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ABSTRACT

We describe an algorithm that evaluates queries over probabilistic
databases using Mobius’ inversion formula in incidence algebras.
The queries we consider are unions of conjunctive queries (equiv-
alently: existential, positive First Order sentences), and the proba-
bilistic databases are tuple-independent structures. Our algorithm
runs in PTIME on a subset of queries called "safe" queries, and is
complete, in the sense that every unsafe query is hard for the class
FP#P_ The algorithm is very simple and easy to implement in
practice, yet it is non-obvious. Mobius’ inversion formula, which
is in essence inclusion-exclusion, plays a key role for completeness,
by allowing the algorithm to compute the probability of some safe
queries even when they have some subqueries that are unsafe. We
also apply the same lattice-theoretic techniques to analyze an algo-
rithm based on lifted conditioning, and prove that it is incomplete.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Query Processing; F.4.1
[Mathematical Logic and Formal Languages]: Mathematical Logic

General Terms
Algorithms, Theory

Keywords

Mobius inversion, incidence algebra, probabilistic database

1. INTRODUCTION

In this paper we show how to use incidence algebras to evaluate
unions of conjunctive queries over probabilistic databases. These
queries correspond to the select-project-join-union fragment of the
relational algebra, and they also correspond to existential positive
Sformulas of First Order Logic. A probabilistic database, also re-
ferred to as a probabilistic structure, is a pair (A, P) where A =

(A, R$, ..., R{)is first order structure over vocabulary Ry, ..., R,

and P is a function that associates to each tuple ¢ in A a number
P(t) € [0,1]. A probabilistic structure defines a probability distri-
bution on the set of substructures B of A by:
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We describe a simple, yet quite non-obvious algorithm for com-
puting the probability of an existential, positive FO sentence @,
Pa(®)", based on Mobius’ inversion formula in incidence alge-
bras. The algorithm runs in polynomial time in the size of A. The
algorithm only applies to certain sentences, called safe sentences,
and is sound and complete in the following way. It is sound, in
that it computes correctly the probability for each safe sentence,
and it is complete in that, for every fixed unsafe sentence @, the
data complexity of computing ® is F'P#-hard. This establishes
a dichotomy for the complexity of unions of conjunctive queries
over probabilistic structures. The algorithm is more general than,
and significantly simpler than a previous algorithm for conjunctive
sentences [5].

The existence of F'P# ¥ -hard queries on probabilistic structures
was observed by Gridel et al. [8] in the context of query reliabil-
ity. In the following years, several studies [4, 6, 11, 10], sought to
identify classes of tractable queries. These works provided condi-
tions for tractability only for conjunctive queries without self-joins.
The only exception is [5], which considers conjunctive queries with
self-joins. We extend those results to a larger class of queries, and
at the same time provide a very simple algorithm. Some other prior
work is complimentary to ours, e.g., the results that consider the
effects of functional dependencies [11].

Our results have applications to probabilistic inference on pos-
itive Boolean expressions [7]. For every tuple ¢ in a structure A,
let X; be a distinct Boolean variable. Every existential positive
FO sentence ® defines a positive DNF Boolean expression over the
variables X, sometimes called lineage expression, whose proba-
bility is the same as Pa (®). Our result can be used to classify the
complexity of computing the probability of Positive DNF formulas
defined by a fixed sentence ®. For example, the two sentences’

P, R(x),S(z,y) vV S(2,9), T(y) Vv R(x), T(y)
Py = R(m),S(w,y)\/S(:c,yLT(y)

define two classes of positive Boolean DNF expressions (lineages):

= \/ XaYap V \/ Yo, Zp V \/ XoYy
a€R,(a,b)€S (a,b)ES,bET a€R,bES

F = \Vi XaYap V \/ Yau, 2y
a€ER,(a,b)eS (a,b)€S,beT

'This is the marginal probability Pa (®) = ZB:B#@ Pa(B).

“We omit quantifiers and drop the conjunct they are clear from the
context, e.g. ®o = JxIy(R(z) A S(z,y) vV S(z,y) AT (y)).



Our result implies that, for each such class of Boolean formulas, ei-
ther all formulas in that class can be evaluated in PTIME in the size
of the formula, or the complexity for that class is hard for F P#T;
e.g. F1 can be evaluated in PTIME using our algorithm, while F»
is hard.

The PTIME algorithm we present here relies in a critical way
on an interesting connection between existential positive FO sen-
tences and incidence algebras [16]. By using the Mobius inversion
formula in incidence algebras we resolve a major difficulty of the
evaluation problem: a sentence that is in PTIME may have a subex-
pression that is hard. This is illustrated by ®; above, which is in
PTIME, but has ®; as a subexpression, which is hard; to evaluate
®; one must avoid trying to evaluate $. Our solution is to ex-
press P(®) using Mobius’ inversion formula: subexpressions of
& that have a Mobius value of zero do not contribute to P(P),
and this allows us to compute P(®) without computing its hard
subexpressions. The Mobius inversion formula corresponds to the
inclusion/exclusion principle, which is ubiquitous in probabilistic
inference: the connection between the two in the context of prob-
abilistic inference has already been recognized in [9]. However, to
the best of our knowledge, ours is the first application that exploits
the full power of Mobius inversion to remove hard subexpressions
from a computation of probability.

Another distinguishing, and quite non-obvious aspect of our ap-
proach is that we apply our algorithm on the CNF, rather than the
more commonly used DNF representation of existential, positive
FO sentences. This departure from the common representation of
existential, positive FO is necessary in order to handle correctly
existential quantifiers.

We call sentences on which our algorithm works safe; those on
which the algorithm fails we call unsafe. We prove a theorem stat-
ing that the evaluation problem of a safe query is in PTIME, and
of an unsafe query is hard for FP#¥: this establishes both the
completeness of our algorithm and a dichotomy of all existential,
positive FO sentences. The proof of the theorem is in two steps.
First, we define a simple class of sentences called forbidden sen-
tences, where each atom has at most two variables, and a set of
simple rewrite rules on existential, positive FO sentences; we prove
that the safe sentences can be characterized as those that cannot be
rewritten into a forbidden sentence. Second, we prove that every
forbidden sentence is hard for FP#¥ using a direct, and rather
difficult proof which we include in [3]. Together, these two results
prove that every unsafe sentence is hard for FP#F | establishing
the dichotomy. Notice that our characterization of safe queries is
reminiscent of minors in graph theory. There, a graph H is called
a minor of a graph G if H can be obtained from G through a se-
quence of edge contractions. “Being a minor of” defines a partial
order on graphs: Robertson and Seymour’s celebrated result states
that any minor-closed family is characterized by a finite set of for-
bidden minors. Our characterization of safe queries is also done
in terms of forbidden minors, however the order relation is more
complex and the set of forbidden minors is infinite.

In the last part of the paper, we make a strong claim: that us-
ing Mobius’ inversion formula is a necessary technique for com-
pleteness. Today’s approaches to general probabilistic inference
for Boolean expressions rely on combining (using some advanced
heuristics) a few basic techniques: independence, disjointness, and
conditioning. In conditioning, one chooses a Boolean variable X,
then computes P(F) = P(F | X)P(X) + P(F | -X)(1 —
P(X)). We extended these techniques to unions of conjunctive
queries, an approach that is generally known as lifted inference [12,
15, 14] and given a PTIME algorithm based on these three tech-
niques. The algorithm performs conditioning on subformulas of

® instead of Boolean variables. We prove that this algorithm is
not complete, by showing a formula ® (Fig. 2) that is computable
in PTIME, but for which it is not possible to compute using lifted
inference that combines conditioning, independence, and disjoint-
ness on subformulas. On the other hand, we note that condition-
ing has certain practical advantages that are lost by Mobius’ inver-
sion formula: by repeated conditioning on Boolean variables, one
can construct a Free Binary Decision Diagram [17], which has fur-
ther applications beyond probabilistic inference. There seems to be
no procedure to convert Mobius’ inversion formula into FBDDs;
in fact, we conjecture that the formula in Fig. 2 does not have an
FBDD whose size is polynomial in that of the input structure.

Finally, we mention that a different way to define classes of
Boolean formulas has been studied in the context of the constraint
satisfaction problem (CSP). Creignou et al. [2, 1] showed that the
counting version of the CSP problem has a dichotomy into PTIME
and FP#P_hard. These results are orthogonal to ours: they de-
fine the class of formulas by specifying the set of Boolean opera-
tors, such as and/or/not/majority/parity etc, and do not restrict the
shape of the Boolean formula otherwise. As a consequence, the
only class where counting is in PTIME is defined by affine opera-
tors: all classes of monotone formulas are hard. In contrast, in our
classification there exist classes of formulas that are in PTIME, for
example the class defined by ®; above.

