let F,F ′ be two Boolean formulas with sets of vari-
ables X and X′, respectively. We say that F ′ is a dissociation of
F if there exists a substitution θ : X′ → X such that F ′[θ ] = F .

If θ−1(X) = {X ′,X ′′, . . .} then we say that the variable X disso-
ciates into X ′,X ′′, . . .; if |θ−1(X)| = 1 then we assume w.l.o.g.
that θ−1(X) = X (up to variable renaming) and we say that X
does not dissociate. Given a probability function p : X→ [0,1],
we extend it to a probability function p′ : X′ → [0,1] by setting
p′(X ′) = p(θ(X ′)). Then, we have shown:

THEOREM 8 (OBLIVIOUS DNF BOUNDS [?]). Let F ′ be a
monotone DNF formula that is a dissociation of F through the
substitution θ . Assume that for any variable X, no two distinct
dissociations X ′,X ′′ of X occur in the same prime implicant of
F ′. Then (1) P(F) ≤ P(F ′), and (2) if all dissociated variables
X ∈ X are deterministic (meaning: p(X) = 0 or p(X) = 1) then
P(F) = P(F ′).

Intuitively, a dissociation F ′ is obtained from a formula F by tak-
ing different occurrences of a variable X and replacing them with
fresh variables X ′,X ′′, . . .; in doing this, the probability of F ′ may
be easier to compute, giving us an upper bound for P(F).

EXAMPLE 9 (?? CONT.). F ′= X ′Y ∨X ′′Z is a dissociation of F =
XY ∨XZ, and its probability is P(F ′) = 1−(1−pq)(1−pr) = pq+
pr− p2qr. Here, only the variable X dissociates into X ′,X ′′. It is
easy to see that P(F)≤P(F ′). Moreover, if p = 0 or 1, then P(F) =
P(F ′). The condition that no two dissociations of the same variable
occur in a common prime implicant is necessary: for example, F ′=
X ′X ′′ is a dissociation of F = X. However P(F) = p, P(F ′) = p2,
and we do not have P(F)≤ P(F ′).

3. DISSOCIATION OF QUERIES
This section introduces our main technique for approximate query
processing. After defining dissociations (??), we show that some of
them are in 1-to-1 correspondence with query plans, then derive our
first algorithm for approximate query processing (??). Finally, we
describe two extensions in the presence of deterministic relations
or functional dependencies (??).

3.1 Query dissociation

DEFINITION 10 (DISSOCIATION). Given a Boolean query
q :−R1(x1), . . . ,Rm(xm) and a probabilistic database D. Let
∆ = (y1, . . . ,ym) be a collection of sets of variables with
yi ⊆ Var(q)− Var(gi) for every relation Ri. The dissociation
defined by ∆ has then two components:

(1) the dissociated query: q∆ :−Ry1
1 (x1,y1), . . . ,R

ym
m (xm,ym),

where each Ryi
i (xi,yi) is a new relation of arity |xi|+ |yi|.

(2) the dissociated database instance D∆ consisting of the tables
over the vocabulary σ∆ obtained by evaluating (determinis-
tically) the following queries over the instance D:

Ryi
i (xi,yi) :−Ri(xi),ADomyi1(yi1), . . . ,ADomyik (yik)

where yi = (yi1, . . . ,yiki). For each tuple t ′ ∈ Ryi
i , its proba-

bility is defined as p′(t ′) = p(πxi(t
′)), i.e. the probability of t

in the database D.

Thus, a dissociation acts on both the query expression and the
database instance: It adds some variables yi to each relational sym-
bol Ri of the query expression, and it computes a new instance for
each relation Ryi

i by copying every record t ∈ Ri once for every tu-
ple in the cartesian product ADomyi1 ×·· ·×ADomyik . When yi = /0
then we abbreviate R /0

i with Ri. We give a simple example:
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EXAMPLE 11 (?? CONT.). Consider q :−R(x),S(x,y).
Then ∆ = ({y}, /0) defines the following dissociation:
q∆ = Ry(x,y),S(x,y), and the new relation Ry contains the tuples
Ry(1,4),Ry(1,5),Ry(2,4),Ry(2,5). Notice that the lineage of the
dissociated query q∆ is Fq∆,D∆ = Ry(1,4),S(1,4)∨Ry(1,5),S(1,5)
and is the same (up to variable renaming) as the dissociation of
the lineage of query q: F ′ = X ′Y ∨X ′′Z.

THEOREM 12 (UPPER QUERY BOUNDS). For every dissociation
∆ of q: P(q)≤ P(q∆).

PROOF. ?? follows immediately from ?? by noting that the lin-
eage Fq∆,D∆ is a dissociation of the lineage Fq,D through the sub-
stitution θ : D∆ → D defined as follows: for every tuple t ′ ∈ Ryi

i ,
θ(t ′) = πxi(t

′).

DEFINITION 13 (SAFE DISSOCIATION). A dissociation ∆ of a
query q is called safe if the dissociated query q∆ is safe.

By ??, a dissociation is safe (i.e. its probability can be evaluated
in PTIME) iff q∆ is hierarchical. Hence, amongst all dissociations,
we are interested in those that are easy to evaluate and use them
as a technique to approximate the probabilities of queries that are
hard to compute. The idea is simple: Find a safe dissociation ∆,
compute P

(
q∆
)
, and thereby obtain an upper bound on P(q). In

fact, we will consider all safe dissociations and take the minimum
of their probabilities, since this gives an even better upper bound on
P(q) than that given by a single dissociation. We call this quantity
the propagation score3 of the query q.

DEFINITION 14 (PROPAGATION). The propagation score ρ(q)
for a query q is the minimum score of all safe dissociations:
ρ(q) = min∆ P(q∆) with ∆ ranging over all safe dissociations.

The difficulty in computing ρ(q) is that the total number of dis-
sociations is large, even for relatively small queries. If q has k
existential variables and m atoms, then q has 2|K| possible dissoci-
ations with K = ∑

m
i=1
(
k−|Var(gi)|

)
forming a partial order in the

shape of a power set lattice (see ?? for ??). Therefore, our next
step is to prune the space of dissociations and examine only the
minimum number necessary. We start by defining a partial order
on dissociations:

DEFINITION 15 (PARTIAL DISSOCIATION ORDER). We define
the partial order on the dissociations of a query as:

∆� ∆
′ ⇔ ∀i : yi ⊆ y′i

Whenever ∆� ∆′, then q∆′ ,D∆′ is a dissociation of q∆,D∆ (given
by ∆′′ = ∆′−∆). Therefore, we obtain immediately:

COROLLARY 16 (PARTIAL DISSOCIATION ORDER). If ∆ � ∆′
then P(q∆)≤ P(q∆′).

