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ABSTRACT
Personal data has value to both its owner and to institutions
who would like to analyze it. Privacy mechanisms protect
the owner’s data while releasing to analysts noisy versions
of aggregate query results. But such strict protections of
individual’s data have not yet found wide use in practice.
Instead, Internet companies, for example, commonly provide
free services in return for valuable sensitive information from
users, which they exploit and sometimes sell to third parties.

As the awareness of the value of the personal data in-
creases, so has the drive to compensate the end user for her
private information. The idea of monetizing private data
can improve over the narrower view of hiding private data,
since it empowers individuals to control their data through
financial means.

In this paper we propose a theoretical framework for as-
signing prices to noisy query answers, as a function of their
accuracy, and for dividing the price amongst data owners
who deserve compensation for their loss of privacy. Our
framework adopts and extends key principles from both dif-
ferential privacy and query pricing in data markets. We
identify essential properties of the price function and micro-
payments, and characterize valid solutions.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Statistical databases

General Terms
Theory, Economics
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1. INTRODUCTION
Personal data has value to both its owner and to insti-

tutions who would like to analyze it. The interests of indi-
viduals and institutions with respect to personal data are
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often at odds and a rich literature on privacy-preserving
data publishing techniques [13] has tried to devise technical
methods for negotiating these competing interests. Broadly
construed, privacy refers to an individual’s right to control
how her private data will be used, and was originally phrased
as an individual’s right to be protected against gossip and
slander [8]. Research on privacy-preserving data publishing
has focused more narrowly on privacy as data confidential-
ity. For example, in perturbation-based data privacy, the
goal is to protect an individual’s personal data while releas-
ing to legitimate users the result of aggregate computations
over a large population [10].

To date, this goal has remained elusive. One important re-
sult from that line of work is that any mechanism providing
reasonable privacy must strictly limit the number of query
answers that can be accurately released [9], thus imposing a
strict privacy budget for any legitimate user of the data [24].
Researchers are actively investigating formal notions of pri-
vacy and their implications for effective data analysis. Yet,
with rare exception [17], perturbation-based privacy mech-
anisms have not been deployed in practice.

Instead, many Internet companies have followed a simple
formula to acquire personal data. They offer a free ser-
vice, attract users who provide their data, and then mon-
etize the personal data by selling it, or by selling informa-
tion derived from it, to third parties. A recent study by
JPMorgan Chase [5] found that each unique user is worth
approximately $4 to Facebook and $24 to Google.

Currently, many users are willing to provide their private
data in return for access to online services. But as individu-
als become more aware of the use of their data by corporate
entities, of the potential consequences of disclosure, and of
the ultimate value of their personal data, there has been
a drive to compensate them directly [28]. In fact, startup
companies are currently developing infrastructure to sup-
port this trend. For example, www.personal.com creates
personal data vaults, each of which may contain thousands
of data points about its users. Businesses pay for this data,
and the data owners are appropriately compensated.

Monetizing private data is an improvement over the nar-
row view of privacy as data confidentiality because it em-
powers individuals to control their data through financial
means. In this paper we propose a framework for assigning
prices to queries in order to compensate the data owners for
their loss of privacy. Our framework borrows from, and ex-
tends, key principles from both differential privacy [10] and
data markets [19, 22]. There are three actors in our setting:
individuals, or data owners, contribute their personal data;

www.personal.com


a buyer submits an aggregate query over many owners’ data;
and a market maker, trusted to answer queries on behalf of
owners, charges the buyer and compensates the owners. Our
framework makes three important connections:

Perturbation and Price In response to a buyer’s query,
the market maker computes the true query answer, adds ran-
dom noise, and returns a perturbed result. While under dif-
ferential privacy perturbation is always necessary, here query
answers could be sold unperturbed, but the price would be
high because each data owner contributing to an aggregate
query needs to be compensated. By adding perturbation to
the query answer, the price can be lowered: the more pertur-
bation, the lower the price. The buyer specifies how much
accuracy he is willing to pay for when issuing the query. Un-
perturbed query answers are very expensive, but at the other
extreme, query answers are almost free if the noise added is
the same as in differential privacy [10] with conservative pri-
vacy parameters. The relationship between the accuracy of
a query result and its cost depends on the query and the
preferences of contributing data owners. Formalizing this
relationship is one of the goals of this paper.

