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Abstract

All query languages proposed for semistructured data share as common characteristic the ability
to traverse arbitrary long path in the data in the form of regular path expressions. The expressive
power of these languages lies in between that of the relational calculus, and that of query languages
with recursion, like datalog. We consider the problems of query containment and query equivalence
for a certain subset of the Stru@QL language implemented in the Strudel web-site management system,
consisting of conjunctive queries with regular expressions. It was previously known that contaiment and
equivalence are NP-complete for the conjunctive fragment of the relational calculus, and undeciable for
datalog. We show that these problems are decidable for conjunctive queries with regular path expressions.
Both are PSPACE hard: the complexity of our decision algorithm however is higher, leaving a gap between
the lower and upper complexity bounds. For a restricted class of conjunctive queries with regular path
exrepssions we show that containment and equivalence are NP-complete. This offers, to our knowledge,
the first example of a query language with recursion in which containment and equivalence have the same
complexity as that of conjunctive queries in the relational calculus.

1 Introduction

The management of semistructured data has recently received significant attention because of the need of
several applications to model and query large volumes of irregular data [1, 5]. For example, researchers in
biology store their data in structured files in various data exchange formats. Similarly, large volumes of
online documentation, document collections and program libraries are available in structured files.

Several characteristics distinguish semistructured data from relational and object-oriented data. Unlike
traditional data that fits a pre-existing and fixed schema, semistructured data is irregular: attributes may
be missing, the type and cardinality of an attribute may not be known or may vary from object to another,
and the set of attributes may not be known in advance. Furthermore, the schema of semistructured data,
even if it exists, is often unknown in advance. Because of these characteristics, models of semistructured
data have been shown to be very valuable for data integration [24, 1].

The focus of the research on semistructured data has been on formulating appropriate models for such
data, and designing appropriate query languages (e.g., [10, 3, 6]). The data model that has been generally
adopted is based on labeled directed graphs, where nodes correspond to objects, and the labels on the edges
correspond to attributes. Although the query languages proposed for semistructured data are based on
different paradigms, all of them share the following key feature. As a consequence of the lack of schema
(or lack of knowledge about the schema), users need the ability to express queries navigating irregular or
unpredictable structures. This is done by allowing the queries to include regular path expressions over the
attributes, and express queries about the schema.

This paper considers the problem of query containment for a query language over semistructured data that
contains the essential feature explained above. We consider the language STRUQLy, a subset of the STRUQL
language implemented in the STRUDEL web-site management system [13, 14]. The language STRUQLq
allows expressing regular path expressions over attributes in a graph and permits arc variables that range
over attribute names. Ignoring the restructuring capabilities of languages for querying semistructured data,
STRUQL is more expressive than UnQL [6]!, and is equivalent to a certain fragment of Lorel [3]. Considering
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the restructuring capabilities, the full STRUQL language is more expressive than both UnQL and Lorel:
however, we do not discuss the restructuring aspects in this paper. Furthermore, STRUQLq is a subset of
datalog with a limited yet interesting form of recursion. Importantly, the containment result for datalog do
not yield any interesting results for STRUQLg. In particular, STRUQL( identifies a subset of datalog for
which containment is decidable.

Algorithms for query containment are important in several contexts. Originally, algorithms for contain-
ment have been developed in the context of query optimization [7, 25, 4]. For example, query containment
can be used to find redundant subgoals in a query and to test whether two formulations of a query are
equivalent. Also, query containment has been used to determine when queries are independent of updates to
the database [21], rewriting queries using views [8, 19], and maintenance of integrity constraints [17]. More
recently, query containment, applied in the context of rewriting queries using views, have been used as a
tool in data integration [20, 16, 30].

An important motivation for our work is that solving the query containment problem, and its related
query rewriting problem, is essential for supporting the separation between the logical view of the data and
its storage. This particular usage of query rewriting algorithms has been pioneered in [29]. In that work, the
storage pattern of data is abstracted by a query over the logical view of data. Hence, to translate a query
expressed over the logical view of the data into a query execution plan tailored to the physical storage of
the data, the query optimizer needs to solve the query rewriting problem which, in turn, reduces to a query
containment problem [19]. In the context of semistructured data, the graph data model is often introduced
artificially for modeling purposes, in order to support a wide range of data stored in existing formats. Hence,
the separation between the logical view of the data and the physical view becomes even more important,
and is crucial for query optimization [15].

We make the following contributions. First, we give a semantic criteria for STRUQL( query containment:
we show that it suffices to check containment on only finitely many canonical databases, hence query con-
tainment is decidable: the resulting algorithms has a high complexity however. Second we give a syntactic
criteria for query containment, based on a notion of query mappings, which extends containment mappings
for conjunctive queries. This results in a second algorithm, with exponential space complexity. Third, we
consider a certain fragment of STRUQLy, obtained by imposing restrictions on the regular path expressions.
We show that query containment for this fragment of STRUQL( is NP complete. This is a surprising result,
since it offers the first example (to the best of our knowledge) of a query language with recursion for which
containment checking is no harder than for conjunctive queries.

Previous work on query containment has considered queries in the relational algebra [7, 25, 4] and
datalog [27, 26, 9]. Several works have considered the extension of containment algorithms for queries
involving order [18, 31, 21, 32, 17], and queries over complex objects [22]. In [11], Courcelle characterized a
large class of decidable problems involving Datalog rules: our results however do not fit in that framework.
Except for the undecidability result for query containment for datalog [27] none of these works has considered
query languages with regular path expressions or arc variables.

This paper is organized as follows. We describe the data model and query language in Section 2, and
define the query containment problem. We give the semantic criteria equivalent to query containment in
Section 3, and show that containment is decidable. Using that, we give the syntactic criteria in Section 4,
and prove that it is equivalent to query containment: this results in an exponential space algorithm for
checking containment. In Section 5 we describe a fragment of our query language for which the containment
is NP-complete, then conclude in Section 6.