2. BACKGROUND AND OVERVIEW

Prior Results A very simple PTIME algorithm for conjunctive
queries without self-joins is discussed in [4, 6]. When the conjunc-
tive query is connected, the algorithm chooses a variable that occurs
in all atoms (called a root variable) and projects it out, comput-
ing recursively the probabilities of the sub-queries; if no root vari-
able exists, then the query is F'P#%-hard. When the conjunctive
query is disconnected, then the algorithm computes the probabili-
ties of the connected components, then multiples them. Thus, the
algorithm alternates between two steps, called independent projec-
tion, Z;nd independent join. For example, consider the conjunctive
query’:

Y = R(m,y), S(xvz)

The algorithm computes its probability by performing the fol-
lowing steps:

P(p) = 1- ][] -P(R(ay).5(a,2))

acA
P(R(a,y),5(a,z)) = P(R(a,y)) P(5(a,z))
P(R(a,y)) = 1- ][] - P(R(a,b)))

beA
P(S(a,z)) = 1-— H(1 — P(S(a,c)))

ceA

The first line projects out the root variable x, where A is the
active domain of the probabilistic structure: it is based on fact that,
inp =V, ca(R(a,y),S(a, 2)), the sub-queries R(a,y), S(a, 2)
are independent for distinct values of the constant a. The second
line applies independent join; and the third and fourth lines apply
independent project again.

This simple algorithm, however, cannot be applied to a query
with self-joins because both the projection and the join step are in-
correct. For a simple example, consider R(z,y), R(y, z). Here y is
aroot variable, but the queries R(z, a), R(a, z) and R(x,b), R(b, z)

3All queries are Boolean and quantifiers are dropped; in complete
notation, ¢ is 3z.3y.3z.R(x, y), S(z, 2).



are dependent (both depend on R(a,b) and R(b,a)). Hence, it is
not possible to do an independent projection on y. In fact, this
query is FP#P hard.

Queries with self-joins were analyzed in [5] based on the no-
tion of an inversion. In a restricted form, an inversion consists of
two atoms, over the same relational symbol, and two positions in
those atoms, such that the first position contains a root variable in
the first atom and a non-root variable in the second atom, and the
second position contains a non-root / root pair of variables. In our
example above, the atoms R(z,y) and R(y, z) and the positions 1
and 2 form an inversion: position 1 has variables z and y (non-root
/ root) and position 2 has variables y and z (root / non-root). The
paper describes a first PTIME algorithm for queries without inver-
sions, by expressing its probability in terms of several sums, each
of which can be reduced to a polynomial size expression. Then,
the paper notices that some queries with inversion can also be com-
puted in polynomial time, and describes a second PTIME algorithm
that uses one sum (called eraser) to cancel the effect of a another,
exponentially sized sum. The algorithm succeeds if it can erase all
exponentially sized sums (corresponding to sub-queries with inver-
sions).

Our approach The algorithm that we describe in this paper is
both more general (it applies to unions of conjunctive queries), and
significantly simpler than either of the two algorithms in [5]. We
illustrate it here on a conjunctive query with a self-join (S occurs
twice):

Y = R(x1)7 S(:Clvyl)v S(:Ez,yz),T(CEQ)

Our algorithm starts by applying the inclusion-exclusion formula:

P(R(z1), S(w1,y1), S(x2,y2), T(x2)) =
P(R(x1), S(w1,y1)) + P(S(x2,y2), T(y2))
—P(R(z1),S(z1,91) V S(22,92), T(22))

This is the dual of the more popular inclusion-exclusion formula
for disjunctions; we describe it formally in the framework of inci-
dence algebras in Sec. 3. The first two queries are without self-joins
and can be evaluated as before. To evaluate the query on the last
line, we simultaneously project out both variables x1, x2, writing
the query as:

v = \/(R(a),S(a,yl)\/S(a,yg),T(a))
acA

The variables x1, x2 are chosen because they satisfy the follow-
ing conditions: they occur in all atoms, and for the atoms with the
same relation name (.S in our case) they occur in the same position.
We call such a set of variables separator variables (Sec. 4). As
a consequence, sub-queries R(a), S(a,y1) V S(a,y2),T(a) cor-
responding to distinct constants a are independent. We use this
independence, then rewrite the sub-query into CNF and apply the
inclusion/exclusion formula again:

P@p)=1- [] (1 = P(R(a),S(a,y1) V S(a,y2), T(a)))
a€A

R(a), S(a,y1) V S(a,y2), T'(a) = (R(a) V T(a)) A S(a y)
P((R(a) V T(a)) A S(a,y))

—  P(R(a)VT(a)) + P(S(a,)) — P(R(a) V T(a) V S(a,))
P(R(a)) + P(T(a)) — P(R(a)) - P(T(a))
—14 (1 - P(R())(1 - P(T(a))) [T (1 = P(S(a,)))

beA

In summary, the algorithm alternates between applying the inclu-
sion/exclusion formula, and performing a simultaneous projection

on separator variables: when no separator variables exists, then the
query is FP#P-hard. The two steps can be seen as generaliza-
tions of the independent join, and the independent projection for
conjunctive queries without self-joins.

Ranking Before running the algorithm, a rewriting of the query
is necessary. Consider R(z,y), R(y, z): it has no separator vari-
able because neither = nor y occurs in both atoms on the same posi-
tion. After a simple rewriting, however, the query can be evaluated
by our algorithm: partition the relation R(z,y) into three sets, ac-
cordingtoz < y, x = y, x > y, call them R<,R~, R”, and
rewrite the query as R<(z,y), R~ (y,z) V R=(z). Now =,z is a
separator, because the three relational symbols are distinct. We call
this rewriting ranking (Sec. 5). It needs to be done only once, be-
fore running the algorithm, since all sub-queries of a ranked queries
are ranked. A similar but more general rewriting called coverage
was introduced in [5]: ranking corresponds to the canonical cover-
age.

Incidence Algebras An immediate consequence of using the
inclusion-exclusion formula is that sub-queries that happen to can-
cel out do not have to be evaluated. This turns out to be a funda-
mental property of the algorithm that allows it to be complete since,
as we have explained, some queries are in PTIME but may have
sub-queries that are hard. This cancellation is described by the Mo-
bius inversion formula, which groups equal terms in the inclusion-
exclusion expansion under coefficients called the Mobius function.
Using this notion, it is easy to state when a query is PTIME: this
happens if and only if all its sub-queries that have a non-zero Mo-
bius function are in PTIME. Thus, while the algorithm itself could
be described without any reference to the Mobius inversion for-
mula, by simply using inclusion-exclusion, the Mobius function
gives a key insight into what the algorithm does: it recurses only
on sub-queries whose Mobius function is non-zero. In fact, we
prove the following result (Theorem 6.6): for every finite lattice,
there exists a query whose sub-queries generate precisely that lat-
tice, such that all sub-queries are in PTIME except that correspond-
ing to the bottom of the lattice. Thus, the query is in PTIME iff the
Mobius function of the lattice bottom is zero. In other words, any
formulation of the algorithm must identify, in some way, the ele-
ments with a zero Mobius function in an arbitrary lattice: queries
are as general as any lattice. For that reason we prefer to expose
the Mobius function in the algorithm rather than hide it under the
inclusion/exclusion formula.

Lifted Inference At a deeper level, lattices and their associated
Mobius function help us understand the limitations of alternative
query evaluation algorithms. In Sec. 7 we study an evaluation al-
gorithm based on lifted conditioning and disjointness. We show
that conditioning is equivalent to replacing the lattice of sub-queries
with a certain sub-lattice. By repeated conditioning one it is some-
times possible to simplify the lattice sufficiently to remove all hard
sub-queries whose Mobius function is zero. However, we given an
example of a lattice with 9 elements (Fig 2) whose bottom element
has the Mobius function equal to zero, but where no conditioning
can further restrict the lattice. Thus, the algorithm based on lifted
conditioning makes no progress on this lattice, and cannot evaluate
the corresponding query. By contrast, our algorithm based on Mo-
bius’ inversion formula will easily evaluate the query by skipping
the bottom element (since its Mobius function is zero). Thus, our
new algorithm based on Mobius’ inversion formula is more gen-
eral than existing techniques based on lifted inference. Finally, we
comment on the implications for the completeness of the algorithm
in [5].

In the rest of the paper we will refer to conjunctive queries and
unions of conjunctive queries as conjunctive sentences, and exis-



tential positive FO sentences (or just positive FO sentences) respec-
tively.

3. EXISTENTIAL POSITIVE FO AND IN-
CIDENCE ALGEBRAS

We describe here the connection between positive FO and inci-
dence algebras. We start with basic notations.