Arbitrage and Perturbation Arbitrage is an undesir-
able property of a set of priced queries that allows a buyer
to obtain the answer to a query more cheaply than its ad-
vertised price by deriving the answer from a less expensive
alternative set of queries. As a simple example, suppose
that a given query is sold with two options for perturbation,
measured by variance: a variance of 10 for $5 and a variance
of 1 for $200. A savvy buyer who seeks a variance of 1 would
never pay $200. Instead, he would purchase the first query
10 times, receive 10 noisy answers, and compute their aver-
age. Since the noise is added independently, the variance of
the resulting average is 1, and the total cost is only $50. Ar-
bitrage opportunities result from inconsistencies in the pric-
ing of queries which must be avoided and perturbing query
answers makes this significantly more challenging. Avoiding
arbitrage in data markets has been considered before only
in the absence of perturbation [3, 19, 22]. Formalizing arbi-
trage for noisy queries is a second goal of this paper. While,
in theory, achieving arbitrage-freeness requires imposing a
lower bound on the ratio between the price of low accuracy
and high accuracy queries, we will show that it is possible
to design quite flexible arbitrage-free pricing functions.

Privacy-loss and Payments Given a randomized mech-
anism for answering a query q, a common measure of pri-
vacy loss to an individual is defined by differential privacy:
it is the maximum ratio between the probability of returning
some fixed output with and without that individual’s data.
Differential privacy imposes a bound of eε on this quantity,
where ε is a small constant, presumed acceptable to all in-
dividuals in the population. Our framework contrasts with
this in several ways. First, the privacy loss is not limited
a priori, but depends on the buyer’s request. If the buyer
asks for a query with low variance, then the privacy loss to
(at least some) individuals will be high. These data own-
ers must be compensated for their privacy loss through the
buyer’s payment. At an extreme, if the query answer is
exact (unperturbed), then the privacy loss to some individ-
uals is total, and they must be compensated appropriately.
Also, we allow each data owner to value their privacy loss
separately, by demanding greater or lesser payments. For-
malizing the relationship between privacy loss and payments
to the data owners is a third goal of this paper.

By charging buyers for access to private data we overcome
a fundamental limitation of perturbation-based privacy pre-
serving mechanisms, namely the privacy budget. This term
refers to a limit on the quantity and/or accuracy of queries
that any buyer can ask, in order to prevent an unacceptable
disclosure of the data. For example, if a differentially-private
mechanism adds Laplacian noise with variance v, then by
asking the same query n times the buyer can reduce the
variance to v/n. Even if queries are restricted to aggregate
queries, there exist sequences of queries that can reveal the
private data for most individuals in the database [9] and en-
forcing the privacy budget must prevent this. In contrast,
when private data is priced, full disclosure is possible only if
the buyer pays a high price. For example, in order to reduce
the variance to v/n, the buyer would have to purchase the
query n times, thus paying n times more than for a single
query. In order to perform the attacks in [9] he would have
to pay for (roughly) n log2 n queries.

Thus, the burden of the market maker is no longer to
guard the privacy budget, but instead to ensure that prices
are set such that, whatever disclosure is obtained by the
buyer, all contributing individuals are properly compensated.
In particular, if a sequence of queries can indeed reveal the
private data for most individuals, its price must approach
the total cost for the entire database.

The paper is organized as follows. We describe the basic
framework for pricing private data in Sect. 2. In Sect. 3,
we discuss the main required properties for price functions,
developing notions of answerability for perturbed query an-
swers and characterizing arbitrage-free price functions. In
Sect. 4 we develop a notion of personalized privacy loss for
individuals, based on differential privacy. We define mi-
cro payment functions using this measure of privacy loss
in Sect. 5. We discuss two future challenges for pricing pri-
vate data in Sect. 7: disclosures that could result from an
individual’s privacy valuations alone, and incentives for data
owners to honestly reveal the valuations of their data. We
discuss related work and conclude in Sect. 8 and Sect. 9.

2. BASIC CONCEPTS
In this section we describe the basic architecture of the

private data pricing framework, illustrated in Fig. 1.