2 Preliminaries

In this section we describe our data model and query language, and then define the problems considered in
the paper.

Data Model and Query Language We model a database of semistructured data as a labeled directed
graph. Nodes in the graph correspond to objects in the domain, and the labels on the edges correspond
to attribute names. Intuitively, this model can be viewed as an object-oriented data model without type
constraints.
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Figure 1: An example of a graph database.

Formally, we assume we have a universe of constants D, which is disjoint from a universe of object
identifiers Z. A database DB is a pair (V, E), where V C T is a set of nodes and E CV x D x V is a set of
directed edges, labeled with constants from D. Figure 1 contains an example of a graph database.

In this paper we consider a subset STRUQLg of the STRUQL language [14]. Informally, we consider
conjunctive queries with two distinct features. First, some of the conjuncts may describe regular path
expressions over the edge labels in the graph. Second, some of the variables are arc variables, and range over
the labels of edges in the graph.

Formally, in our discussion we distinguish arc variables from normal variables. We denote arc variables
by the letter L, possibly with various subscripts. Other variables are denoted by capital letters from the
end of the alphabet. A regular path expression is defined by the following grammar (R, Ry and Ry denote
regular path expressions, and a denotes a constant in D):

R:e|a|_|L|(R1R2)|(R1|R2)|R*
We abbreviate R.(Rx+) with R+. A query in STRUQLy is an expression of the form
Q : q(X) : _}/IRIZIa [ERE YanZn

Here nvar(Q) def M,...,Yn,Z1,...,Z,} are the query’s node variables (they need not be distinct),

and Ry,..., R, are regular path expressions. We denote with avar(@) the set of arc variables occurring
in Ry,...,R,, and with var(Q) e nvar(Q) U avar(Q) all the variables in Q. X C nwvar(Q) are Q’s head
variables. Finally, atoms(Q) denotes the set of all constants occurring in Ry, ..., R,.

The semantics of such a query is an extension of the semantics of conjunctive queries. Define a substitution
to be a function ¢ : var(Q) — Z U D, s.t. ¢ maps node variables to Z and arc variables to D. Consider all
the possible substitutions, ¢, such that ¢ satisfies the following constraint:

e for every i, 1 <14 < n, there is a path P in the database between ¢(X;) and ¢(Y;), such that P satisfies
the regular path expression ¢(R;), where ¢(R;) denotes the application of the substitution of ¢ to the
regular path expression R; (i.e., replacing the arc variables with their value under ¢: hence p(R;) is a
regular expression without arc variables).

Each substitution ¢ defines a tuple in a relation R, whose arity is the number of variables in (). The
answer to () is the projection of Rg on the variables in X. We denote the result of applying ) to a database
DB by Q(DB).

Example 2.1 Consider the following query:
Q1:ql(X,Z): —~XL + Z,YaZ, X (a+ | (a.bx))Z.

The relation Rg(X,Y, Z,L) has arity 4, and contains 4 tuples, when @ is applied to the database in
Figure 1: {(u1,u1,us,c), (u1,u1,us,a), (us,ur,us, d), (uz, uz,uz,a)}: Q(DB) is it’s projection on X and Z,
{(u1,us), (u2,us), (u2, us) }-



The full STRUQL language contains several additional features not discussed here. First, the STRUQL
allows some of the conjuncts to be arbitrary predicates or membership conditions in a predefined set of
collection names. Since the containment problem in the presence of these additional features is a straightfor-
ward extension of the algorithms we present, we omit them from the discussion. Finally, the view definition
mechanism of STRUQL allows definition of new graphs using the Create, Link and Collect clauses. In
this paper we do not consider the restructuring capabilities of STRUQL.

It is important to emphasize that STRUQL( has two features essential for querying semistructured data,
and in turn introduce the novel difficulties to the problems we consider. These features are the presence of
regular path expressions in the query and the ability to query the schema via the arc variables. The queries
we consider in this paper can be translated into datalog. The problem of query containment for datalog is
known to be undecidable [27], and none of the restricted cases for containment that have been considered
in the literature apply to STRUQLg. However, STRUQLg is an interesting subset of datalog with a limited
form of recursion for which containment is decidable.

Containment The problem of query containment is defined as follows:

Definition 2.2 A query @)y is contained in a query Q2, written Q1 C Q2, if for all databases DB, Q1(DB) C
Q2(DB). The queries Q1 and Q2 are equivalent, written Q1 = Q2, if @1 C Q2 and Q2 C Q.

Example 2.3 The query Q2 below is contained in Q1:
Q::q2(X,7): —Xa™Z.
For example, on the database in Figure 1, Q2 returns {(u1,us), (u2,us)}.

3 Query Containment and Canonical Databases

We describe in this section a semantic condition for query containment. Namely we show that Q C Q' iff
Q(DB) C Q'(DB) for all canonical databases, DB, that is, databases with a certain shape, imposed by Q.

A canonical database DB for () is easy to explain intuitively. Namely DB will have one distinguished
node for each variable in () — called a bifurcation node — and one distinguished path for each conjunct in
@ — called an internal path, and its nodes internal nodes. The internal path associated to the conjunct
YRZ in DB must be between the bifurcation nodes associated to Y and Z, and its labels must satisfy the
regular expression R. We give the formal definition next. Let @ be a STRUQLg query, and recall that
avar(Q) = {L1,...,Lp} denotes the set of all arc variables in ). We will assume that avar(Q) is disjoint
from D, our universe of constants.