EXAMPLE 17 (PARTIAL DISSOCIATION ORDER). Consider the
query q :−R(x),S(x),T (x,y),U(y). It is unsafe and allows 23 = 8
dissociations which are shown in ?? with the help of an “aug-
mented incidence matrix”: each row represents one relation and
each column one variable: An empty circle (◦) indicates that a
relation contains a variable; a full circle (•) indicates that a rela-
tion is dissociated on a variable (the reason for using two separate
symbols becomes clear when we later include domain knowledge).
3The name comes from similarities with efficient belief propagation algorithms in
graphical models. See [?] for a discussion on how query dissociation generalizes
propagation algorithms from graphs to hypergraphs.
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Figure 1: [From Wolfgang: best viewed in color / increase font size in fig-
ures]: ?? (a): Partial dissociation order for q :−R(x),S(x), T (x,y),U(y).
Safe dissociations are green and have the hierarchy between variables
shown (3 to 7), minimal safe dissociations are dark and double-lined (3
and 4). (b): All 5 query plans for q and their correspondence to safe
dissociations (3 to 7).

Among those 8 dissociations, 5 are safe, shaded in green, and have
the hierarchy among variables highlighted. Furthermore, 2 of the 5
safe dissociations are minimal: q∆3 :−R(x),S(x),T (x,y),Ux(x,y),
and q∆4 :−Ry(x,y),Sy(x,y),T (x,y),U(y) . To illustrate that these
dissociations are upper bounds, consider a database with R = T =
U = {1,2}, S = {(1,1),(1,2),(2,2)}, and the probability of all tu-
ples = 1

2 . Then q has probability 83
29 ≈ 0.161, while q∆3 has prob-

ability 169
210 ≈ 0.165, and q∆4 has probability 353

211 ≈ 0.172, both of
which are upper bounds. The propagation score is the minimum
score of all minimal safe dissociations and thus ≈ 0.165. �

In general, the set of dissociations forms a lattice, with the
smallest element ∆⊥ = ( /0, . . . , /0) (q∆⊥ = q) and the largest element
∆>= (Var(q)−Var(g1), . . . ,Var(q)−Var(gm)) (q∆> is safe, since
every atom contains all variables). As we move up in the lattice the
probability increases, but the safe/unsafe status may toggle arbitrar-
ily from safe to unsafe and back. For example q :−R(x),S(x),T (y)
is safe, its dissociation q′ :−R(x),Sy(x,y),T (y) is unsafe, yet the
next dissociation q′′ :−R(x),Sy(x,y),T x(x,y) is safe again.

This suggests the following naive algorithm for computing ρ(q):
Enumerate all dissociations ∆1,∆2, . . . by traversing the lattice
breadth-first, bottom up (i.e. whenever ∆i ≺ ∆ j then i < j). For
each dissociation ∆i, check if q∆i is safe. If so, then first update
ρ ← min(ρ,P(q∆i)), then remove from the list all dissociations
∆ j � ∆i. However, this algorithm is inefficient for practical pur-
poses for two reasons: (i) we need to iterate over many dissocia-
tions in order to discover those that are safe; and (ii) computing
P(q∆i) requires computing a new database instance D∆i for each
safe dissociation ∆i. We show in the next section how to avoid
both sources of inefficiency by exploiting the lattice structure and
by iterating over query plans instead of safe dissociations.

3.2 Dissociations and Plans
We prove here that the safe dissociations q∆ are in 1-to-1 corre-
spondence with query plans of the original query q. This allows
us to (i) efficiently find safe dissociations (by iterating over query
plans instead of all dissociations), and to (ii) compute P(q∆) with-
out having to materialize the dissociated database D∆.
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We next describe the 1-to-1 mapping. Consider a safe dissocia-
tion q∆ and denote its corresponding unique safe plan P∆. This plan
uses dissociated relations, hence each relation Ryi

i (xi,yi) has extra-
neous variables yi. Drop all variables yi from the relations and all
operators using them: This transforms P∆ into a regular, generally
unsafe plan P for q. For a trivial example, the plan corresponding
to the top dissociation ∆> of a query q is π−Var(q)(1

[
P1, . . . ,Pk

]
):

It performs all joins first, followed by all projections.
Conversely, consider any plan P for q. We define its corre-

sponding safe dissociation ∆P as follows. For each join opera-
tion 1p [P1, . . . ,Pk

]
, let its join variables JVar be the union of

the head variables of all subplans: JVar =
⋃

j HVar(Pj). For ev-
ery relation Ri occurring in Pj, add the missing variables JVar−
HVar(Pj) to yi. For example, consider 1p [R(x),T (x,y),U(y)

]
(this is the lower join in query plan 5 of ??). Here, JVar =
{x,y}, and the corresponding safe dissociation of this subplan is
q∆(x,y) :−Ry(x,y),T (x,y),Ux(x,y). Note that while there is a one-
to-one mapping between safe dissociations and query plans, unsafe
dissociations do not correspond to plans.

THEOREM 18 (SAFE DISSOCIATION). Let q be a conjunctive
query without self-joins. (1) The mappings ∆ 7→ P∆ and P 7→ ∆P

are inverses of each other. (2) For every safe dissociation ∆,
P(q∆) = score(P∆).

COROLLARY 19 (UPPER BOUNDS). Let P be any plan for a
Boolean query q. Then P(q)≤ score(P).

The proof follows immediately from P(q) ≤ P(q∆P
) (??) and

P(q∆P
) = score(P) (??). In other words, any plan for q computes

a probability score that is guaranteed to be an upper bound on the
correct probability P(q).

?? suggests the following improved algorithm for computing the
propagation score ρ(q) of a query: Iterate over all plans P, compute
their scores, and retain the minimum score minP[score(P)]. Each
plan P is evaluated directly on the original probabilistic database,
and there no need to materialize the dissociated database instance.
However, this approach is still inefficient because it computes sev-
eral plans that correspond to non-minimal dissociations. For exam-
ple, in ?? plans 5, 6, 7 correspond to non-minimal dissociations,
since plan 3 is safe and below them.