2.1 The Main Actors
The Market Maker. The market maker is trusted by

the buyer and by each of the data owners. He collects data
from the owners and sells it in the form of queries. When
a buyer decides to purchase a query, the market maker col-
lects payment, computes the answer to the query, adds noise
as appropriate, returns the result to the buyer, and finally
distributes individual payments to the data owners. The
market maker may retain a fraction of the price as profit.

The Owner and Her Data. Our data model is similar
to that used in [32], where the data items are called data
elements.

Definition 1 (Database). A database is a vector of
real-valued data items x = (x1, x2, . . . , xn).

Each data item xi represents personal information, owned
by some individual. In this paper we restrict the discussion
to numerical data. For example, xi may represent an indi-
vidual’s rating of a new product with a numerical value from
xi = 0 meaning poor to xi = 5 meaning excellent; or it may
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Figure 1: The pricing framework has three components: (A) Pricing and purchase: the buyer asks a
query Q = (q, v) and must pay its price, π(Q); (B) Privacy loss: by answering Q, the market maker leaks
some information εi about the private data from the data owners to the buyer; (C) Compensation: the
market maker must compensate each data owner for her privacy loss with micro-payments µi(Q). The pricing
framework is balanced if the price π(Q) is sufficient to cover all micro-payments µi and if each micro-payment
µi compensates the owner for her privacy loss εi.

represent the HIV status of a patient in a hospital, xi = 0
meaning negative, and xi = 1 meaning positive. Or xi may
represent age, annual income, etc. Importantly, each data
item xi is owned by an individual but an individual may own
several data items. For example, if we have a table with at-
tributes age, gender, marital-status, then items x1, x2, x3

belong to the first individual, items x4, x5, x6 to the second
individual, etc.

The Buyer and His Queries. The buyer is a data
analyst who wishes to compute some queries over the data.
We restrict our attention to the class of linear aggregation
queries over the data items in x.

Definition 2 (Linear Query). A linear query is a
real-valued vector q = (q1, q2 . . . qn). The answer q(x) to a
linear query on x is the vector product qx = q1x1+· · ·+qnxn.

Importantly, we assume that the buyer is allowed to issue
multiple queries. This means the buyer can combine in-
formation derived from multiple queries to infer answers to
other queries not explicitly requested. This presents a chal-
lenge we must address: to ensure that the buyer pays for
any information that he might derive directly or indirectly.

Example 3. Imagine a competition between candidates
A and B that is decided by a population of voters who each
rate the competitors. The data domain {0, 1, 2, 3, 4, 5} rep-
resents numerical ratings. In our data model, x1, x2 rep-
resent the rating given by Voter 1 to candidate A and B
respectively; x3, x4 are Voter 2’s ratings of A and B re-
spectively, and so on. The names of the voters are public,
but their ratings are sensitive and should be compensated
properly if used in any way. If the buyer considers Voter 1
and Voter 2 experts compared with the other voters he might
give a higher weight to the ratings of Voter 1 and Voter 2.
When a buyer wants to calculate the total rating for can-
didate A, he would issue the following linear query q1 =
(w1, 0, w1, 0, w2, 0, w2, 0, w2, 0, . . . , w2, 0) with w1 > w2 > 0.

2.2 Balanced Pricing Framework
The pricing framework is balanced if (1) each data owner

is appropriately compensated whenever the answer to some

query results in some privacy loss of her data item xi, and (2)
the buyer is charged sufficiently to cover all these payments.
This definition involves three quantities: the payment π that
the buyer needs to pay the market maker (Sect. 3), a mea-
sure εi of the privacy loss of data item xi (Sect. 4), and a
micro-payment µi by which the market maker compensates
the owner of xi for this privacy loss (Sect. 5).

The buyer is allowed to specify, in addition to a linear
query q, an amount of noise v that he is willing to toler-
ate in the answer; the buyer’s query is a pair Q = (q, v),
where q is a linear query and v ≥ 0 represents an upper
bound on the variance. Thus, the price depends both on
q and v, π(Q) = π(q, v) ≥ 0. The market maker answers
by first computing the exact answer q(x), then adding noise
sampled from a distribution with mean 0 and variance at
most v. This feature gives the buyer more pricing options
because, by increasing v, he can lower his price.

Note that we define the pricing function to depend only on
the variance, and not on the type of noise used by the market
maker. However, the market participants must agree on a
reasonable noise distribution because it affects the privacy
loss εi, which further determines how much needs to be paid
to the data owners1. In Sect. 4 we will restrict the noise to
the Laplace distribution, for which there exists an explicit
formula connecting the privacy loss εi to the variance.