3.1 Existential Positive FO

Fix a vocabulary R = {R1, Ra,...}. A conjunctive sentence
( is a first-order logical formula obtained from positive relational
atoms using A and 3:

o = 3AT.(riN...ATk) (2)

We allow the use of constants. Var(p) = T denotes the set of
variables in ¢, and Atoms(p) = {r1,...,rr} the set of atoms.
Consider the undirected graph where the nodes are Atoms(p) and
edges are pairs (r;,7;) s.t. r;, 7; have a common variable. A com-
ponent of ¢ is a connected component in this graph. Each conjunc-
tive sentence ¢ can be written as:

e = mMmAN...N\NY

where each y; is a component; in particular, v; and ~y; do not share
any common variables, when i # j.

A disjunctive sentence is an expression of the form:

/ ! ’

= mV...Vy
where each +; is a single component.

An existential, positive sentence ® is obtained from positive atoms
using A, 3 and V; we will refer to it briefly as positive sentence. We
write a positive sentence either in DNF or in CNF:

® = p1V...Vin (3)
d = PIA.AQN 4)

where ¢; are conjunctive sentences in DNF (3), and ¢} are disjunc-
tive sentences in CNF (4). The DNF can be rewritten into the CNF

by:
\/ /\ %‘jI/\\/%‘f(i)

i=1,m j=1,p; f

b =

where f ranges over functions with domain [m] s.t. Vi € [m],
f(@) € [pi]. This rewriting can increase the size of the sentence
exponentially*. Finally, we will often drop 3 and A when clear
from the context.

A classic result by Sagiv and Yannakakis [13] gives a necessary
and sufficient condition for a logical implication of positive sen-
tences written in DNF: if ® = \/, ¢; and &' = \/; ¢, then:

¢ =9 iff Vidjei= ¢ 5)

No analogous property holds for CNF: R(z,a), S(a, z) logically
implies R(z,y), S(y,z) (where a is a constant), but R(x,a) #
R(z,y),S(y,z) and S(a,z) # R(z,y),S(y,z). We show in
Sec. 5 a rewriting technique that enforces such a property.

3.2 Incidence Algebras

Next, we review the basic notions in incidence algebras follow-
ing Stanley [16]. A finite lattice is a finite ordered set (L, <)

where every two elements u,v € L have a least upper bound

*Our algorithm runs in PTIME data complexity; we do not address
the expression complexity in this paper.

u V v and a greatest lower bound v A v, usually called join and
meet. Since itAisA finite, it has a mipimurp and a maximum ele-
ment, denoted 0, 1. We denote L = L — {1} (departing from [16],
where L denotes I — {0,1}). L is a meet-semi-lattice. The in-
cidence algebra I(L) is the algebra® of real (or complex) matri-
ces ¢ of dimension |L| x |L|, where the only non-zero elements
tuy (denoted t(u,v)) are for u < wv; alternatively, a matrix can
be seen as a linear function ¢ : RX — RE. Two matrices are

of key importance in incidence algebras: ¢; € I(L), defined as
¢3 (u,v) = 1 forall w < w; and its inverse, the Mobius function

i {(u,v) | u,v € Lyu < v} — Z, defined by:
pp(wu) = 1

p (u,v) - > np(wo)

wiu<w<v

‘We drop the subscript and write . when L is clear from the context.

The fact that y is the inverse of ¢ means the following thing.
Let f : L — R be a real function defined on the lattice. De-
fine a new function g as g(v) = Y ., f(u). Then f(v) =
3 u<w (1, v)g(w). This is called Mobius’ inversion formula, and
is a key piece of our algorithm. Note that it simply expresses the

fact that g = {(f) implies f = u(g).

3.3 Their Connection
A labeled lattice is a triple L = (L, <, \) where (L, <) is a lat-

tice and )\ assigns to each element in u € L a positive FO sentence
Aw) s.t. A(u) = A(v) iff u = v.

DEFINITION 3.1. A D-lattice is a labeled lattice L. where, forall
u # 1, A(u) is conjunctive, forall u, v, M(u Av) is logically equiv-
alent to M(u) A \(v), and \(1) = Voei Aw).

A C-lattice is a labeled lattice L. where, Sorall v # i, A(u) is
disjunctive, forall u,v, A(u A v) is logically equivalent to \(u) V
A(v), and \(1) = Auci AMw).

In a D-lattice, u < v iff A(u) = A(v). This is because A(u) =
A(u A v) is logically equivalent to A(u) A A(v). Similarly, in a
C-lattice, u < v iff A(v) = A(u). If L is a D- or C-lattice, we say
L represents ® = A(1).

PROPOSITION 3.2
Fix a probabilistic structure (A, P) and a positive sentence ®; de-

note Pa as P. Let L be either a D-lattice or a C-lattice represent-
ing ®. Then:

P(@)=P(A\1) = =D mPA@)  ©

v<i

PROOF. The proof for the D-lattice is from [16]. Denote f(u) =
P(A(u) A=(V, <, A(v))). Then:

PAw) = f) = flu)=2 nw,u)P\())

v<u v<u

The claim follows by setting « = 1 and noting f 1 =o. For a
C-lattice, write \'(u) = —A(u). Then P(A(1)) = 1-P(N'(1)) =
1+, .1 #(v, 1)P(X (v)) and the claim follows from the fact that

ZUEL (v, i) =0. O

5 An algebra is a vector space plus a multiplication operation [16].

(INVERSION FORMULA FOR POSITIVE FO).



SN

Y1 Pz P2 1
PN /\
P1,P3 ¥2,P3 (22 ®s5
N/ \/
0=v1,902,03 0=waVes
(a) (b)

Figure 1: The D-lattice (a) and the C-lattice (b) for ¢ (Ex. 3.3).

The proposition generalizes the well known inclusion/exclusion

formula (for D-lattices), and its less well known dual (for C-lattices):

P(aVvbVe)= P(a)+ P(b) + P(c)
—P(anb)—Planc)—PbAc)+ PlanbAc)

P(aAbAc) = P(a)+ P(b) + P(c)
—P(aVvb)—P(ave)—PbVe)+PlavbVe)

We show how to construct a canonical D-lattice, Lp(®) that
represents a positive sentence ®. Start from the DNF in Eq.(3), and
for each subset s C [m] denote ps = A, i. Let L be the set of
these conjunctive sentences, up to logical equivalence, and ordered
by logical implication (hence, |L| < 2™). Label each element
we L u # 1, with its corresponding o, (choose any, if there
are multiple equivalent ones), and label 1 with V. 40 Ps (= ).

We denote the resulting D-lattice L p (®). Similarly, Lo (®) is the
C-lattice that represents ®, obtained from the CNF of ® in Eq.(4),
setting o, = \/, ., ¥i-

The first main technique of our algorithm is this. Given ®, com-
pute its C-lattice, then use Eq.(6) to compute P(®P); we explain
later why we use the C-lattice instead of the D-lattice. It remains
to compute the probability of disjunctive sentences P(A(u)): we
show this in the next section. The power of this technique comes
from the fact that, whenever p(u,1) = 0, then we do not need
to compute the corresponding P(A(u)). As we explain in Sec. 7
this is strictly more powerful than the current techniques used in
probabilistic inference, such as lifted conditioning.

Example 3.3 Consider the following positive sentence:

o R(x1), S(z1,91) V S(22,92), T(y2) V R(x3), T (ys)

= @1 Vp2Ves

The Hasse diagram of the D-lattice L p (®) is shown in Fig. 1 (a).
There are eight subsets s C [3], but only seven up to logical equiv-
alence, because® @1, 2 = @1, P2, p3. The values of the Mobius
function are, from top to bottom: 1, —1, —1, —1,1, 1, 0, hence the
inversion formula is’:

P(®) = P(p1) + Pp2) + P(ps) — P(p1ps) — P(p2p3)

The Hasse diagram of the C-lattice L (®) is shown in Fig. 1

®There exists a homomorphism @1, 2, p3 — @1, @2 that maps
R(ws) to R(ml) and T(’y3) to T(yz).

"One can arrive at the same expression by using inclusion-
exclusion instead of Mobius’ inversion formula, and noting that
p1,p2 = @1,p203, hence these two terms cancel out in the
inclusion-exclusion expression.

(b). To see this, first express ¢ in CNF:

® = (R(z1),S(z1,91) V S(22,92), T(y2) V R(x3)) A
(R(z4), S(za,y4) V S(x5,95), T(ys) V T'(ys))

= (R(x3) V S(x2,92), T(y2)) A (R(24), S(z4,y4) V T (ys))

= QaNgs

Note that 0 is labeled with 4 Vs = R(x3)VT (ys). The inversion
formula here is:

P(®) = P(pa) + P(ps) = P(paV ¢5)
where w4 V 5 = R(z3) V T'(ys).

3.4 Minimization

By minimizing a conjunctive sentence ¢ we mean replacing it
with an equivalent sentence o that has the smallest number of
atoms. A disjunctive sentence & = \/~; is minimized if every
conjunctive sentence is minimized and there is no homomorphism
wi = ; for i # j. If such a homomorphism exists, then we
call ; redundant: clearly we can remove it from the expression ®
without affecting its semantics.