Enumerating minimal safe dissociations. Call a plan P min-
imal if ∆P is minimal in the set of safe dissociations. For ex-
ample, in ??, the minimal plans are 3 and 4. The propagation
score is thus the minimum of the scores of the two minimal plans:
ρ(q) = mini∈{3,4}

[
score

(
P(i))]. Our improved algorithm will iter-

ate only over minimal plans, by relying on a connection between
plans and sets of variables that disconnect a query: A cut-set is a
set of existential variables x∈ EVar(q) s.t. q−x is disconnected. A
min-cut-set (for minimal cut-set) is a cut-set for which no strict sub-
set is a cut-set. We denote MinCuts(q) the set of all min-cut-sets.
Note that q is disconnected iff MinCuts(q) = { /0}.

The connection between MinCuts(q) and query plans is given by
two observations: (1) Let P be any plan for q. If q is connected, then
the last operator in P is a projection, i.e. P = π−x(1

[
P1, . . . ,Pk

]
),

and the projection variables x are the join variables x = JVar be-
cause q is Boolean so the plan must project away all variables. We
claim that x is a cut-set for q and that q−x has k connected compo-
nents corresponding to P1, . . . ,Pk. Indeed, if Pi,Pj share any com-
mon variable y, then they must join on y, hence y ∈ JVar. Thus,
cut-sets are in 1-to-1 correspondence with the top-most projection
operator of a plan. (2) Now suppose that P corresponds to a safe
dissociation ∆P, and let P′ = π−x(1

[
P′1, . . . ,P

′
k
]
) be its unique safe

plan. Then x = SVar(q∆P
); i.e. the top-most project operator re-

moves all separator variables.4 Furthermore, if ∆ � ∆P is a larger
dissociation, then SVar(q∆) ⊇ SVar(q∆P

) (because any separator
variable of a query continues to be a separator variable in any dis-
sociation of that query). Thus, minimal plans correspond to min-
cut-sets; in other words, MinCuts(q) is in 1-to-1 correspondence
with the top-most projection operator of minimal plans.

Our discussion leads immediately to ?? for computing the prop-
agation score ρ(q). It also applies to non-Boolean queries by treat-
ing the head variables as constants, hence ignoring them when com-
puting connected components. The algorithm proceeds recursively.
If q is a single atom then it is safe and we return its unique safe plan.
If the query has more than one atom, then we consider two cases,
when q− HVar(q) is disconnected or connected. In the first case,
every minimal plan is a join, where the subplans are minimal plans
of the connected components. In the second case, a minimal plan
results from a projection over min-cut-sets. Notice that recursive
calls of the algorithm will alternate between these two cases, until
they reach a single atom.

[t]

generates all minimal query plans for a given query q.
AlgorithmRecursive algorithm MPMP ForAllforalldoendfch MP (EnumerateMini-

malPlans) Query q(x) :−R1(x1), . . . ,Rm(xm) Set of all minimal query plans P m =
1P←{πxR1(x1)} Set P← /0 q is disconnected Let q = q1, . . . ,qk be the connected
components of q− HVar(q) qiLet HVar(qi) ← HVar(q) ∩ Var(qi) (P1, . . . ,Pk) ∈
(q1)× ·· · × (qk) P ←P ∪{1p

[
P1, . . . ,Pk

]} y ∈ MinCuts(q− HVar(q)) Let
q′← q with HVar(q′)← HVar(q)∪y P ∈ (q′) P ←P ∪{π−y P}

THEOREM 20 (??). ?? computes the set of all minimal query
plans.

Conservativity. Some probabilistic database systems first check
if a query q is safe, and in that case compute the exact probability
using the safe plan, otherwise use some approximation technique.
We show that ?? is conservative, in the sense that, if q is safe, then
ρ(q) = P(q). Indeed, in that case (q) returns a single plan, namely
the safe P for q, because the empty dissociation, ∆⊥ = ( /0, . . . , /0),
is safe, and it is the bottom of the dissociation lattice, making it the
unique minimal safe dissociation.

Score Quality. We show here that the approximation of P(q)
by ρ(q) becomes tighter as the input probabilities in D decrease.
Thus, the smaller the probabilities in the database, the closer does
the ranking based on the propagation score approximate the ranking
by the actual probabilities.

PROPOSITION 21 (SMALL PROBABILITIES). Given a query q
and database D. Consider the operation of scaling down the proba-
bilities of all tuples in D with a factor f < 1. Then the relative error
of approximation of P(q) by the propagation score ρ(q) decreases
as f goes to 0: lim f→0

ρ(q)−P(q)
P(q) → 0.

Number of Dissociations. While the number of minimal safe
dissociations is exponential in the size of the query, recall that it
is independent of the size of the database. ?? gives an overview
of the number of minimal query plans, total query plans, and all
dissociations for k-star and k-chain queries (which are later used in
??). Later ?? gives optimizations that allow us to evaluate a large
number of plans efficiently.

3.3 Minimal plans with schema knowledge
4This follows from the recursive definition of the unique safe plan of a query in ??:
the top most projection consists precisely of its separator variables.
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k-star query k-chain query
k #MP #P #∆ k #MP #P #∆

1 1 1 1 2 1 1 1
2 2 3 4 3 2 3 4
3 6 13 64 4 5 11 64
4 24 75 4096 5 14 45 4096
5 120 541 > 106 6 42 197 > 106

6 720 4683 > 109 7 132 903 > 109

7 5040 47293 > 1012 8 429 4279 > 1012

seq k! A000670 2k(k−1) seq A000108 A001003 2(k+1)k

Figure 2: Number of minimal plans, total plans, and total dissociations
for star and chain queries (A are OEIS sequence numbers [?]).

Next, we show how knowledge of deterministic relations (i.e. all
tuples have probability = 1), and functional dependencies can re-
duce the number of plans needed to calculate the propagation score.

3.3.1 Deterministic relations (DRs)
Notice that we can treat deterministic relations (DRs) just like
probabilistic relations, and ?? with P(q) ≤ score(P) still holds
for any plan P. Just as before, our goal is to find a minimum
number of plans that compute the minimal score of all plans:
ρ(q) = minPscore(P). It is known that an unsafe query q can be-
come safe (i.e., P(q) can be calculated in PTIME with one single
plan) if we consider DRs. Thus, in particular, we would still like
an improved algorithm that returns one single plan if a query with
DRs is safe. The following lemma will help us achieve this goal:

LEMMA 22 (DISSOCIATION AND DRS). Dissociating a deter-
ministic relation does not change the probability.