Definition 3.1 A canonical database for Q@ is a pair (DB,§), where DB = (V,E) is a graph databases

with constants in D' < DU avar(Q), and & : var(Q) = T UD' is a substitution, such that the conditions
below hold. DB’s nodes are partitioned into bifurcation nodes, denoted Vg, and internal nodes, denoted Vy:
V =VgUV;. We cdll a path b = u1 — us = ... = u, — b with b,b' bifurcation nodes and u1,...,u,
internal nodes an internal path. The conditions are:

1. Each internal node belongs to an internal path, and has exactly one incoming edge and one outgoing
edge.

2. The substitution & (1) maps all node variables in Q) to bifurcation nodes, s.t. the restriction of £ to
nvar(Q) — Vg is surjective, and (2) maps each arc variable L € avar(Q) to itself.

3. There ezists a 1 to 1 correspondence between the conjuncts in () and the internal paths in DB, s.t. for
every conjunct Y;R;Z;, the sequence of labels on the corresponding internal path satisfies the regular
expression £(R;).

Note that distinct node variables may correspond to the same bifurcation node, i.e. we may have £(Y) =
&(Z). In that case the internal path from £(Y) to £(Z) associated to some conjunct Y RZ may be empty
(then, of course, ¢ € R). If at least one of the conjuncts in @ has a Kleene closure *, then there are
infinitely many canonical databases. This is because the internal path corresponding to that conjunct can



Figure 2: A canonical database. The bifurcation nodes are encircled.

be made arbitrarily large. Compare this to the classical case of conjunctive queries?, where each query
determines a unique, canonical database, given by its body. As an example, a canonical database for the
query @ : ¢(X1, X2) : —X1(a.L.(%)) X2, Xa2(b.c)*Y, Xa(a|L)*Z,Y (c|d) X} is illustrated in Figure 2. Note that
_ can be replaced by any atomic value in D U avar(Q), with or without repetitions. In this case we still have
inifinitely many canonical databases even if () doesn’t have a Kleen closure.

Given a query @) with head variables Xi,..., X}, and a canonical databases (DB,¢) for @), we call
(§(X1),- .., &(Xk)) the canonical tuple for DB. Obviously, the canonical tuple belongs to Q(DB). As for the
case of conjunctive queries, in order to check containment of two queries Q C Q' it suffices to test whether
the canonical tuple is in the answer of Q': this time however we have to do that for all canonical databases.

Proposition 3.2 Given two queries Q,Q’, we have Q@ C Q' iff for any canonical database (DB, &) for Q,
it’s canonical tuple is in the answer of Q'.

Proof: For the “only if” direction we note that STRUQL queries are generic, hence if ) C @' for databases

over the universe D, then Q C @' for databases over universe D’ ' puy avar(Q): we defer the rather
straightforward details to the final version of the paper. Consider now the “if” implication. Assume the
contrary, i.e. @ € Q'. Then there exists some database DB and some tuple of nodes and/or arc values
@ = (uy,-..,ux) in DB such that & € Q(DB), but o ¢ Q'(DB). We construct from that a canonical
database which contradicts the assumption. Since u € Q(DB), there exists a substitution ¢, such that for
each conjunct YRZ in @Q there exists some path from ¢(Y") to ¢(Z) in DB whose sequence of labels satisfies
R. We start the construction of the canonical database (DBy,&) by picking the bifurcation nodes to be

the image under ¢ of the node variables in @: that is Vg def {p(X) | X € nvar(Q)}, and we will define

£(X) ef p(X) for every X € nvar(@). Next consider each conjunct YRZ in Q. There exists a path in DB

from (YY) to ¢(Z) whose labels match the regular expression R. This path is not necessarily simple (i.e.
it may have loops), and may go through nodes which have been designated bifurcation node: we introduce
fresh internal node in DBy for every occurence of a node in that path, thus creating a simple path from
»(Y) to o(Z) with the same labels. We will make this the internal path corresponding to the conjunct Y RZ,
but first we replace some of its labels, as follows. Let A be some nondeterministic automaton equivalent to
R, where the arc variables L1, Lo, ... are viewed as constants. By definition, the sequence of labels on the
internal path from £(Y) to £(Z) is accepted by ¢(A). We replace each label a causing a transition in ¢(A)
corresponding to some arc variable L € avar(DB) with L: hence, the resulting path has a sequence of labels

from D' ¥ DU avar(DB) which is accepted by A. Obviously, the resulting DBy is a canonical database.
Moreover, we have a graph morphism v : DBy — DB, sending bifurcation nodes to themselves, internal
nodes back to their originating nodes, and each arc variable L to ¢(L). Now we use the assumption on @',
and argue that the canonical tuple in DBy must be in Q'(DB). This gives us a substitution ¢’ from Q' to

2A conjunctive query is a First Order Logic formula which is conjunction of positive atomic literals, preceeded by some
existentail quantifier. See [2].



DBy. We compose it with ¢ : DBy — DB, and get a substitution ¢ o ¢’ from Q' to DB, which implies that
@ is in the answer of @)’ too: this contradicts our assumption. a

Since in general there are infinitely many canonical databases, this does not give us a decision procedure
for testing containment. The main result in this section consists in showing that it suffices to check only
those canonical databases whose internal paths are of lengths which are bounded by some number depending
only on ( and @'. From that we derive a decision procedure.

Theorem 3.3 Let Q, Q' be two queries. Then there exists a number N, which depends only on Q and Q'
s.t. @ C Q" iff for every canonical database (DB,&) for @), whose internal paths are of length < N, its
canonical tuple is in Q' (DB).

The proof is given in the Appendix. Note that this still does not imply decidability, because there are
still infinitely many canonical databases with bounded length. For example, consider @ : ¢(X,Y) : =X _Y.
The canonical databases for @ are all databases of the form £(X) % £(Y) with a € D. However, we can
prove that it suffices to restrict to those having constants from a set of n x N atomic values, where n is the
number of conjuncts in ). More precisely, let Do C D be any set of cardinality n x N (this is the maximum
number of atomic constants in the databases in Theorem 3.3), disjoint from atoms(Q), atomns(Q'), and let

Dg.o def atoms(Q) U atoms(Q") U Dg. We prove in the full version of the paper that it suffices to check only
the canonical databases with constants in Dg ¢ U avar(Q). Hence, we have:

Corollary 3.4 Query containment for STRUQLg is decidable.