For the purpose of D-lattices, it doesn’t matter if we minimize the
sentence or not: if the sentence is not minimized, then one can show
that all lattice elements corresponding to redundant terms have the
Mobius function equal to zero. More precisely, any two D-lattices
that represent the same sentence have the same set of elements with
a non-zero Mobius function: we state this fact precisely in the re-
mainder of this section. A similar fact does not hold in general for
C-lattices, but it holds over ranked structures (Sec. 5.2).

An element u in a lattice covers v if u > v and there is no w s.t.
w > w > v. An atom® is an element that covers f); a co-atom is an
element covered by 1. An element w is called co-atomic if it is a
meet of coatoms. Let Lo denote the set of co-atomic elements: Lg
is a meet semilattice, and Lo = Lo U {1} is a lattice. We prove the
following in the full paper [3]:

PROPOSITION 3.4. (1) Ifu € L and puj (u,1) # O then u is
co-atomic. (2) Forall u € Lo, puj (u,1) = Ki, (U, i).

Let L and L' be D-lattices representing the sentences ¢ and @’
If ® = &', then L and L’ have the same co-atoms, up to logical
equivalence. Indeed, we can write ® as the disjunction of co-atom
labels in L, and one co-atom cannot imply another. Thus, by apply-
ing Eq.(5) in both directions, we get a one-to-one correspondence
between the co-atoms of L and I, indicating logical equivalence.
It follows from Prop. 3.4 that, when D-lattices represent equivalent
formulas, the set of labels A\(u) where z1(u, 1) # 0 are equivalent.
Thus, an algorithm that inspects only these labels is independent of
the particular representation of a sentence.

A similar property fails on C-lattices, because Eq.(5) does not
extend to CNF. For example, ® = R(z,a),S(a,2) and ® =
R(z,a),S(a,z), R(z',y"),S(y’, ') are logically equivalent, but
have different co-atoms. The co-atoms of ® are R(x, a) and S(a, z)
(the C-lattice is V'-shaped, as in Fig. 1 (b)), and the co-atoms of
@' are R(z,a), (R(z',y'),S(y', 2)), and S(a, z) (the C-lattice is
W -shaped, as in Fig. 1 (a)).

4. INDEPENDENCE AND SEPARATORS

Next, we show how to compute the probability of a disjunctive
sentence \/, v;; this is the second technique used in our algorithm,

8Not to be confused with a relational atom r; in (2).



and consists of eliminating, simultaneously, one existential variable
from each ~y;, by exploiting independence.

Let ¢ be a conjunctive sentence. A valuation h is a substitution
of its variables with constants; h(y), is a set of ground tuples. We
call two conjunctive sentences @1, @2 tuple-independent if for all
valuations h1, ha, we have hi(p1) N ha(p2) = 0. Two positive
sentences ®, ®' are tuple-independent if, after expressing them in
DNF, ® =/, ¢i, " =V, ¢}, all pairs @;, ¢ are independent.

Let ®4,...,®,, be positive sentences s.t. any two are tuple-
independent. Then:

PO\ @) = 1-[[0-P@)

This is because the m lineage expressions for ®; depend on dis-
joint sets of Boolean variables, and therefore they are independent
probabilistic events. In other words, tuple-independence is a suf-
ficient condition for independence in the probabilistic sense. Al-
though it is only a sufficient condition, we will abbreviate tuple-
independence with independence in this section.

Let ¢ be a positive sentence, V = {z1,...,zm} C Vars(p),
and a a constant. Denote ¢[a/V] = pla/z1,...,a/zm] (all vari-
ables in V' are substituted with a).

DEFINITION 4.1. Let ¢ = \/,_, .. i be a disjunctive sen-

tence. A separator is a set of variables V. = {x1,...,xm}, x; €
Var(vi), such that for all a # b, p[a/V], ¢[b/V] are independent.

PROPOSITION 4.2. Let ¢ be a disjunctive sentence with a sep-
arator V, and (A, P) a probabilistic structure with active domain

D. Then:
P(p) = 1- ][0 -P(ela/V]) (7

a€D

The claim follows from the fact that ¢ = \/ ., w[a/V] on all
structures whose active domain is included in D.

In summary, to compute the probability of a disjunctive sentence,
we find a separator, then apply Eq.(7): each expression ¢[a/V] is a
positive sentence, simpler than the original one (it has strictly fewer
variables in each atom) and we apply again the inversion formula.
This technique, by itself, is not complete: we need to “rank” the re-
lations in order to make it complete, as we show in the next section.
Before that, we illustrate with an example.

Example 4.3 Consider ¢ = R(x1), S(x1,y1)VS(z2,y2), T(z2).
Here {xl, :cg} is a separator. To see this, note that for any constants
a # b, the sentences p[a] = R(a), S(a,y1) V S(a,y2),T(a) and
w[b] = R(b),S(b,y1) V S(b,y2),T(b) are independent, because
the former only looks at tuples that start with a, while the latter
only looks at tuples that start with b.

Consider ¢ = R(z1),S(x1,y1) V S(x2,y2), T (y2). This sen-
tence has no separator. For example, {z1, 22} is not a separator
because both sentences ¢[a] and ¢[b] have the atom T'(y2) in com-
mon: if two homomorphisms h1, he map y2 to some constant c,
then T'(c) € hi(pla]) N ha2(p[b]), hence they are dependent. The
set {x1, y2} is also not a separator, because ¢[a] contains the atom
S(a,y1), [b] contains the atom S(z2,b), and these two can be
mapped to the common ground tuple S(a, ).

We end with a necessary condition for V' to be a separator.

DEFINITION 4.4. If~ is a component, a variable of v is called
a root variable if it occurs in all atoms of 7.

Note that components do not necessarily have root variables,
e.g., R(z), S(z,y), T(y). We have:

PROPOSITION 4.5. IfV is a separator of \/, i, then each sep-
arator variable ©; € Vars(v;) is a root variable for ;.

The claim follows from the fact that, if r is any atom in ¢; that does
not contain z;: then r is unchanged in -y;[a] and in ; [b], hence they
are not independent.

5. RANKING

In this section, we define a simple restriction on all formulas and
structures that simplifies our later analysis: we require that, in each
relation, the attributes may be strictly ordered A; < As < ... We
show how to alter any positive sentence and probabilistic structure
to satisfy this constraint, without changing the sentence probability.
This is a necessary preprocessing step for our algorithm to work,
and a very convenient technique in the proofs.

5.1 Ranked Structures

Throughout this section, we use < to denote a total order on
the active domain of a probabilistic structure (such an order always
exists). In our examples, we assume that < is the natural ordering
on integers, but the order may be chosen arbitrarily in general.

DEFINITION 5.1. A relation instance R is ranked if every tu-
ple R(aq,...,ax) is such that a1 < --- < ax. A probabilistic
structure is ranked if all its relations are ranked.

To motivate ranked structures, we observe that the techniques
given in previous sections do not directly lead to a complete al-
gorithm. We illustrate by reviewing the example in Sec. 2: v =
R(z,y), R(y,z). This component is connected, so we cannot use
Mobius inversion to simplify it, and we also cannot apply Eq.(7)
because there is no separator: indeed, {z} is not a separator be-
cause R(a,y), R(y,a) and R(b,y), R(y,b) are not independent
(they share the tuple R(a,b)), and by symmetry neither is {y}.
However, consider a structure with a unary relation R12 and binary
relations R1 <2, Ro<1 defined as:

Ri2 = mx,(0x,=x,(R))  Ra<i = x, %, (0x,<x, (R))

Rics = 0x,<x,(R)

Here, we use X to refer to the i-th attribute of R. This is a ranked
structure: in both relations R; <2 and Rao<1 the first attribute is less
than the second. Moreover: v = Ri12(z)V Ri<2(x,y), Ra<1(x,y)
and now {z, z} is a separator, because R1<2(a, y), R2<1(a,y) and
Ri<2(b,y), Ra<1(b,y) are independent. Thus, Eq.(7) applies to
the formula over the ranked structure, and we can compute the
probability of v in polynomial time.

DEFINITION 5.2. A positive sentence is in reduced form if each
atom R(x1,...,xy) is such that (a) each x; is a variable (i.e. not
a constant), and (b) the variables x1, . . . , xy are distinct.

We now prove that the evaluation of any sentence can be reduced
to an equivalent sentence over a ranked structure, and we further
guarantee that the resulting sentence is in reduced form.

PROPOSITION 5.3. Let ®g be positive sentence. Then, there
exists a sentence ¥ in reduced form such that for any structure Ay,
one can construct in polynomial time a ranked structure A such
that IDAO (Cbo) = PA((b).