PROOF. ?? follows immediately from Theorem ?? (2) and not-
ing that dissociating tuples in DRs corresponds exactly to dissoci-
ating variables X with p(Xi) = 1.

We thus define a new probabilistic dissociation preorder �p by:

∆�p
∆
′⇔∀i,Ri probabilistic : yi ⊆ y′i

In other words, ∆�p ∆′ still implies P(q∆)≤ P(q∆′), but �p is de-
fined on probabilistic relations only. Notice, that for queries with-
out DRs, the relations �p and � coincide. However, for queries
with DRs, �p is a preorder, not an order. Therefore, there exist
distinct dissociations ∆, ∆′ that are equivalent under �p (written as
∆≡p ∆′), and thus have the same probability: P(q∆) = P(q∆′). As
a consequence, using �p instead of �, allows us to further reduce
the number of minimal safe dissociations.

EXAMPLE 23 (DRS). Consider q :−R(x),S(x,y),T d(y) where a
d-exponent indicates a DR. This query is known to be safe. We
thus expect our definition of ρ(q) to find that ρ(q) = P(q). Ig-
nore that T d is deterministic, then � has two minimal plans:
q∆1 :−Ry(x,y),S(x,y),T d(y), and q∆2 :−R(x),S(x,y),T dx(x,y).
Since ∆2 dissociates only T d , we now know from ?? that P(q) =
P
(
q∆2
)
. Thus, by using� as before, we still get the correct answer.

However, evaluating the plan P∆1 is always unnecessary since
∆2 �p ∆1. In contrast, without information about DRs, ∆2 6�p ∆1,
and we would thus have to evaluate both plans.

?? illustrates this with augmented incidence matrices: dissoci-
ated variables in DRs are now marked with empty circles (◦) in-
stead of full circles (•), and the preorder �p is determined entirely
by full circles (representing dissociated variables in probabilistic
relations). However, as before, the correspondence to plans (as im-
plied by the hierarchy between all variables) is still determined by
empty and full circles. ?? shows that ρ(q) = P

(
q∆2
)

= P(q) since
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(c) Rd and T d

Figure 3: q :−R(x),S(x,y),T (y), alternatively with DRs Rd and T d .

∆0 ≡p ∆2 �p ∆1 ≡ ∆3. Thus, the query is safe, and it suffices to
evaluate only P∆2 . Notice that q is not hierarchical, but still safe
since it is in an equivalence class with a query that is hierarchi-
cal: ∆0 ≡p ∆2. ?? shows that, with Rd and T d being deterministic,
all three possible query plans (corresponding to ∆1, ∆2, and ∆3)
form a minimal equivalence class in �p with ∆0, and thus give the
exact probability. We, therefore, want to modify our algorithm to
return just one plan from each minimal safe equivalence class. Ide-
ally, we prefer the plan corresponding to ∆3 (or more generally, the
top plan in � for each minimum equivalence class) since P∆3 least
constrains the join order between tables.

We now explain two simple modifications to ?? that achieve ex-
actly our desired optimizations described above:

(1) Denote with MinPCuts(q) the set of minimal cut-sets that
disconnect the query into at least two connected components
with probabilistic tables. Replace MinCuts(q) in ?? with
MinPCuts(q).

(2) Denote with mp the number of probabilistic relations in a
query. Replace the stopping condition in ?? with: if mp ≤ 1
then P←{πx 1p[R1(x1), . . . ,Rm(xm)

]}. In other words, if
a query has maximal one probabilistic relation, than join all
relations followed by projecting on the head variables.

THEOREM 24 (?? WITH DRS). ?? with above 2 modifications re-
turns a minimum number of plans to calculate ρ(q) given schema
knowledge about DRs.

For example, for q :−R(x),S(x,y),T d(y), MinCuts(q) =
{{x},{y}}, while MinPCuts(q) = {{x}}. Therefore, the modified
algorithm returns P∆2 as single plan. For q :−Rd(x),S(x,y),T d(y),
the stopping condition is reached (also, MinPCuts(q) = { /0}) and
the algorithm returns P∆3 as single plan (see ??).

3.3.2 Functional dependencies (FDs)
Knowledge of functional dependencies (FDs), such as keys, can
also restrict the number of necessary minimal plans. A well known
example is the query q :−R(x),S(x,y),T (y) from ??; it becomes
safe if we know that S satisfies the FD Γ : x→ y and has a unique
safe plan that corresponds to dissociation ∆2. In other words, we
would like our modified algorithm to take Γ into account and to not
return the plan corresponding to dissociation ∆1.

Let Γ be the set of FDs on Var(q) consisting of the union of FDs
on every atom Ri in q. As usual, denote x+

i the closure of a set of
attributes xi, and denote ∆Γ = (y1, . . . ,ym) the dissociation defined
as follows: for every atom Ri(xi) in q, yi = x+

i \xi. Then we show:

LEMMA 25 (DISSOCIATION AND FDS). Dissociating a table Ri
on any variable y ∈ x+

i does not change the probability.
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This lemma is similar to ??. We can thus further refine our proba-
bilistic dissociation preorder �p′ by:

∆�p′
∆⇔∀i,Ri probabilistic : yi \x+

i ⊆ y′i \x+
i

As a consequence, using �p′ instead of �p, allows us to further
reduce the number of minimal safe equivalence classes. We next
state a result by [?] in our notation:

PROPOSITION 26 (SAFETY AND FDS [?, PROP. IV.5]). A
query q is safe iff q∆Γ is hierarchical.

This justifies our third modification to ?? for computing ρ(q) of
a query q over a database that satisfies Γ : First compute ∆Γ , then
run q∆Γ on our previously modified ??.

THEOREM 27 (?? WITH FDS). ?? with above 3 modifications re-
turns a minimum number of plans to calculate ρ(q) given schema
knowledge about DRs and FDs.

It is easy to see that our modified algorithm returns one single
plan iff the query is safe, taking into account its structure, DRs and
FDs. It is thus a strict generalization of all known safe self-join-free
conjunctive queries [?, ?]. In particular, we can reformulate the
known safe query dichotomy [?] in our notation very succinctly:

COROLLARY 28 (DICHOTOMY). P(q) can be calculated in
PTIME iff there exists a dissociation ∆ of q that is (i) hierarchi-
cal, and (ii) in an equivalence class with q under �p′.