The complexity of the algorithm following from the proof is high: triple exponential space. We will
describe an exponential space algorithm in the next section.

4 Query Containment and Query Mappings

We give in this section a syntactic criteria for query containment, similar in spirit to query mappings for
conjunctive queries. This is an alternative to the semantic one of the previous section. Before we proceed, we
note two differences from the classical case of conjunctive queries. First, in the case of conjunctive queries,
there exists a one-to-one correspondence between the syntactic components of () (its variables and conjucts)
and the items in the canonical database DB of Q: thus, a substitution ¢ : var(Q') — DB immediately
yields a containment mapping. In our setting, the syntactic components of () are its variables, conjuncts,
and automata states, and the correspondence to the nodes of a canonical database is one-to-many: thus, a
substitution does not yield immediately a query mapping. Second, in our setting we have several canonical
databases for a query (). Since they all have the same shape, one may hope that they will all induce the
same query mapping. But these hopes are ruined by the example in Figure 3, showing two boolean queries
(i.e. without output variables) where @ has exactly two canonical databases, DBy and DBs, and the two
substitutions from @' to DB; and DBs have totally different shapes. Thus, we are forced to consider sets
of query mappings: we will show that @ C @’ iff a certain condition holds on all query mappings from Q'
to Q.

We start with some definitions.

Definition 4.1 Let Q be a query with n conjuncts, Q : ¢(X) : =Y1R1Z1,...,Y,RpZ,, and let nvar(Q) =
W1,21,...,Y,, Z,} be its set of node variables. We fix some nondeterministic automaton A; for each regular
expression R;. We define a point in Q to be (1) either a node variable, or (2) some automata/state pair,
i.e. (A;,8), with s a state in A;: we call the first kind a variable-point, the second an automaton-point. We
denote with points(Q) the set of points in Q.

The intuition behind this definition is that any bifurcation node in a canonical database corresponds to
variable-point, and any internal node to an automaton-point. The correspondence is many-to-one however,
since several internal nodes may correspond to the same automaton-point.
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Figure 3: Two substitutions with different shapes.

Definition 4.2 Given a query @), a path of points is a sequence p1,...,pn, 1 > 2, s.t. (1) pa,-..,Pn_1
are all variable-points (while p1,p, may be either variable- or automaton-points), and (2) any two adjacent
points pj,pj+1 are “connected” in @, in the following way:

o If both pj,pj+1 are variable points, then there exists a conjuct Y;R;Z; in @), with p; =Y;, pjy1 = Z;.

e If p1 is an automaton-point (A;,s) and ps is a variable point, then there exists a conjunct Y;R;Z; in
Q, s.t. A; is the automaton associated to R;, and pa = Z;.

o Similarly, if pn, is an automaton-point (A;, s) and p,—1 is a variable point, then there exists a conjunct
Y:R;Z; in Q, s.t. A; is the automaton associated to R;, and p,—1 = Y;.

e Finally, if n = 2 and both p,ps are automaton-points, then they refer to the same automaton.

Again, the intuition comes from canonical databases. There, a path can be fully specified by its endpoints
(which can be either bifurcation nodes or internal nodes), and by its intermediate bifurcation nodes: that
is, all intermediate internal nodes are redundant. Formally, let (DB,&) be a canonical database for Q.
Since every internal node u is on a unique simple path corresponding to some conjuct Y;R;Z;, and whose
sequence of labels is accepted by A;, we can associate to each internal node u a point (A;,s). Given any
path U = (ug,us,...,u,) in DB, we say that it corresponds to a path of points py,...,p, in Q iff (1)
&(p2),---,&(pp_1) are precisely the bifurcation nodes on the path U, and (2) p; is either a variable-point
and &£(p1) = ug, or it is an automaton-point which is associated to w1, (3) similarly for p, and w,,.

Note that, when n = 2, the definition allows a path of points to be of the form (A;,s), (4;,s), even if
there is no path from s to s’ in the automaton A;.

Consider now some other query @', and fix some nondeterministic automaton A} for each regular expres-
sion R} in Q'. We define below a query mapping, f : Q' — Q. Recall that we defined at the end of Section 3
a finite set of constants Dg g C D and showed that it suffices to consider only those canonical databases
for ) whose edges are labeled with constants in D¢ ¢ U avar(Q). Let X, X' be the head variables in @, Q'
respectively.

Definition 4.3 A query mapping f : Q' — Q consists of the following.

1. A function f : var(Q") — points(Q) U (Dg g U avar(Q)), sending nvar(Q') to points(Q) and avar(Q)
to Dg,or U avar(Q), such that f(X') = X.

2. For each goal Y/R.Z! in Q', a path of points p1,pa,...,pn, in Q, of length n <| nvar(Q) | x |
states(A;) | +2, s.t. p1 = f(YY), pn = f(Z)).
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Figure 4: Tllustration of a containment mapping from @’ to Q.

3. For each goal Y;R;Z; in Q, a total preorder’ on those variables Z' € nvar(Q') for which f(Z') is
an automaton-point corresponding to A;. The preorder is required to satisfy the following: whenever
X' Y andY' X X' then f(X') = f(Y') (i.e. they are mapped to the same automaton-point).