PROOF. Let R(X1,...,Xx) be a relation symbol and let p be
a maximal, consistent conjunction of order predicates involving at-
tributes of R and the constants occurring in ®o. Thus, for any
pair of attributes names or constants y, z, p implies exactly one of



y < z,y = 2,y > z. Before describing ¢, we show to construct
the ranked structure A from an unranked one Ag. We say Xj is
unbound if p # X; = c for any constant c¢. The ranked struc-
ture will have one symbol R” for every symbol R in the unranked
structure and every maximal consistent predicate p. The instance
A is computed as R* = 7¢(0,(R)) where X contains one X in
each class of unbound attributes that are equivalent under p, listed
in increasing order according to p. Clearly A can be computed in
PTIME from Ag.

We show now how to rewrite any positive sentence P into an

equivalent, reduced sentence ® over ranked structures s.t. Pa,(®o) =

Pa (®). We start with a conjunctive sentence ¢ = 71, ..., Ty, and
let R; denote the relation symbol of r;. Consider a maximally con-
sistent predicate p; on the attributes of R;, for each ¢ = 1,n, and
let p = p1, ..., pn be the conjunction. We say that p is consistent
if there is a valuation h such that h(p) |= p. Given a consistent
p, divide the variables into equivalence classes of variables that p
requires to be equal, and choose one representative variable from
each class. Let r?% be the result of changing R;(z1,...,zx) to
R? (y1,...,ym), Where y1,. .., ym are chosen as follows. Con-
sider the unbound attribute classes in R;, in increasing order ac-
cording to p;. Choose y, to be the representative of a variable
that occurs in the position of an attribute in the p-th class of un-
bound attributes. This works because the position of any unbound
attribute X must have a variable: if there is a constant a, then
h(r;) E X = a for all valuations h. But p; = X # a so
this contradicts the assumption that p is consistent. Using a similar
argument, we can show that each y; is distinct, so rf i is in reduced
form. Furthermore, o = A . rit, ..., rh" where the disjunction
ranges over all maximal p; such that p is consistent. For a positive
sentence P, we apply the above procedure to each conjunctive
sentence in the DNF of @ to yield a sentence in reduced form on
the ranked relations R”. [

Example 5.4 Let ¢ = R(x,a), R(a,z). If we define the ranked
relations R1 = 7x,(0x,=a(R)), R2 = 7x,(0x,=a(R)), and
Ris = mg(0x,=x2=a(R)), we have ¢ = Ri(z), R2(x) V Ri2().

Next, consider p = R(z), S(z,z,y), S(u,v,v). Define
Si23 = 7x,(0x,=X,=x3(5))
S2s<1 = Txyx, (OX2:X3<X1((S))

and so on. We can rewrite ¢ as:

Y= R(a:), 5'123 (CC)

V R(z), S12<3(x,y), S1<23(u,v) V R(z), S12<3(2, ), S23<1 (v, u)
V R(z),S3<12(y, ), S1<23(u,v) V R(x), S3<12(y, ), S23<1 (v, u)

and note that these relations are ranked. []

Thus, when computing Pa (®), we may conveniently assume
w.l.0.g. that A is ranked and @ is in reduced form. When we re-
place separator variables with a constant as in Eq.(7), we can easily
restore the formula to reduced form. Given a disjunctive sentence
 in reduced form and a separator V', we remove a from [a/V]
as follows. For each relation R, suppose the separator variables oc-
cur at position X; of R. Then we remove all rows from R where
X, # a, reduce the arity of R by removing column ¢, and remove
z; = a from all atoms R(z1,...,zx) in pla/V].

We end this section with two applications of ranking. The first
shows a homomorphism theorem for CNF sentences.

PROPOSITION 5.5. Assume all structures to be ranked, and all
sentences to be in reduced form.

o If o, are conjunctive sentences, and  is satisfiable over
ranked structures® then ¢ = ' iff there exists a homomor-
phism h : o' — .

o Formula (5) holds for positive sentences in DNF.
o The dual of (5) holds for positive sentences in CNF:

Nowi = N, @5 iff Vidigi = ¢

The proof is the full version of the paper [3]. The first two items
are known to fail for conjunctive sentences with order predicates:
for example R(x,y), R(y, ) logically implies R(z,y),z < vy,
but there is no homomorphism from the latter to the former. They
hold for ranked structures because there is a strict total order on
the attributes of each relation. The last item implies the following.
If L and I are two C-lattices representing equivalent sentences,
then they have the same co-atoms. In conjunction with Prop. 3.4,
this implies that an algorithm that ignores lattice elements where
w(u, i) = 0 does not depend on the representation of the positive
sentence. This completes our discussion at the end of Sec. 3.

The second result shows how to handle atoms without variables.

PROPOSITION 5.6. Let vo,v1 be components in reduced form
s.t. Var(yo) =0, Var(y1) # 0. Then yo, 71 are independent.

PROOEF. Note that o contains a single atom R(); if it had two
atoms then it is not a component. Since v is connected, each atom
must have at least one variable, hence it cannot have the same rela-
tion symbol R(). O

Let ¢ = \/~; be a disjunctive sentence, po = \/izvm(%):@ i
and 91 = \,.y4y(, )20 Vi- It follows that:

P(p) = 1—=(1=P(po))(1—P(g1)) ®)

5.2 Finding a Separator

Assuming structures to be ranked, we give here a necessary and
sufficient condition for a disjunctive sentence in reduced form to
have a separator, which we use both in the algorithm and to prove
hardness for F'P#¥_ We need some definitions first.

Let ¢ = 71 V...V v be a disjunctive sentence, in reduced
form. Throughout this section we assume that ¢ is minimized and
that Var(v;) N Var(y;) = 0 forall ¢ # j (if not, then rename the
variables). Two atoms r € Atoms(v;) and 7’ € Atoms(v;) are
called unifiable if they have the same relational symbol. We may
also say r, 7’ unify. It is easy to see that ; and ~y; contain two unifi-
able atoms iff they are not tuple-independent. Two variables z, =’
are unifiable if there exist two unifiable atoms 7, 7’ such that = oc-
curs in 7 at the same position that " occurs in r’. This relationship
is reflexive and symmetric. We also say that z, 2’ are recursively
unifiable if either =, z’ are unifiable, or there exists a variable x”’
such that 2, 2" and z’, 2" are recursively unifiable.

A variable z is maximal if it is only recursively unifiable with
root variables. Hence all maximal variables are root variables. The
following are canonical examples of sentences where each compo-
nent has a root variable, but there are no maximal variables:

ho = R(z0), S1(x0,90), T (y0)
h1 = R(z0), S1(z0,y0) V S1(z1,91), T(y1)
ha = R(z0), S1(z0,y0) V S1(x1,91), S2(w1,91) V S2(z2,y2), T(y2)

hi, = R(x0), S1(x0,%0) V S1(z1,¥1), S2(z1,y1) V

oV Sk (@1, Yk—1), Sk (Th—1,Yk—1) V (Sk(Tk, y&), T (yx)

“Meaning: it is satisfied by at least one (ranked) structure.



In each hg, k > 1, the root variables are x;_1,y; fori =1,k — 1,
and there are no maximal variables.

Maximality propagates during unification: if  is maximal and
z, 2 unify, then &’ must be maximal because otherwise x would
recursively unify with a non-root variable.

Let W; be the set of maximal variables occurring in ~;. If an
atom in 7; unifies with an atom in ~y;, then |W;| = |W,| because
the two atoms contain all maximal variables in each component,
and maximality propagates through unification. Since the struc-
tures are ranked, for every ¢ there exists a total order on the max-
imal variables in W;: z;1 < z;2 < ... The rank of a variable
x € W; is the position where it occurs in this order. The following
result gives us a means to find a separator if it exists:

PROPOSITION 5.7. A disjunctive sentence has a separator iff
every component has a maximal variable. In that case, the set com-
prising maximal variables with rank 1 forms a separator.

PROOF. Consider the disjunctive sentence ¢ = /" | ~y; and set
of variables V' = {x1,...,2m} s.t. z; € Vars(v), i = 1,m.
It is straightforward to show that V' is a separator iff any pair of
unifiable atoms have a member of V' in the same position. Hence,
if V' is a separator, then each x; € V can only (recursively) unify
with another z; € V. Since x; is a root variable (Prop. 4.5), each
x; € Vars(y;) is maximal, as desired.

Now suppose every component has a maximal variable. Choose
V such that z; is the maximal variable in ~; with rank 1. If two
atoms 7,7’ unify, then they have maximal variables occurring in
the same positions. In particular, the first maximal variable has
rank 1, and thus is in V. We conclude that V' is a separator. [

For a trivial illustration of this result, consider the disjunctive
sentence R(z,y), S(z,y) vV S(z’,y"), T(z',y"). All variables are
root variables, and the sets of maximal variables are W1 = {z, y},
Wa = {z’,y’}. We break the tie by using the ranking: choosing
arbitrarily rank 1, we obtain the separator {z, z'}. (Rank 2 would
gives us the separator {y,y’}). A more interesting example is:

Example 5.8 In ¢, not all root variables are maximal:

¢ = R(z1,21),5(z1,21,91) V S(22, 72, y2), T(22,92) V
R(z3,23),T(23,y3)

The root variables are 21, x1, 22, Y2, z3. The sets of maximal vari-
ables in each component are W1 = {z1}, Wa = {22}, W3 =
{23}, and the set {21, 22, 23} is a separator.