To see what the corollary says, assume first that there are no FDs:
Then q is in PTIME iff there exists a dissociation ∆ of the DRs only,
such that q∆ is hierarchical. If there are FDs, then we first compute
the full dissociation ∆Γ (called “full chase” in [?]), then apply the
same criterion to q∆Γ .

4. MULTI-QUERY OPTIMIZATIONS
So far, ?? enumerates all minimal query plans. We then take the
minimum score of those plans in order to calculate the propagation
score ρ(q). In this section, we develop three optimizations that can
considerably reduce the necessary calculations for evaluating all
minimal query plans. Note that these three optimizations and the
two optimizations from the previous section are orthogonal and can
be arbitrarily combined in the obvious way. We use the following
example to illustrate the first two optimizations.

EXAMPLE 29 (OPTIMIZATIONS). Consider q :− R(x,z),S(y,u),
T (z),U(u),M(x,y,z,u). Our default is to evaluate all 6 mini-
mal plans returned by Algorithm ??, then take the minimum score
(shown in Fig. ??a). Figure ??b and Fig. ??c illustrate the op-
timized evaluations after applying Opt. 1, or Opt. 1 and Opt. 2,
respectively. �

4.1 Opt. 1: One single query plan
Our first optimization creates one single query plan by pushing the
min-operator down into the leaves. It thus avoids calculations when
it is clear that other calculations must have lower bounds. The idea
is simple: Instead of creating one query subplan for each top set
y ∈ MinCuts(q) in ?? of ??, the adapted ?? takes the minimum
score over those top sets, for each tuple of the head variables in ??.
It thus creates one single query plan.

[t]

Optimization 1 recursively pushes the min operator into the leaves and
generates one single query plan.
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(a)  Result  from  Algorithm  1:  six  minimal  query  plans	

(b)  Result  from  Algorithm  4:  one  single  query  plan	

(c)  Result  from  Algorithm  5:  re-‐‑using  common  subplans	
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Figure 4: ?? before and after applying optimizations 1 and 2.

AlgorithmRecursive algorithm SPSP ForAllforalldoendfch
SP (SinglePlan) Query q(x) :−R1(x1), . . . ,Rm(xm) Single query plan P

m = 1P← π p
x Ri(xi) q is disconnected Let q = q1, . . . ,qk be the components con-

nected by EVar(q) Let HVar(qi)← HVar(q)∩Var(qi) P←1p
[
(q1), . . . ,(qk)

]
Let

MinCuts(q) = {y1, . . . ,y j} Let q′i← qi with HVar(q′i)← HVar(q)∪yi if j=1 then

P← π p
−y1

(q′1) else P←min
[
π p
−y1

(q′1), . . . ,π
p
−y j

(q′j)
]

4.2 Opt. 2: Re-using common subplans
Our second optimization calculates only once, then re-uses com-
mon subplans shared between the minimal plans. Thus, whereas
our first optimization reduces computation by combining plans at
their roots, the second optimization stores and re-uses common re-
sults in the branches. The adapted ?? works as follows: It first tra-
verses the whole single query plan (FindingCommonSubplans) and
remembers each subplan by the atoms used and its head variables
in a HashSet HS (??). If it sees a subplan twice (??), it creates a
new view for this subplan, mapping the subplan to a new view def-
inition. The actual plan (ViewReusingPlan) then uses these views
whenever possible (??). The order in which the views are created
(??) assures that the algorithm also discovers and exploits nested
common subexpressions. Figure ??c illustrates for ??, that both the
main plan and the view V3 re-use views V1 and V2.

[t]

Optimizations 1 & 2 together create a query plan which re-uses several
previously defined temporary views.

AlgorithmAlgorithm FunctionRecursive function FSFS SPSP RPRP HSHS
HMHM ForAllforalldoendfch

UsingCommonSubplans Query q(x) :−R1(x1), . . . ,Rm(xm) Ordered set of view
definitions V , final query plan P ← /0 // HashSet of all subplans ← ( /0, /0) //
HashMap from subplans to unique view names V ← /0 // Set of view defini-
tions (q) qi ∈.keys in increasing size of HVar(qi) and Var(qi) V ← V ∪{.val =
ViewReusingPlan(qi)} P = (q)

FS (FindingCommonSubplans) Query q(x) :−R1(x1), . . . ,Rm(xm) q is discon-
nected Let q = q1, . . . ,qk be the components connected by EVar(q) qi(qi(xi))
(m = 1∧ x = xi)∨ (q) 6= /0 q ∈ ∧(q) = /0 (q)← new view name HS← HS∪ {q}
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y ∈ MinCuts(q) Let q′← q with HVar(q′)← HVar(q)∪y (q′) RP (ViewReusing-
Plan) Query q(x) :−R1(x1), . . . ,Rm(xm) Query plan P that reuses views from HashMap
HM if (q) 6= /0 then P← (q) Insert here lines 1-11 from ??, replacing with

4.3 Opt. 3: Deterministic semi-join reduction
The most expensive operations in probabilistic query plans are the
group-bys for the probabilistic project operations. These are often
applied early in the plans to tuples which are later pruned and do not
contribute to the final query result. Our third optimization is to first
apply a full semi-join reduction on the input relations before start-
ing the probabilistic evaluation from these reduced input relations.
We like to draw here an important connection to [?], which intro-
duces the idea of “lazy plans” and shows orders of magnitude per-
formance improvements for safe plans by computing confidences
not after each join and projection, but rather at the very end of the
plan. We note that our semi-join reduction serves the same pur-
pose with similar performance improvements and also apply for
safe queries. The advantage of semi-join reductions, however, is
that we do not require any modifications to the query engine.

5. EXPERIMENTS
We are interested in both the quality and the efficiency of disso-
ciation as compared to exact probabilistic inference, Monte Carlo
simulation (MC), and standard deterministic query evaluation (“de-
terministic SQL”). Our experiments, thus, investigate the following
questions: How much can our three optimizations improve dissoci-
ation? How fast is dissociation as compared to exact probabilistic
inference, MC, and deterministic query evaluation? How good is
the ranking from dissociation as compared to MC and ranking by
lineage size? What are the most important parameters determining
the ranking quality for each of the three methods?