The intuition is that such a query mapping rephrases a substitution ¢ from Q' to DB, for some canonical
database (DB, £), in terms of the syntactic elements in ). Conditions 1 and 2 are illustrated in Figure 4,
which shows how the goal Y'R'Z’ (with A’ being the associated automaton) is mapped to the path of points
P1,-.-,Pn- The intuition is that this corresponds to a substitution ¢ : @' — DB sending the goal Y'R'Z’
to some path in the canonical database DB. The path of points pi,...,p, may have cycles. However, its
length is bounded as in item 2 of the definition above, because of the following argument. Consider some
substutution ¢ : Q' — DB, for some canonical database for ). For the goal Y'R'Z' in @', there exists a
path in DB from ¢(Y') to ¢(Z'), possible with cycles, whose labels satisfy R. We decorate the nodes on
path with states in the automaton A’, starting at the initial state and ending at the terminal state. We argue
that, w.l.o.g it suffices to assume that each node will be decorated by the same state at most once: otherwise
we may simply make the path shorter, by cutting a cycle. Hence, the upper bound imposed in item 2 on
the length of the path, n. Condition 3 is also easy to relate intuitively to substitutions. To see that, recall
that any preorder < on a set induces (1) an equivalence relation X' = Y’ iff X’ <Y’ and Y’ < X', and
(2) a total order on these equivalence classes. For example, consider the set {X', V', Z', U', V', W'}. Then
a total preorder can be concisely denoted asin X' < Y'=2'=U'< V' = W', meaning X' <Y’ V' < 7/,
Z' K'Y’ etc. Then, the intuition of condition 3 is that the query mapping imposes such an order on all
variables sent by f to points on the same automaton (4, s1), (4, s2), (4, s3), - - .

Note that so far we have no semantic conditions on a query mapping: there always exists query mappings
between two queries Q' and ). By contrast, in the case of conjunctive queries, the existence of a containment
mapping implies immediately query containment. However note that, for given @, @', there exists only finitely
many query mappings f : Q' — Q. In fact each of them can be encoded in space which is polynomial in
the size of ) and @Q'. We will show that ) C @' is equivalent to a certain condition on the collection of all
query mappings.

To derive that condition, consider some canonical database (DB, ) for Q). Assume first that £ is injective
on the node variables in ). Then, every a substitution ¢ : Q' — DB uniquely induces a query mapping
f: Q" — Q. Namely to obtain the path of points pi,...,p, corresponding to some conjunct Y/, R,Z! we
only need to follow that path from ¢(Y]) to ¢(Z}) in DB, whose labels satisfy the regular expression R;.
We say in this case that f covers that canonical database. We give below the general definition:

3A preorder < on a set S is a reflexive and transitive relation on S. It is called total if for every X’,Y" in the set, at least
one of the following holds: X’ <Y’ or Y/ < X'.



Definition 4.4 Let f : Q' — Q be a query mapping, and (DB,£) be a canonical database for Q. We say
that f covers DB if there exists some substitution ¢ : var(Q') - ZUD' (where D' = DU avar(Q)), mapping
the head variables in Q' to DB’s canonical tuple, s.t. for any conjunct Y/R.Z! in Q" mapped by f into the
path of points p1,...,pn in Q, there exists a path from @(Y]) to ¢(Z]) in DB, corresponding to pi,...,DPn,
and whose sequence of labels satifies the regular expression R;. In particular, whenever f covers (DB,£),
then the canonical tuple of DB is in Q'(DB).

Note that some query mappings don’t cover any canonical database. However, it is obvious that @ C Q'
iff, together, all query mappings cover all canonical databases. We will translate this condition into a
statement about certain regular languages.

Let $ be a new symbol, not present in the universe of constants D. Given the query Q with n conjucts,
fix some arbitrary order on the conjuncts. For any canonical database (DB, &) for @, we define its encoding

to be the following word over the alphabet D U avar(Q) U {$}: wpgs def wy.$.ws.$.ws ... $.w,, where w; is
the sequence of labels on the internal path of DB corresponding to the goal i. For example the canonical
database DB in Figure 2 is encoded as wpp = a.L.e.f.a.$.b.c.b.c.$.a.L.a.a.a.L.$.d. A set of canonical

databases will then be encoded by a language. When this set is the set of all canonical databases for @,

then this encoding is given by Wg def R1$R>$...8R,,, where R; is the regular language generated by the

expression R;. Obviously, Wg is a regular language.

Given a query mapping f, we consider the language containing exactly the words wpp for (DB,¢) a
canonical databases covered by f. We will prove that this language is equal to a certain regular expression
Wy, to be defined below. Before giving the general definition, we illustrate with two examples the main
idea behind the definition of W;. First we introduce some notations. For some automaton A and states
s, s', denote with A(s, s') the same automaton, but with s designated as input state, and s’ as output state.
Similarly, A(s,-) (A(,s)) denotes the same automaton, with only the input state (output states) redefined
as s, while the output states (input state) are unchanged.

Example 4.5 Let Q : ¢(X1,X5) : — X1 R1Y, YR X5 and Q' : ¢'(X{,X}) : —X|R' X}, where Ry, Ry, R' are
arbitrary regular expressions, and let A;, As, A’ be any nondeterministic automaton associated to Ry, Rz, R’
respectively. There exists a unique query mapping f : Q' — @, mapping the conjunct X R' X} into the path
of points X;,Y, Xs. Let S be the set of states of A’. For each s € S, define W(s) LN A'(_,s) and
W2(s) & 4, N A'(s,.). Here we define:
def 2
Wy = | W'(s)$.W(s)
seS

We briefly argue why Wy is the encoding of all canonical databases covered by f. Let (DB,£) be some
canonical database with encoding wpp = w1.$.w, and assume wpp € Wy. We will show that there exists
a substitution ¢ from @' to DB mapping (X7, X}) to the canonical tuple (£(X1),£(X>)) in DB. It suffices
to prove that the word wy.wy on the unique path £(X;) — £(Xs3) in DB is accepted by the automatom
A’. This indeed follows from the fact that there exists s € S s.t. wy € A’(L,s) and ws € A'(s,_), and the
property A'(_,s).A'(s,.) C A’