6. THE ALGORITHM

Algorithm 6.1 takes as input a ranked probabilistic structure A
and a positive sentence ® in reduced form (Def 5.2), and computes
the probability P(®), or fails. The algorithm proceeds recursively
on the structure of the sentence ®. The first step applies the Mobius
inversion formula Eq.(6) to the C-lattice for ®, expressing P(®) as
a sum of several P(y), where each ¢ is a disjunctive sentence.
Skipping those ¢’s where the Mobius function is zero, for all oth-
ers it proceeds with the second step. Here, the algorithm first min-
imizes ¢ = \/~i, then computes P(\/~;), by using Eq.(8), and
Eq.(7). For the latter, the algorithm needs to find a separator first,
as described in Sec. 5.2: if none exists, then the algorithm fails.

The expression P(pq) represents the base case of the algorithm:
this is when the recursion stops, when all variables have been sub-
stituted with constants from the structure A. Notice that (g is of
the form \/r;, where each r; is a ground atom. Its probability
is 1 —[[,(1 — P(r;)), where P is the probability function of the
probabilistic structure (A, P). We illustrate the algorithm with two
examples.

Algorithm 6.1 Algorithm for Computing P (®)
Input : Positive sentence ® in reduced form;
Ranked structure (A, p) with active domain D
Output: P(®)
1: Function MobiusStep(®) /* & = positive sentence */
2: LetL =Lo(®)bea C-lattice representing
3: Return ) iy (u,1)xIndepStep(A(u))
4: O
5: Function IndepStep(y) /* ¢ = \/, vi */
6:
7
8
9

Minimize ¢ (Sec. 3.4)
Let o = o V 1
where: o = Vi:Var(’yi):@ Vi, P1 =
. Let V = a separator for ¢ (Sec. 5.2)
10:  If (no separator exists) then FAIL (UNSAFE)
11: Letpo = P(vo)
12: Letp: =1—]],.,(1 — MobiusStep(v1[a/V]))
13:  /* Note: assume 1 [a/V] is reduced (Sec.5) */
14: Return 1 — (1 —po)(1 — p1).
15: O

\/i:Va'r(’yi);ﬂB i

Example 6.1 Let ® = R(z1),S(x1,y1) V S(x2,y2), T (y2) V
R(x3),T(ys). This example is interesting because, as we will
show, the subexpression R(x1),S(x1,y1) V S(z2,y2), T (y2) is
hard (it has no separator), but the entire sentence is in PTIME.
The algorithm computes the C-lattice, shown in Fig. 1 (b), then
expresses P(®) = P(¢4) + P(ps) — P(ps) where pg = R(z) V
T'(y) (see Example 3.3 for notations). Next, the algorithm applies
the independence step to each of @4, @s, ps; we illustrate here for
pa = R(z3) V S(x2,y2), T (y2) only; the other expressions are
similar. Here, {x3,y2} is a set of separator variables, hence:

P(ps) = 1-]](1—P(R(a)V S(z2,a),T(a)))

acA

Next, we apply the algorithm recursively on R(a)V S (z2,a), T(a).
In CNF it becomes'® (R(a) V S(x2,a))(R(a) V T(a)), and the al-
gorithm returns P(R(a)V.S(z2,a))+P(R(a)VT(a))—P(R(a)V
S(z2,a) V T'(a)). Consider the last of the three expressions (the
other two are similar): its probability is

1— (1= P(R(a) vVT(a)) [[(1 = P(S(b,a)))
beA

Now we have finally reached the base case, where we compute the
probabilities of sentences without variables: P(R(a) V T'(a)) =
1—(1—-P(R(a)))(1— P(T(a))), and similarly for the others.

Example 6.2 Consider the sentence ¢ in Example 5.8. Since this
is already CNF (it is a disjunctive sentence), the algorithm proceeds
directly to the second step. The separator is V' = {z1, 22, 23} (see
Ex. 5.8), and therefore:

Plp) = 1- ] Pela/v])

acA
where ¢[a/V] is:
R(a7 $1)7 S(a7 T1, yl)\/S(CL, T2, y2)7 T(a7 yg)\/R(CL, m3)7 T(a’z y3)

After reducing the sentence (i.e. removing the constant a), it be-
comes identical to Example 6.1.

10Strictly speaking, we would have had to rewrite the sentence into
a reduce form first, by rewriting S(z2, a) into Sa<q (22), etc.



In the rest of this section we show that the algorithm is complete,
meaning that, if it fails on a positive sentence ®, then ® is F P# -
hard.

6.1 Safe Sentences

The sentences on which the algorithm terminates (and thus are
in PTIME) admit characterization as a minor-closed family, for a
partial order that we define below.

Let ¢ be a disjunctive sentence. A level is a non-empty set of
variables!! W such that every atom in ¢ contains at most one vari-
able in W and for any unifiable variables x, z’, if x € W then
x' € W. In particular, a separator is a level W that has one vari-
able in common with each atom; in general, a level does not need
to be a separator. For a variable x € W, let n, be the number of
atoms that contain z; let n = max, n,. Let A = {a1,...,ar} be
a set of constants not occurring in ¢ s.t. k& < n. Denote @[A/W]
the sentence obtained as follows: substitute each variable x € W
with some constant a; € A and take the union of all such substitu-

tions:
\VAR=I()

O:W—A

PlA/W] =

Note that ¢[A /W] is not necessarily a disjunctive sentence, since
some components -; may become disconnected in [A/W].

DEFINITION 6.3. Define the following rewrite rule ® — ®¢ on
positive sentences. Below, p, @o, p1, denote disjunctive sentences:

© — @lA/W] Wisalevel, Ais a set of constants
poVer = p1 if Vars(go) =0
> = o Ju € Lo (P).p(u, 1) # 0,0 = A(u)

The second and third rules are called simple rules. The first rule is
also simple if W is a separator and |A| = 1.

The first rewrite rule allows us to substitute variables with con-
stants; the second to get rid of disjuncts without any variables; the
last rule allows us to replace a CNF sentence ¢ with one element of
its C-lattice, provided its Mobius value is non-zero. The transitive
closure = defines a partial order on positive sentences.

DEFINITION 6.4. A positive sentence P is called unsafe if there
exists a sequence of simple rewritings ® = @ s.t. @ is a disjunctive
sentence without separators. Otherwise it is called safe.

Thus, the set of safe sentences can be defined as the downwards
closed family (under the partial order defined by simple rewritings)
that does not contain any disjunctive sentence without separators.
The main result in this paper is:

THEOREM 6.5 (SOUNDNESS AND COMPLETENESS). Fixa pos-

itive sentence .

Soundness If ® is safe then, for any probabilistic structure, Algo-
rithm 6.1 terminates successfully (i.e. doesn’t fail), computes
correctly P(®), and runs in time O(n"), where n is the size
of the active domain of the structure, and k the largest arity
of any symbol in the vocabulary.

Completeness If ® is unsafe then it is hard for FP*T.

Soundness follows immediately, by induction: if the algorithms
starts with @, then for any sentence ®o processed recursively, it
is the case that ® = @, where all rewrites are simple. Thus, if

""No connection to the maximal sets W; in Sec. 5.2.

the algorithm ever gets stuck, ® is unsafe; conversely, if @ is safe,
then the algorithm will succeed in evaluating it on any probabilistic
structure. The complexity follows from the fact that each recursive
step of the algorithm removes one variable from every atom, and
traverses the domain D once, at a cost O(n). Completeness is
harder to prove, and we discuss it in Sec. 6.3.

For a simple illustration, consider the sentence:

¢ = R(z1,21),5(z1,21,91) V S(22, 22, 92), T (22, y2)

To show that it is hard, we substitute the separator variables
z1, 22 with a constant a, and obtain

P — R(a,xl),S(a,xl,y1) N S(a7x27y2)7T(aa y2)

Since the latter is a disjunctive sentence without a separator, it fol-
lows that ¢ is hard.

6.2 Discussion

An Optimization The first step of the algorithm can be opti-
mized, as follows. If the DNF sentence ® = A - is such that
the relational symbols appearing in -; are distinct for different 4,
then the first step of the algorithm can be optimized to compute
P(®) =[], P(v:) instead of using Mobius’ inversion formula. To
see an example, consider the sentence ® = R(z), S(y), which can
be computed as

P@) = (1-JJ0-P(R@))A-]]0 - P(S(a)))

Without this optimization, the algorithm would apply Mobius’
inversion formula first:

P(®) = P(R(z)) + P(5(y)) — P(R(z) v S(y))

1-[]0 = P(R(a))) +1 =] ](1 = S(a))

a

— 1+ [ (1 = P(R(a)) = P(S(a)) + P(R(a)) - P(S(a)))

The two expressions are equal, but the former is easier to compute.