Ranking quality. We use mean average precision (MAP) to
evaluate the quality of ranking of a method by comparing it against
the ranking from exact probabilistic inference as ground truth (GT).
MAP rewards rankings that place relevant items earlier; the best
possible value is 1, and the worst possible 0 [?]. Average Precision

at 10 (AP@10) is defined as AP@10 = ∑
10
k=1 P@k

n , where P@k is the
precision at kth answer returned. Averaging over several rankings
yields MAP. We use a variant of the analytic method proposed in [?]
to calculate AP in the presence of ties. As baseline for no ranking,
we assume all tuples to have the same score and thus be tied for the
same position and call this random average precision.

Exact probabilistic inference. Whenever possible, we calcu-
late GT rankings with a tool called SampleSearch [?, ?], which
also serves to evaluate the cost of exact probabilistic inference. We
describe the method of transforming the lineage DNF into a format
that can be read by SampleSearch in [?].

Monte Carlo (MC). We evaluate the MC simulations for dif-
ferent numbers of samples and write MC(x) for x samples. For
example, AP for MC(10k) is the result of sampling the individual
tuple scores 10 000 times from their lineages and then evaluating
AP once over the sampled scores. The MAP scores together with
the standard deviations are then the average over several repetitions.

Ranking by lineage size. To evaluate the potential of non-
probabilistic methods for ranking answers, we also rank the answer
tuples by decreasing size of their lineages; i.e. number of terms. In-
tuitively, a larger lineage size should indicate that an answer tuple
has more “support” and should thus be more important.

Setup 1. We use the TPC-H DBGEN data generator [?] to gen-
erate a 1GB database to which we add a column P for each ta-
ble and store it in PostgreSQL 9.2 [?]. We assign to each input

tuple i a random probability pi uniformly chosen from the inter-
val [0, pimax], resulting in an expected average input probability
avg[pi] = pimax/2. By using databases with avg[pi] < 0.5, we can
avoid output probabilities close to 1 for queries with very large lin-
eages. We use the following parameterized query:

Q(a) :−S(s,a),PS(s,u),P(u,n),s≤ $1,n like $2

select distinct s nationkey from Supplier, Partsupp, Part
where s suppkey = ps suppkey and ps partkey = p partkey
and s suppkey <= $1 and p name like $2

Parameters $1 and $2 allow us to change the lineage size. Tables
Supplier, Partsupp and Part have 10k, 800k and 200k tuples, re-
spectively. There are 25 different numeric attributes for nationkey

and our goal is to efficiently rank these 25 nations. As baseline
for not ranking, we use random average precision for 25 answers,
which leads to MAP@10 = 0.220. This query has two minimal
query plans and we will compare the speed-up from either evalu-
ating both individually or performing a deterministic semi-join re-
duction (Optimization 3) on the input tables.

Setup 2. We compare the run times for our three optimizations
against evaluation of all plans for k-chain queries and k-star queries
over varying database sizes (data complexities) and varying query
sizes (query complexities). The k-chain queries have arity =2 and
several results, whereas the star queries have arity=1 and cardinal-
ity=1, representing a Boolean query:

k-chain: q(x0,xk) :−R1(x0,x1),R2(x1,x2), . . . ,Rk(xk−1,xk)

k-star: q(′a′) :−R1(′a′,x1),R2(x2), . . . ,Rk(xk),R0(x1, . . . ,xk)

We denote the length of the query with k, the number of tuples
per table with n, and the domain size with N. We use inte-
ger values which are uniformly randomly drawn from the range
{0,1, . . .N− 1}. This parameter determines the selectivity and is
varied as to keep the answer cardinality constant around 20-50 for
chain queries, and the answer probability between 0.90 and 0.95
for star queries. For the data complexity experiments, we vary
the number of tuples n per table between 100 and 106. For the
query complexity experiments, we vary k between 2 and 8 for chain
queries. For these experiments, the optimized (and often extremely
long) SQL statements are “calculated” in JAVA and then sent to
Microsoft SQL server 2012.

5.1 Run time experiments

QUESTION 1. When and how much do our three query optimiza-
tions speed up query evaluation?

Result 1. Combining plans (Opt. 1) and using intermediate views
(Opt. 2) almost always speeds up query times. The semi-join re-
duction (Opt. 3) slows down queries with high selectivities, but
considerably speeds up queries with small selectivities.

Figures ?? to ?? show the results on setup 2 for increasing database
sizes or query sizes. For example, ?? shows the performance of
computing a 7-chain query which has 132 safe dissociations. Eval-
uating each of these queries separately takes a long time, while our
optimization techniques bring evaluation time close to determinis-
tic query evaluation. Especially on larger databases, where the run-
ning time is I/O bound, the penalty of the probabilistic inference is
only a factor of 2-3 in this example. Notice here the trade-off be-
tween optimization 1,2 and optimization 1,2,3: Optimization 3 ap-
plies a full semi-join reduction on the input relations before starting
the probabilistic plan evaluation from these reduced input relations.
This operation imposes a rather large constant overhead, both at the
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query optimizer and at query execution. For larger databases (but
constant selectivity), this overhead is amortized. In practice, this
suggests that dissociation allows us a large space of optimizations
depending on the query and particular database instance that can
conservatively extend the space of optimizations performed today
in deterministic query optimizers.

Figures ?? to ?? compare the running times on setup 1 be-
tween dissociation with two minimal query plans (“Diss”), dis-
sociation with semi-join reduction (“Diss + Opt3”), exact proba-
bilistic inference (“SampleSearch”), Monte Carlo with 1000 sam-
ples (“MC(1k)”), retrieving the lineage only (“Lineage query”),
and deterministic query evaluation without ranking (“Standard
SQL”). We fixed $2 ∈ {’%red%green%’, ’%red%’, ’%’} and varied
$1 ∈ {500,1000, . . .10k}. ?? combines all three previous plots and
shows the times as function of the maximum lineage size (i.e. the
size of the lineage for the tuple with the maximum lineage) of a
query. We see here again that the semi-join reduction speeds up
evaluation considerably for small lineage sizes (?? shows speedups
of up to 36). For large lineages, however, the semi-join reduction
is an unnecessary overhead, as most tuples are participating in the
join anyway (?? shows overhead of up to 2).

QUESTION 2. How does dissociation compare against other
probabilistic methods and standard query evaluation?

Result 2. The best evaluation strategy for dissociation takes only
a small overhead over standard SQL evaluation and is consider-
ably faster than other probabilistic methods for large lineages.