Having received the purchase price for a query Q, the
market-maker then distributes it to the data owners: the
owner of data item xi receives a micro payment µi(Q) ≥ 0.
If the same owner contributes multiple data items xi, xi+1, . . .
then she is compensated for each. We discuss micro-payments
in Sect. 5.

Finally, the micro-payment µi(Q) must compensate the
data owner for her privacy loss εi. We say that the pricing

1For example, this noise P (0) = 1 − 2/m, P (±m) = 1/m,
where m = 1064 (mean 0, variance 2m) is a poor choice. On
one hand, it has a high variance, which implies a low price
π. On the other hand, it returns an accurate answer with
extremely high probability, leading to huge privacy losses
εi, and, consequently, to huge micro-payments. The market
maker will not be able to recover his costs.



framework defined by π, εi and µi is balanced if (1) the
payment received from the buyer always covers the micro
payment made to data owners, that is

∑n
i=1 µi(Q) ≤ π(Q),

and (2) each micro-payment µi compensates the owner of
the data item xi according to the privacy loss εi, as specified
by some contract between the data owner and the market
maker. We discuss balanced pricing frameworks and give a
general procedure for designing them in Sect. 6.

Example 4. Continuing Example 3, suppose that there
are 1000 voters, and that Bob, the buyer, wants to compute
the sum of ratings for candidate A, for which he issues the
query q = (1, 0, 1, 0, 1, 0, . . . , 1, 0). Assume that each voter
charges $10 for each raw vote. For an accurate answer to
the query, Bob needs to pay $10, 000, which is, arguably,
too expensive. On the other hand, Bob could buy the query
perturbed with variance v = 5, 000, which gives an error2

of ±300 with 94% confidence. Assuming the market maker
uses Laplacian noise for the perturbation, this query is ε-
differentially private3, with ε = 0.1, which offers pretty good
privacy to the data owners: each will be happy to accept
only $0.001 for basically no loss of privacy, and the buyer
pays only $1 for the entire query. The challenge is to design
the prices in between. For example, suppose the data owner
wants to buy more accuracy, say a variance v = 50 (to reduce
the error to ±30), what should the price be now? We will
answer this in Example 21. For now, let us observe that the
price cannot exceed $100. If it did, then a savvy buyer would
never pay that price, instead he would purchase the $1 query
100 times, compute the average, and obtain the answer with
a variance of 5000/100 = 50. This is an example of arbitrage
and the market maker should define a pricing function that
avoids it.

3. PRICING QUERIES
In this section we describe the first component of the

framework in Fig. 1: the pricing function π(Q) = π(q, v).
We denote R+ = [0,∞) and R̄+ = R+ ∪ {∞}.

Definition 5. A price function is π : Rn × R̄+ → R̄+.

In our framework, the buyer is allowed to issue multiple
queries. As a consequence, an important concern is that the
buyer may combine answers from multiple queries and de-
rive an answer to a new query, without paying the full price
for the latter, a situation we call arbitrage. A reasonable
pricing function must guarantee that no arbitrage is possi-
ble, in which case we call it arbitrage-free. Such a pricing
function ensures that the market maker receives proper pay-
ment for each query by removing any incentive for the buyer
to “game” the system by asking a set of cheaper queries
in order to obtain the desired answer. In this section we
formally define arbitrage-free pricing functions, study their
properties, and describe a general framework for construct-
ing arbitrage-free pricing functions, which we will later reuse
in Sect. 5 to define micro-payments, and obtain a balanced
pricing framework.

3.1 Queries and Answers
2Pr

(
|q̂ − q| ≥ 3

√
2 · σ

)
≤ 1/18 = 0.056 (Chebyshev’s in-

equality), where σ =
√
v = 50

√
2.

3ε =
√

2 · sensitivity(q)/σ = 5
√

2/50
√

2 = 0.1

The market maker uses a randomized mechanism for an-
swering queries. Given a buyer’s query Q = (q, v), the
mechanism defines a random function KQ(x), such that, for
any x, E (KQ(x)) = q(x) and Var (KQ(x)) ≤ v. The mar-
ket maker samples one value from this distribution and re-
turns it to the buyer in exchange for payment π(Q). We
abbreviate KQ with K when Q is clear from the context.