A Justification We justify here two major choices we made in
the algorithm: using the C-lattice instead of the D-lattice, and re-
lying on the inversion formula with the Mobius function instead of
some simpler method to eliminate unsafe subexpressions.

To see the need for the C-lattice, let’s examine a possible dual
algorithm, which applies the Mobius step to the D-lattice. Such an
algorithm fails on Ex. 5.8, because here the D-lattice is 2[3], and the
Mobius function is +1 or —1 for every element of the lattice. The
lattice contains R(z1,x1),S(21, 21, y1), S(22, T2, y2), T (22,¥2),
which is unsafe'?. Thus, the dual algorithm fails.

To see the need of the Mobius inversion, we prove that an exis-
tential, positive FO sentence can be “as hard as any lattice”.

THEOREM 6.6 (REPRESENTATION THEOREM). Let (L, <) be
any lattice. There exists a positive sentence ® such that: Lp (®) =
(L, <, \), M0) is unsafe, and for all u # 0, X(u) is safe. The dual
statement holds for the C-lattice.

PROOF. Call an element » € L join irreducible if whenever
v1 V ve = 7, then either v1 = r or vo = r. (Every atom is
join irreducible, but the converse is not true in general.) Let R =
{ro,71,..., 7} be all join irreducible elements in L. For every

121t rewrites to R(a, 1), S(a@l,yl;, Sga, x2,92),T(a,y2) —
R(avxl)a S(a,an,yl) \ S(avx27y2 7T a, y2)'



u € Ldenote R, = {r | r € R,r < u}, and note that R,x, =
R, U R,. Define the following components'*:

Yo = R(Jll),sl(ml,yl)
vi = Si(Tiy1,Yi+1), Siv1(@it1,yiv1) i=1,k—1
Y = Sk, yr), T(yr)

Consider the sentences ® and ¥ below:

b=V A T=A Vo

u<iri€Ry u<irTi€Ry
Then both Lp(®) and L () satisfy the theorem. [

The theorem says that the lattice associated to a sentence can be
as complex as any lattice. There is no substitute for checking if the
Mobius function of a sub-query is zero: for any complex lattice L
one can construct a sentence P that generates that lattice and where
the only unsafe sentence is at 0: then @ is safe iff ui; (0, 1) = 0.

6.3 Outline of the Completeness Proof

In this section we give an outline of the completeness proof and
defer details to the full version [3]. We have seen that ® is unsafe
iff there exists a rewriting ® = ¢ where ¢ has no separators. Call
a rewriting maximal if every instance of the third rule in Def. 6.3,
® — A(u), is such that for all lattice elements v > u, A(v) is safe:
that is u is a maximal unsafe element in the CNF lattice. Clearly, if
® is unsafe then there exists a maximal rewriting ® — ¢ where @
has no separators. We prove the following:

LEMMA 6.7. If® = @ is a maximal rewriting, then there exists
a PTIME algorithm for evaluating Pa () on probabilistic struc-
ture A, with a single access to an oracle for computing Pg(®) on
probabilistic structures B.

Thus, to prove that every unsafe sentence is hard, it suffices to
prove that every sentence without separators is hard. To prove the
latter, we will continue to apply the same rewrite rules to further
simplify the sentence, until we reach an unsafe sentence where each
atom has at most two variables: we call it a forbidden sentence.
Then, we prove that all forbidden sentences are hard.

However, there is a problem with this plan. We may get stuck
during rewriting before reaching a sentence with two variables per
atom. This happens when a disjunctive sentence has no level, which
prevents us from applying any rewrite rule. We illustrate here a
simple sentence without a level:

¢ = R(z,y),5(y,2) VR, y), S y)

Each consecutive pair of variables in the sequence z,z’,y,y’, 2
is unifiable. This indicates that no level exists, because it would
have to include all variables, while by definition a level may have
at most one variable from each atom; hence, this sentence does not
have any level. While this sentence already has only two variables
per atom, it illustrates where we may get stuck in trying to apply a
rewriting.

To circumvent this, we transform the sentence (with two vari-
ables or more) as follows. Let V' = Vars(y). A leveling is a
function | : V' — [L], where L > 0, s.t. forall 4 € [L], 17" (4) is
a level. Conceptually, ! partitions the variables into levels, and as-
signs an integer to each level. This, in turn, associates exactly one
level to each relation attribute, since unifiable variables must be in
the same level. We also call ¢ an L-leveled sentence, or simply
leveled sentence. Clearly, a leveled sentence has a level: in fact it

BThat is, \ v = hg.

has L disjoint levels. We show that each sentence is equivalent to a
leveled sentence, on some restricted structures.

Call a structure A L-leveled if there exists a function ! : A —
[L] s.t. if two constants a # b appear in the same tuple then
l(a) # 1(b), and if they appear in the same column of a relation
then I(a) = 1(b). For example, consider a single binary relation
R(A, B). An instance of R represents a graph. There are no
1-leveled instances, because for every tuple (a,b) we must have
l(a) # I(b). A 2-leveled instance is a bipartite graph. There are
no 3-leveled structures, except if one level is empty. For a second
example, consider two relations R(A, B), S(A, B). (Recall that
our structures are ranked, hence for every tuple R(a,b) or S(a,b)
we have a < b). An example of a 3-leveled structure is a 3-partite
graph where the R-edges go from partition 1 to partition 2 and the
S-edges go from partition 2 to partition 3.

PROPOSITION 6.8. Let o be a disjunctive sentence that has no
separators. Then there exists L > 0 and an L-leveled sentence @™
s.t. that o has no separator and the evaluation problem of @™
over L-leveled structures can be reduced in PTIME to the evalua-
tion problem of .

The proof is in the full version [3]. We illustrate the main idea
on the example above. We choose L = 4 and the leveled sentence
 becomes:

©" = Ros(x2,y3), S34(y3, us) V Riz(21,y2), S23(y2, 23) V

R23(ZE,2, yé’))a S23(xl25 yé)

Here o* is leveled, and still does not have a separator. It is also
easy to see that if a probabilistic structure A is 4-leveled, then ¢
and ¢ are equivalent over that structure. Thus, it suffices to prove
hardness of o= on 4-leveled structures: this implies hardness of .

To summarize, our hardness proof is as follows. Start with a dis-
junctive sentence without separators, and apply the leveling con-
struct once. Then continue to apply the rewritings 6.3: it is easy to
see that, whenever ¢ — ¢’ and ¢ is leveled, then ¢’ is also leveled;
in other words we only need to level once.

DEFINITION 6.9. A forbidden sentence is a disjunctive sentence
(p that has no separator, and is 2-leveled; in particular, every atom
has at most two variables.

We prove the following in the full version [3]:

THEOREM 6.10. Suppose ¢ is leveled, and has no separator.

Then there exists a rewriting p = @' s.t. ¢ is a forbidden sen-
tence.

The level L may decrease after rewriting. In this theorem we
must be allowed to use non-simple rewritings ¢ — p[A/W], where
W is not a separator (of course) and A has more than one constant.
We show in [3] examples were the theorem fails if one restricts A
to have size 1.

Finally, the completeness of the algorithm follows from the fol-
lowing theorem, which is technically the hardest result of this work.
The proof is given in [3]:

THEOREM 6.11. If ¢ is a forbidden sentence then it is hard for
FP#P over 2-leveled structures.

7. LIFTED INFERENCE

Conditioning and disjointness are two important techniques in
probabilistic inference. The first expresses the probability of some



Boolean expression @ as P(®) = P(® | X)«xP(X) + P(® |
- X)*(1 — P(X)) where X is a Boolean variable. Disjointness
allows us to write P(® V ¥) = P(®) + P(V) when ® and ¥ are
exclusive probabilistic events. Recently, a complementary set of
techniques called lifted inference has been shown to be very effec-
tive in probabilistic inference [12, 15, 14], by doing inference at the
logic formula level instead of at the Boolean expression level. In
the case of conditioning, lifted conditioning uses a sentence rather
than a variable to condition.

We give an algorithm that uses lifted conditioning and disjoint-
ness in place of the Mobius step of Algorithm 6.1. When the al-
gorithm succeeds, it runs in PTIME in the size of the probabilistic
structure. However, we also show that the algorithm is incomplete;
in fact, we claim that no algorithm based on these two techniques
only can be complete.