Figures ?? to ?? show that SampleSearch does not scale to larger
lineages as the performance of exact probabilistic inference de-
pends on the tree-width of the Boolean lineage formula, which
generally increases with the size of the data. In contrast, dissoci-
ation is independent of the treewidth. For example, SampleSearch
needed 780 sec for calculating the ground truth for a query with
max[lin] = 5.9k for which dissociation took 3.0 sec, and MC(1k)
took 42 sec for a query with max[lin] = 4.2k for which dissociation
took 2.4 sec. Dissociation takes only 10.5 sec for our largest query
$2 = ’%’ and $1 = 10k with max[lin] = 35k. Retrieving the lineage
for that query alone takes 5.8 sec, which implies that any proba-
bilistic method that evaluates the probabilities outside of the data-
base engine needs to issue this query to retrieve the DNF for each
answer and would thus have to evaluate lineages of sizes around
35k in only 4.7 (= 10.5 - 5.8) sec to be faster than dissociation.5

5.2 Ranking experiments
For the following experiments, we are limited to those query pa-
rameters $1 and $2 for which we can get the ground truth (and
results from MC) in acceptable time. We systematically vary pimax
between 0.1 and 1 (and thus avg[pi] between 0.05 and 0.5) and
evaluate the rankings several times over randomly assigned input
tuple probabilities. We only keep data points (i.e. results of indi-
vidual ranking experiments) for which the output probabilities are
not too close to 1 to be meaningful (max[pa] < 0.999999).

QUESTION 3. How does ranking quality compare for our three
ranking methods and which are the most important factors that de-
termine the quality for each method?

Result 3. Dissociation performs better than MC which performs
better than ranking by lineage size.

5The time needed for the lineage query thus serves as minimum benchmark for any
probabilistic approximation. The reported times for SampleSearch and MC are the
sum of time for retrieving the lineage plus the actual calculations, without the time for
reading and writing the input and output files for SampleSearch.

?? shows averaged results of our probabilistic methods for $2 =
’%red%green%’.6 Shaded areas indicate standard deviations and
the x-axis shows varying numbers of MC samples. We only used
those data points for which avg[pa] of the top 10 ranked tuples is
between 0.1 and 0.9 according to ground truth (≈ 6k data points for
dissociation and lineage, ≈ 60k data points for MC, as we repeated
each MC simulation 10 times), as this is the best regime for MC,
according to ??. We also evaluated quality for dissociation and
ranking by lineage for more queries by choosing parameter values
for $2 from a set of 28 strings, such as ’%r%g%r%a%n%d%’ and
’%re%re%’. The average MAP over all 28 choices for parameters
$2 is 0.997 for ranking by dissociation and 0.520 for ranking by
lineage size (≈ 100k data points). Most of those queries have too
large of a lineage to evaluate MC. Note that ranking by lineage
always returns the same ranking for given parameters $1 and $2,
but the GT ranking would change with different input probabilities.

Result 4. Ranking quality of MC increases with the number of
samples and decreases when the average probability of the an-
swer tuples avg[pa] is close to 0 or 1.

?? shows the AP as a function of avg[pa] of the top 10 ranked tu-
ples according to ground truth by logarithmic scaling of the x-axis
(each point in the plot averages AP over ≈ 450 experiments for
dissociation and lineage and over ≈ 4.5k experiments for MC). We
see that MC performs increasingly poor for ranking answer tuples
with probabilities close to 0 or 1 and even approach the quality of
random ranking (MAP@10 = 0.22). This is so because, for these
parameters, the probabilities of the top 10 answers are very close,
and MC needs many iterations to distinguish them. Therefore, MC
performs increasingly poorly for increasing size of lineage but fixed
average input probability avg[pi]≈ 0.5, as the average answer prob-
abilities avg[pa] will be close to 1. In order not to “bias against
our competitor,” we compared against MC in its best regime with
0.1 < avg[pa] < 0.9 in ??.

Result 5. Ranking by lineage size has good quality only when all
input tuples have the same probability.

?? shows that ranking by lineage is good only when all tuples
in the database have the same probability (labeled by pi = const as
compared to avg[pi] = const). This is a consequence of the out-
put probabilities depending mostly on the size of the lineages if
all probabilities are equal. Dependence on other parameters, such
as overall lineage size and magnitude of input probabilities (here
shown for pi = 0.1 and pi = 0.5), seem to matter only slightly.

Result 6. The quality of dissociation decreases with the average
number of dissociations per tuple avg[d] and with the average
input probabilities avg[pi]. Dissociation performs very well and
notably better then MC(10k) if either avg[d] or avg[pi] are small.

Each answer tuple a gets its score pa from one of two query plans
PS and PP that dissociate tuples in tables S and P, respectively. For
example, if the lineage size for tuple a is 100 and the lineage con-
tains 20 unique suppliers from table S and 50 unique parts from
table P, then PS dissociates each tuple from S into 5 tuples and PP
each tuple from P into 2 tuples, on average. Most often, PP will
then give the better bounds as it has fewer average dissociations.
Let avg[d] be the mean number of dissociations for each tuple in
the dissociated table of its respective optimal query plan, averaged
6Results for MC and other parameters of $2 are similar. However, the evaluation time
for the experiments becomes quickly infeasible.
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Figure 5: Timing results: (a)-(c) For increasing database sizes and constant cardinalities, our optimizations approach deterministic SQL performance.
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across all top 10 ranked answer tuples. For all our queries (even
those with $1 = 10k and $2 = ’%’), avg[d] stays below 1.1 as, for
each tuple, there is usually one plan that dissociates few variables.
In order to understand the impact of higher numbers of dissocia-
tions (increasing avg[d]), we also measured AP for the ranking for
each query plan individually. Hence, for each choice of random
parameters, we record two new data points – one for ranking all
answer tuples by using only PS and one for using only PP – to-
gether with the values of avg[d] in the respective table that gets
dissociated. This allows us to draw conclusions for a larger set of
parameters. ?? plots MAP values as a function of avg[d] of the
top 10 ranked tuples on the horizontal axis, and various values of
avg[pi] (avg[pi] = 0.05,0.10, . . . ,0.5). Each plotted point averages
over at least 10 data points (some have 10, other several 1000s).
Dashed lines show a fitted parameterized curve to the data points
on avg[pi] and avg[d]. The figure also shows the standard devia-
tions as shaded areas for avg[pi] = 0.5. We see that the quality is
very dependent on avg[pi], as predicted by ??.