Example 4.6 Let Q : ¢(X;,X3) : —X1RXy and Q' : ¢'(X{,X}) : = X{R\Y', X{R,Z"\Y'R, X}, Z' R} X}}.
Denote with A, A}, A}, A%, A} some nondeterministic automata equivalent to the given regular expressions.
Consider the query mapping f : @' — @ sending X7, X} to X1, X respectively, Y, Z' to (4, s1), (A, s2),
and with the order Y’ < Z'. The mapping is illustrated in Figure 5. Let S},S% be the sets of states of the
automata A} and A} respectively. For every s € S} and t € S} define:

Wi(s,t) 9 (A s1) N AL N As(L,s))

(-
Wals, ) € (A(s1,82) N As(L, 1) N As(s, )
Wils, ) € (A(s2,) N As(t, ) N Ag)
).

Then W; = Uses’ tes, Wi (s, t).Wa(s,t). Ws(s,t
databases DB for whlch wpp € Wy.

It is easy to check that f indeed covers all canonical



X2

A4

x1 Uy k2

Figure 5: Illustration for Example 4.6.

We briefly sketch the general definition for Wy. Let f : Q' — @ be a query mapping. For each conjunct
YiR;Z; in Q, consider the sequence of points gio = Yi,q1i,92i, - - -, 4(m-1)i» gmi = Zi, where the intermediate
points i, . - -, g(m—1); are all automaton-points in the image of f, and in the order imposed by f* We call
these the points of interest in (). Consider now a conjunct, Y;R;Z;, in @' which is mapped to the path
of points p1,...,p,. We refine this path by including all intermediate points of interest, to obtain a longer

sequence of points of interest associated to that conjunct, p1 = 715,72j,...,7s;; = Pn: We emphasize that

its length, s;, depends on j. Let P def {(j;k) | 1 <£j <nr. of conjuncts in Q',1 < k < s;}, and define X

to be the set of all mappings o : P — |J;(states(4;) U {-}), s.t. for all (j,k) € P, if & > 1, k < s; then

o(j,k) € states(A}), otherwise o(j,k) = . Now we change perspectives again, and consider a conjunct
YiR;Z; in @, with its sequence of points of interest gio = Yi, q1i,¢2is- -+, q(m—1)i»qmi = Zi- Recall that its
intermediate points are automaton-points of the form (4;,s1), (A;, s2),..., (Ai, Sm—1), where s1,...,8m—_1

are states in A;: we further define sg df  and Sm 4 Fora given ¢ and for each [ = 0,m — 1, define W} (o)
to be the intersection of all languages A’(o (4, k), 0 (4, k+ 1)) for which r¢; = g; and r(x41); = g41)s, further

intersected with A;(sg, sk+1): this intersection contains at most as many factors as states in all automata in

@', plus one. Now define Wi(o) < Wi(0).Wi(o)... Wi (o), and V(o) & W'(0).$.W2(0)$...$.W"(0).

Finally, recall that () has n conjuncts, and define:

wy € Vo) (1)

cEX

We prove in the full version of the paper:

Proposition 4.7 Let f : Q' — Q be some query mapping and (DB, &) some canonical database for Q. Then
f covers Q iff wpp € Wy.

This implies the main result of this section:

Theorem 4.8 Let Q, Q' be two queries, and F be the set of all query mappings f : Q' — Q. Also let Wg
be the regular language encoding all canonical databases for Q. Then Q C Q' iff Wg C UfeF W;.

Finally, we comment on the complexity of checking STRUQL¢o query containment. It is known that
containment of regular expressions is PSPACE complete [28], hence STRUQLq query containment is PSPACE

4That is, for every k = 1,m — 2 there exists variables X', Y’ € nvar(Q’) s.t- f(X') = qx;, f(Y') = q(k+1)i» X' 2 Y, and
YI ﬁX’
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hard. The algorithm resulting from Theorem 4.8 has exponential space complexity however. Indeed after
combining ;. Wy with Equation (1), all we need to check is:

el U Wi )
fEF,0EX

where each V(o) can encoded using space which is polynomial in the size of @ and @'. Hence there are only
exponentially many distinct such expressions, which shows that the algorithm is in exponential space. The
question whether STRUQL( query containment is in PSPACE remains open.

5 Query Containment for Simple STRUQLy Queries

We consider in this section a fragment of STRUQLg, by imposing certain restrictions on the regular expres-
sions used in queries. We show that query containment for this fragment is NP complete. This offers, to the
best of our knowledge, the first example of a query language with recursion for which query containment
has the same complexity as for conjunctive queries. The restricted form described here actually captures a
class of queries very frequently used in pracice. Indeed, in the experience we had so far with the Strudel
system [12], all queries had regular expressions conforming to these restriction.

Before giving the definition, we make the following convention: we abbreviate the regular expression _x
as *.

Definition 5.1 A simple regular expression is a regular expression of the form ri.rs...rn, n > 0, where
each r; is either x, or some label constant from D. A simple STRUQLq query is a STRUQLg query in which
all regular expressions are simple.

For example a.x.b.x and *.x.a.a.x are simple regular expressions, while ax.b or _._ are not. We normalize
a simple regular expression, by replacing every *.x with *. A simple regular expressions of length n and with
m < n constants, has a canonical nondeterministic automaton associated to it, consisting of m + 1 states
arranged in a chain, of which n — m have loops labeled _.

Simple regular expressions have the following properties.

Proposition 5.2

1. If R, R' are two simple regular expressions of lengths n, n' respectively, then RN R' can be expressed
as Ry URy U...U Ry, where each R; is a simple regqular expression of length < n +n'. Here k may be
exponentially large in n,n’.