Given ® = \/ ¢;, our goal is to compute P(®) in a sequence
of conditioning/disjointness steps, without Mobius’ inversion for-
mula. The second step of Algorithm 6.1 (existential quantification
based on independence) remains the same and is not repeated here.
For reasons discussed earlier, that step requires that we have a CNF
representation of the sentence, ¥ = A ¢;, but both conditioning
and disjointness operate on disjunctions, so we apply De Morgan’s
laws P(A ¢i) = 1 — P(\/ —p;). Thus, with some abuse of ter-
minology we assume that our input is a D-lattice, although its ele-
ments are labeled with negations of disjunctive sentences.

We illustrate first with an example.

Example 7.1 Consider the sentence in Example 6.1:

® = R(x1),S(m1,91)V S(x2,y2), T(y2) V R(x3), T (y3)
= 1 V2 Vs

We illustrate here directly on the DNF lattice, without using the
negation. (This works in our simple example, but in general one
must start from the CNF, then negate.) The Hasse diagram of the
DNEF lattice is shown in Fig. 1. First, let’s revisit Mobius’ inversion
formula:

P(®) = P(p1) + Pp2) + Ples) — P(pirps) — P(p2e3)
The only unsafe sentence in the lattice is the bottom element of the
lattice, where 1 and 2 occur together, but that disappears from
the sum because 1(0,1) = 0. We show how to compute ® by
conditioning on 3. We denote ¢ = —¢ for a formula ¢:

P(®) = P(ps)+ P((¢1V p2) A ps)

P(ps) + P((¢1,03) V (92, $3))
P(ps) + P(p1,83) + Pp2, ¢3)

The first line is conditioning (3 is either true, or false), and the
third line is based on mutual exclusion: ¢; and @2 become mutu-
ally exclusive when (3 is false. We expand one more step, because
our algorithm operates only on positive sentences: this is the fourth
line. This last expansion may be replaced with a different usage,
e.g. the construction of a BDD, not addressed in this paper. All
sentences in the last line are safe, and the algorithm can proceed
recursively.

For lifted conditioning to work, it is of key importance that we
choose the correct subformula to condition. Consider what would
happen if we conditioned on ¢ instead:

P(®) = Plp1) +P((p2Ve3) Ap1)
= P(p1) + P(p2 A@1) + P(ps A @)

Now we are stuck, because the expression 2 A @1 is hard.

P(p3) + (P(p1) — P(p1,93)) + (P(p2) — P(p2,93))

Algorithm 7.1 computes the probability of a DNF formula using
conditionals and disjointness. The algorithm operates on a DNF
lattice (the negation of a CNF sentence). The algorithm starts by
minimizing the expression \/, ¢;, which corresponds to remov-
ing all elements that are not co-atomic from the DNF lattice L
(Prop 3.4). Recall that & = \/ _; A(u).

Next, the algorithm chooses a particular sub-lattice E, called the
cond-lattice, and conditions on the disjunction of all sentences in
the lattice. We define E below: first we show how to use it. Denote
u1, ..., u the minimal elements of L — E. For any subset S C L,
denote @5 =V, cg , i A(u); in particular, @1, = .

The conditioning and the disjointness rules give us:

P(®L)

P(®g)+ P(®L-& A (-Pg))
= P(®g)+ Z (®ru, ) N (0PE))

i=1,k

We have used here the fact that, for ¢ # j, the sentences @, 5; and
<I>[uj 1) are disjoint given ~® . Finally, we do this:

P(@p,, A (PE)) = P, 1)) — PP, ijar)

where [u;, 1| A E = {uAv|u>u,veFE—{1}}

This completes the high level description of the algorithm. We
show now how to choose the cond-lattice, then show that the algo-
rithm is incomplete.

7.1 Computing the Cond-Lattice

Fix a lattice (L, <). The set of zero elements, Z, and the set of
z-atoms Z A are defined as follows'*:

Z = {z]|pw(z, 1) =0}
ZA = {a|acoverssomeelement z € Z}

The algorithm reduces the problem of computing P(®r,) for the
entire lattice L to computing P(® ) for three kinds of sub-lattices
K: E, [u;, 1] A E, and [u;, 1]. The goal is to choose E to avoid
computing unsafe sentences. We assume the worse: that every zero
element z € Z is unsafe (if a non-zero element is unsafe then the
sentence is hard). So our goal is: choose E s.t. for any sub-lattice
K above, if z is a zero element and z € K, then pux(z,1) = 0.
That is, we can’t necessarily remove the zeros in one conditioning
step, but if we ensure that they continue to be zeroes, they will
eventually be eliminated.

The join closure of S C Lis cl(S) = {V e, u | s € S}. Note
that 0 € ¢l(S). The join closure is a join-semilattice and is made
into a lattice by adding 1.

DEF}NITION 7.2. Let L be a lattice. The cond-lattice E C L is
E={1}uUc(ZUZA).

The following three propositions, proved in [3], show that E has
our required properties.

PROPOSITION 7.3. Ifu € Landw € [u, 1] then iy, 1;(u, 1) =
KL (u7 i)

PROPOSITION 7.4. Forall z € Z, ug(z,1) = 0.

PROPOSITION 7.5. Assume 0 € Z. Then, for every zero ele-
ment z € L and for every w € L — E we have p (2, w) = 0.

1«Covers” is defined in Sec. 3.
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= Sa(x3,y3), S3(x3,Y3) 03 =Y1,74
= S3(x4,ya), T (ya) ©4 = Y1,72,73

D=1 VpaVpsVes

Figure 2: A lattice that is atomic, coatomic, and £(0,1) = 0.
Its sentence @ is given by Th. 6.6 (compare to h3 in Sec. 5.2).

Example 7.6 Consider Example 7.1. The cond-lattice for Fig. 1
(a) is

E = ({0, (¢1,93), (p3,92)})
{0, (¢1,93), (3, ¥2), 3, 1}

Notice that this set is not co-atomic: in other words, when viewed
as a sentence, it minimizes to 3, and thus we have gotten rid of 0.

To get a better intuition on how conditioning works from a lattice-
theoretic perspective, consider the case when Z = {0}. In this
case Z A is the set of atoms, and F is simply the set of all atomic
elements; usually this is a strict subset of L, and conditioning parti-
tions the lattice into E, [u;, 1] A E, and [u1, 1]. When processing E
recursively, the algorithm retains only co-atomic elements. Thus,
conditioning works by repeatedly removing elements that are not
atomic, then elements that are not co-atomic, until 0 is removed,
in which case we have removed the unsafe sentence and we can
proceed arbitrarily.

7.2 Incompleteness

Assume 0 is an unsafe sentence, and all other sentences in the
lattice are safe. Lifted conditioning proceeds by repeatedly replac-
ing the lattice L with a smaller lattice E, obtained as follows: first
retain only the atomic elements (= cl(Z U Z A)), then retain only
the co-atomic elements (this is minimization of the resulting for-
mula). Conditioning on any formula other than E is a bad idea,
because then we get stuck having to evaluate the unsafe formula
at 0. Thus, lifted conditioning repeatedly trims the lattice to the
atomic-, then to the co-atomic-elements, until, hopefully, 0 is re-
moved. Proposition 3.4 implies that, if 0 is eventually removed this
way, then £(0, 1) = 0. But does the converse hold ?

Fig.2 shows a lattice where this process fails. Here u(f), i) =
0; by Th. 6.6 there exists a sentence ® that generates this lattice,
where 0 is unsafe and all other elements are safe (& is shown in
the Figure). Yet the lattice is both atomic and co-atomic. Hence
cond-lattice is the entire lattice £ = L. We cannot condition on
any formula and still have ;1(0, 1) = 0 in the new lattice. In other
words, no matter what formula we condition on, we will eventually
get stuck having to evaluate the sentence at (. On the other hand,
Mobius’ inversion formula easily computes the probability of this
sentence, by exploiting directly the fact that 1(0,1) = 0.

8. CONCLUSIONS

We have proposed a simple, yet non-obvious algorithm for com-
puting the probability of an existential, positive sentence over a

Algorithm 7.1 Compute P®) using lifted conditional

Input: ® =\/,_, @i, L = Lpnr(P)

Output P(P)

: Function Cond(L)

: If L has a single co-atom Then proceed with IndepStep

: Remove from L all elements that are not co-atomic (Prop 3.4)
s LetZ={u|ué€L,pr(u,1) =0}

: Let ZA = {u | u € L,u covers some z € Z}

: If Z = () Then E := [u, 1] for arbitrary u

Else E :=cl(Z U ZA)

: If E = L then FAIL (unable to proceed)

: Let ui, ..., u be the minimal elements of L —

: Return Cond(E)+3_,_, , Cond(u;)—Cond([us, 1|AE)

OO0 RE W=

—_

probabilistic structure. For every safe sentence, the algorithm runs
in PTIME in the size of the input structure; every unsafe sentence
is hard. Our algorithm relies in a critical way on Mobius’ inversion
formula, which allows it to avoid attempting to compute the prob-
ability of sub-sentences that are hard. We have also discussed the
limitations of an alternative approach to computing probabilities,
based on conditioning and independence.
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