?? maps the trade-off between dissociation and MC for the two
important parameters for the quality of dissociation (avg[d] and
avg[pi]) and the number of samples for MC. For example, MC(1k)
gives a better expected ranking than dissociation only for the small
area above the thick red curve marked MC(1k). For MC, we used
the test results from ??; i.e. assuming 0.1 < avg[pa] < 0.9 for MC.
Also recall that for large lineages, having an input probability with
avg[pi] = 0.5 will often lead to answer probabilities close to 1 for
which ranking is not possible anymore (recall ??). Thus, for large
lineages, we need small input probabilities to have meaningful in-
terpretations. And for small input probabilities, dissociation con-
siderably outperforms any other method.

QUESTION 4. How much would the ranking change according to
exact probabilistic inference if we scale down all input tuples?

Result 7. If the probabilities of all input tuples are already small,
then scaling them further down does not affect the ranking much.

Here, we repeatedly evaluated the exact ranking for 7 different pa-
rameterized queries over randomly generated databases with one
query plan that has avg[d]≈ 3, for two conditions: first on a prob-
abilistic database with avg[pi] input probabilities (we defined the
resulting ranking as GT); then again on a scaled version, where all
input probabilities in the database are multiplied by the same scal-
ing factor f ∈ (0,1). We then compared the new ranking against
GT. ?? shows that if all input probabilities are already small (and
dissociation already works well), then scaling has little effect on the
ranking. However, for avg[pi] = 0.5 (and thus many tuples with pi
close to 1), we have a few tuples with pi close to 1. These tuples
are very influential for the final ranking, but their relative influ-
ence decreases if scaled down even slightly. Also note that even
for avg[pi] = 0.5, scaling a database by a factor f = 0.01 instead
of f = 0.2 does not make a big difference. However, the quality
remains well above ranking by lineage size (!). This suggests that
the difference between ranking by lineage size (MAP = 0.529) and
the ranking on a scaled database for f → 0 (MAP = 0.879) can be
attributed to the relative weights of the input tuples (we thus refer to
this as “ranking by relative input weights”). The remaining differ-
ence in quality then comes from the actual probabilities assigned
to each tuple. Using MAP = 0.220 as baseline for random ranking,
38% of the ranking quality can be found by the lineage size alone
vs. 85% by the lineage size plus the relative weights of input tuples.
The remaining 15% come from the actual probabilities (??).

QUESTION 5. Does the expected ranking quality of dissociation
decrease to random ranking for increasing fractions of dissociation
(just like MC does for decreasing number of samples)?

Result 8. The expected performance of dissociation for increasing
avg[d] for a particular query is lower bounded by the quality of
ranking by relative input weights.

Here, we use a similar setup as before and now compare various
rankings against each other: SampleSearch on the original data-
base (“GT”); SampleSearch on the scaled database (“Scaled GT”);
dissociation on the scaled database (“Scaled Diss”); and ranking by
lineage size (which is unaffected by scaling). From ??, we see that
the quality of Scaled Diss w.r.t. Scaled GT → 1 for f → 0 since
dissociation works increasingly well for small avg[pi] (recall ??).
We also see that Scaled Diss w.r.t. GT decreases towards Scaled GT
w.r.t. GT for f → 0. Since dissociation can always reproduce the
ranking quality of ranking by relative input weights by first down-
scaling the database (though losing information about the actual
probabilities) the expected quality of dissociation for smaller scales
does not decrease to random ranking, but rather to ranking by rel-
ative weights. Note this result only holds for the expected MAP;
any particular ranking can still be very much off.

6. RELATED WORK
Probabilistic databases. Current approaches to query evalu-

ation on probabilistic databases can be classified into three cate-
gories: (i) incomplete approaches identify tractable cases either at
the query-level [?, ?, ?] or the data-level [?, ?, ?]; (ii) exact ap-
proaches [?, ?, ?, ?, ?] work well on queries with simple lineage
expressions, but perform poorly on database instances with com-
plex lineage expressions. (iii) approximate approaches either apply
general purpose sampling methods [?, ?, ?, ?], or approximate the
number of models of the Boolean lineage expression [?, ?, ?]. Our
work can be seen as a generalization of several of these techniques:
Our algorithm returns the exact score if the query is safe [?, ?] or
data-safe [?].

Lifted and approximate inference. Lifted inference was in-
troduced in the AI literature as an approach to probabilistic infer-
ence that uses the first-order formula to exploit symmetries at the
grounded level [?]. This research evolved independently of that
on probabilistic databases, and the two have many analogies: A
formula is called domain liftable iff its data complexity is in poly-
nomial time [?], which is the same as a safe query in probabilis-
tic databases, and the FO-d-DNNF circuits described in [?] corre-
spond to the safe plans discussed in this paper. See [?] for a recent
discussion on the similarities and differences.

Representing Correlations. The most popular approach to rep-
resent correlations between tuples in a probabilistic database is by a
Markov Logic network (MLN) which is a set of soft constraints [?].
Quite remarkably, all complex correlations introduced by an MLN
can be rewritten into a query over a tuple-independent probabilistic
database [?, ?, ?]. In combination with such rewritings, our tech-
niques can be also applied to MLNs if their rewritings results in
conjunctive queries without self-joins.

Dissociation. Dissociation was first introduced in the workshop
paper [?], presented as a way to generalize graph propagation al-
gorithms to hypergraphs. Theoretical upper and lower bounds for
dissociation of Boolean formulas, including ??, were proven in [?].
Dissociation is related to a technique called relaxation for proba-
bilistic inference in graphical models [?].

7. CONCLUSIONS AND OUTLOOK
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This paper proposes to approximate probabilistic query evalua-
tion by evaluating a fixed number of safe queries, each providing
an upper bound on the true probability, then taking their minimum.
We provide an algorithm that takes into account important schema
information to enumerate only the minimal necessary plans among
all possible plans, and prove it to be a strict generalization of all
known results of PTIME self-join free conjunctive queries. We
describe relational query optimization techniques that allow us to
evaluate all minimal queries in a single query and very fast. Our
evaluations show that the optimizations of our approach bring prob-
abilistic query evaluation close to standard query evaluation while
providing high ranking quality. In future work, we plan to general-
ize the approach to full first-order queries.
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