2. Let A be the canonical automaton for a simple regular expression R, and s,s' two states in A. Then the
reqular languages accepted by the automata A(s,s'), A(s,_), A(_,s") can each be expressed as a simple
regular expression.

3. If the alphabet D is infinite, then whenever R C Ry U ... U Ry, with R, Ry, ..., Ry simple regular
expressions, then there exists some i s.t. R C R;.

4. Given two simple regular expressions R, R', one can check in PTIME whether R C R’ [23].

Proof: (Sketch) To prove 1, let A, A’ be the canonical automata for R, R', and let {s1,...,sp}, {s},...,s),
be their sets of states. RN R’ is equivalent to the product automaton. Its states are pairs (s;, s7), and its
transitions are (a) either successor transitions (si,s}) — (sit+1,8}), or (si,sj) — (8i,8,,), which can be
either labeled with a constant from D, or (b) loops, labeled _. Thus, if we ignore the loops, it is shaped like
a dag. We unfold it, by taking all possible paths in the dag from the initial state (sq,s}) to some terminal
state (sn,s) or (si,s),): we obtain (":"I) paths, all of length n + n': hence, the claim follows. Item 2 is
easy to show by a straightforward inspection on the shape of A. To prove 3, assume w.l.g. that R; C R for
every 1 = 1,k: otherwise replace R; with RN R;, and apply item 1. Assume the contrary, i.e. R; C R, for
each i = 1, k. Let Dy be the set of all constants mentioned in R, R1,..., Ry. Since D is infinite, there exists
some constant ¢ € D — Dy. Let w be the word obtained from R by replacing each * with ¢. We will show
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that, for every i = 1,k, w € R;. Indeed, since R; C R, all the constants appearing in R must also appear
in R in the same order. But we also have R; # R. There are two cases: (a) R; has more constants than R.
Since none of the additional constants is ¢, w € R;. (b) R; has exactly the same constants, but has some *’s
replaced with e. Let a; and a;4;1 be the constants preceding, respectively following that * in R (the cases
when * is at the beginning or the end are treated similarly): that is, R has a substring of the form a;.*.a;41,
while R; has aj.a;41 instead. But then w contains one more ¢ between a; and a;y; than R; allows, hence
c Q/ R;. O

Note that item 3 fails if we relax the definition of simple expressions. For example, if we allow _, then
we have _.x C _U (_._.x). Worse, the expression *.a;.x.as . ..*.a, of length 2n is contained in the union of all
2™ expressions of length < 4n obtained by replacing each * with either € or _.x, but is not contained in the
union of any subset of these expressions.

These two properties allow us to prove the following.

Theorem 5.3 Let Q,Q’ be two simple STRUQL queries. Recall that Wg is the regular language encoding
all canonical databases for Q. Then:

e () C Q' iff there erists some query mapping f which covers all canonical databases for Q: formally,
Wo C Wy ).

e The problem of testing Q C Q' is NP-complete.

Proof: Consider Equation (2). Each regular expression V(o) is obtained expressed as polynomially many
intersections of simple expressions. Hence, by Proposition 5.2, item 1, the large union in Equation (2) is
equivalent to a (even larger) union of simple regular expressions, each of size which is polynomial in that
of @ and @Q'. Hence, from item 3, Wy must be included in one of those simple regular expressions: the
latter can be checked in PTIME [23]. Finally, to prove NP-hardness, we reduce the containment problem for
simple STRUQLq queries to that of conjunctive queries, for which query containment is NP-complete [7]. O

6 Conclusions

We have discussed query containment for the query language STRUQLg, consisting of conjunctive queries
with regular path expressions, from two angles: a semantic angle, where we showed that query containment
is equivalent to containment on certain canonical databases, and a syntactic angle, where we showed that
query containment can be rephrased in terms of a certain condition on the set of all query mappings. We
used the results from the semantic characterization in an essential way to derive the syntactic one. Query
containment for STRUQL is known to be PSPACE hard, while the complexity of our algorithm is exponential
space, hence leaving a gap between the upper bound and lower bound. Finally, we have considered a certain
restriction of STRUQLg to simple queries, and shown that containment for this fragment is NP complete.
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A Appendix

Proof of Theorem 3.3 To illustrate the idea, we start by taking a closer look at a substitution ¢ from Q' to
some canonical database (DB, £): then ¢ maps the node variables in @' to bifurcation and/or internal nodes
in DB. Consider each conjunct Y;R;Z! in @', and let A be some automaton (could be nondeterministic)
for Rj. Assume that there exists a path from ¢(Y/) to ¢(Z]) in DB whose sequence of labels satisfies
R}. This path may contain loops, of course. Since A} accepts the sequence of labels on that path, we can
associate states s from A} to the nodes on the path, as we traverse it. Several states may be associated to
the same node, because our path may have loops. However we may assume w.l.g. that the paths does not
go twice through the same node and in the same state (because otherwise we can cut out a portion of the
path). Summarizing, ¢ associates to each node u in DB a set S, consisting of node variables in Q' and
automaton/state pairs.

Now we change perspectives and look at fixed internal path in DB. We pick some segment [b,u] of
that path starting at the bifurcation node b, and ending at some internal node u. The action of ¢ on this
particular segment in isolation can be described by the following. (1) The set Sj associated to the node b,
(2) the set S,, associated to the node u, (3) a set of variables W C nvar(Q'), which are mapped by ¢ to the

interior of the segment, and which we call middle variables, and (4) a DAG, C = (N, E), over the nodes

N & Sy UW US,, s.t. all nodes in S are initial nodes and all nodes in S, are terminal nodes, whose edges

are labeled by automata in @'. See Figure 6 for an illustration, where S, = {(A5, s9), (4§, s3), (4%, s2), Xi},
Su = {(Af, s2), (A1, s8), 2], (Ah,s8)}, W = {X}, X}, X], W{, Xy}, and the dag is illustrated in the figure.
This suggests the following definition.

Definition A.1 Let (DB,&) be a canonical database for @, and let Q' be some other query. We define a
configuration, C, to be a labeled dag C = (N, E) where N consists of variables from Q' and/or automata/state
pairs from Q', and is partitioned into three sets® N = Sy UW U Sy with W containing only variables, and
with all nodes in Sy being initial (i.e. without incoming edges) and all nodes in Sy terminal. The edges E
are labeled by automata from Q', such that the following condition holds. If some edge n — n' is labeled
A}, then: (1) either n is of the form (A},s) (i.e. has the same automaton), or n is a variable y' and there
exists some conjunct y'Riz' in Q' (i.e. referring to the same automaton Aj}), and (2) either n' is of the form
(A%, s), or n' is a variable z and there exists a conjunct yR}z in Q'.

5A pair (A,i’ s) may occur twice in N: once in S1 and once in S2. A variable, however, may occur only once in S1 UW U Ss.
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Figure 6: Illustration of a configuration for nodes b and w.

We use the definitions in Section 4, where A(s, s') denotes the automaton A with the initial state redefined
to be s, and the terminal states to be s': also, we use the notations A(s,_) and A(-, s), where only the terminal
state, or only the initial states have been redefined to be s. Then, we associate a certain regular language to

each edge n — n' in C, as follows. Let A} be the automaton labeling that edge. If n = (A, s), then define

def . def .. . def . def
o = s; otherwise, 0 = _. Similarly, if n' = (A}, s'), define ¢’ = s'; otherwise, o' '= _. Then we define the

regular language associated to the edge n — n' to be A}(0,0'). For example for the top edge in Figure 6,
the regular language is Af(sg,s2). Given a segment [b,u] and a configuration C, one can think of C as a
piece of information about the substitution ¢: namely it says that all variables in S; are mapped to b, those
in S2 to u, and the middle variables W somewhere inside the segment [b, u]. We say that a configuration is
satisfiable at the segment [b,u] if there exists a mapping of W into nodes inside the segment [b, u], such that
every edge in C' is mapped to a path whose sequence of labels belongs to the regular language associated to
that edge. For example, the configuration in Figure 6, one of the requirements would be that the variable
x4 be mapped to some node «/, s.t. the labels between u' and u belong to the language A} (., ss).

Now we can show that in Proposition 3.2 it suffices to check only canonical databases with “short”
internal paths. Consider some canonical database (DB,£) for @, and some query Q'. Assume that the
canonical tuple is not in the answer of @' on DB. Choose some “long” internal path in DB (of length to be
specified shortly), starting at the bifurcation node b. We will construct a new canonical database D By which
is identical to DB except that it has that internal path replaced by a shorter one, such that the canonical
tuple is still not in the answer of Q': repeating this argument, we obtain a canonical database in which all
internal paths are short, which proves our claim. For each internal node u on that path, let C, be the set of
all configurations satisfiable on [b,u]. As we vary u from the beginning of the internal path to its end, the
set C,, varies: however, the number of possible configurations is bounded by some number ¢(Q') depending
only on the query @', hence there will be at most 2¢(@") different distinct values for C,,. Now we recall that
DB is a canonical database for (), hence the internal path under consideration corresponds to some conjunct
yiR;z; of Q. Choose some (nondeterministic) automata A; for R;, then we can label the nodes u along the
path with states s, of A;, starting with the initial state and ending in a terminal state. In conclusion we
have labeled each node u with a pair (s, Cy), and there exists at most n; x 2¢(@") distinct such labels (where
n; is the number of states in A4;). If the internal path is longer than n; x 2C(Ql), then pick any two nodes u
and u' with the same label, and cut the path between them, i.e. collapse u and u’ into a single node called
u and delete everything between them. We argue that the resulting database DBy (1) is still a canonical
database, and (2) the answer of Q' on DBy still doesn’t contain the canonical tuple. Is easy to check (1),
since DBy has the right shape, and since we made sure that the nodes we collapsed during the cut were
labeled by the same state of A;. We prove (2). Assume the contrary, i.e. there exists some substitution g
from Q' to DBy mapping the head variables of Q' to the canonical tuple. This gives us a configuration C
with is satisfiable at [b,u] in DBy. The segment [b,u] is the same in DB and DBy, hence C' is satisfiable
at [b,u] in DB too. But then C is a satisfiable at [b, u'] too, because we chose u and u' s.t. they have the
same sets of satisfiable configurations. Hence we can construct from g a substitution ¢ : Q' — DB, by
redirecting the middle variables W of C from the segment [b,u] to [b,u']: but this would imply that the
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canonical tuple is in the answer of Q' on DB, which is a contradiction. To summarize, we have proven:

Proposition A.2 Let Q,Q’ be two queries, and let ¢(Q") be the number of configurations for Q'. Also, let
n; be the number of states of the automaton A;, for each conjunct y;R;z; in Q. Then Q C Q' iff for any
canonical database whose internal path associated to the conjunct y;R;z; has length < n,-2c(Ql), its canonical
tuple is in the answer of Q'. As a consequence, the problem of checking whether QQ C Q' is decidable.

This implies Theorem 3.3. We conclude with some remarks on the complexity. Let m déf| nvar(Q') | be
total number of node variables in @)’, and n be total number of states in all (nondeterministic) automata

A} of Q'. An upper bound for the number of configurations can be quickly obtained as follows. There are

M % om » 927 choices for the set of nodes in a configuration (any set of variables, and each pair (4}, s)

may occur independently in S; and S2), and we can build oM? graphs (which includes all dags): hence
(@) < 22°"x2""  Thus, the complexity of checking query containment this way is triple exponential space.
By contrast, the algorithm resulting from Theorem 4.8 has an exponential space complexity.
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