Definition 6. We say that a randomized algorithm K(x)
answers the query Q = (q, v) on the database x if its ex-
pectation is q(x) and its variance is less than or equal to
v.

For now, we do not impose any restrictions on the type
of perturbation used in answering the query. The contract
between the buyer and the market maker refers only to the
variance: the buyer pays for a certain variance, and the
market maker must answer with at most that variance. The
inherent assumption is that the buyer only cares about the
variance and is indifferent to other properties of the pertur-
bation. However, the choice of noise also affects the privacy
loss, which further affects the micro-payments: for that rea-
son, later in the paper (Sect. 4) we will restrict the pertur-
bation to consists of a Laplacian noise.

We assume that the market maker is stateless: he does
not keep a log of previous users, their queries, or of released
answers. As a consequence, each query is answered using an
independent random variable. If the same buyer issues the
same query repeatedly, the market maker answers using in-
dependent samples from the random variable K. Of course,
the buyer would have to pay for each query separately.

3.2 Answerability and Determinacy
Before investigating arbitrage we establish the key con-

cept of query answerability. This notion is well studied for
deterministic queries and views [16, 25], but, in our setting,
the queries are random variables, and it requires a precise
definition. Our definition below directly extends the tradi-
tional definition from deterministic to randomized queries.

Definition 7 (Answerability). A query Q is answer-
able from a multi-set of queries S = {Q1, . . . ,Qk} if there
exists a function f : Rk → R such that, for any mecha-
nisms K1, . . ., Kk, that answer the queries Q1, . . . ,Qk, the
composite mechanism f(K1, . . . ,Kk) answers the query Q.

We say that Q is linearly answerable from Q1,. . . ,Qk if
the function f is linear.

For a simple example, consider queries Q1 = (q1, v1) and
Q2 = (q2, v2) and mechanismsK1 andK2 that answer them.
The query Q3 = ((q1+q2)/2, (v1+v2)/4) is answerable from
Q1 and Q2 because we can simply sum and scale the answers
returned by the two mechanisms, and E ((K1 +K2)/2) =
(E (K1) +E (K2))/2, and Var ((K1 +K2)/2) = (Var (K1) +
Var (K2))/4. Since the function is linear, we say that the
query is linearly answerable.

How do we check if a query can be answered from a given
set of queries? In this paper we give a partial answer, by
characterizing when a query is linearly answerable.

Definition 8 (Determinacy). The determinacy rela-
tion is a relation between a query Q and a multi-set of
queries S = {Q1, . . . ,Qk}, denoted S → Q, and defined
by the following rules:



Summation
{(q1, v1), . . . , (qk, vk)} → (q1 + . . .+qk, v1 + . . .+vk);

Scalar multiplication ∀c ∈ R, (q, v)→ (cq, c2v);

Relaxation (q, v)→ (q, v′), where v ≤ v′,

Transitivity If S1→Q1, . . . ,S1→Qk and {Q1, . . . ,Qk} →
Q, then

⋃k
i=1 Sk → Q.

The following proposition gives a characterization of linear
answerability:

Proposition 9. Let S = {(q1, v1), . . . , (qm, vm)} be a
multi-set of queries, and Q = (q, v) be a query. Then the
following conditions are equivalent.

1. Q is linearly answerable from S.

2. S→ Q.

3. There exists c1, . . . , cm such that c1q1+. . .+cmqm = q
and c21v1 + . . .+ c2mvm ≤ v.

Proof. (1 ⇔ 3): Follows from the definition of linear
answerability.
(2 ⇒ 3): It is clear that in the rules of the determinacy
relation, summation, scalar multiplication and relaxation
are special cases of 3. For the transitivity rule, for each
i = 1, . . . , k, let fi be a linear function such that fi(Si) = qi
with variance no more than vi. Let f be a linear function
such that f(q1, . . . ,qk) = q with variance no more than
v. Then f0 = f(f1(S1), . . . , fk(Sk)) is a linear function of⋃k
i=1 Sk and the variance introduced is no more than v.

(3⇒ 2): Since (qi, vi)→ (ciqi, c
2
i vi), {(c1q1, c

2
1v1), . . . ,

(cmqm, c
2
mvm)} → (c1q1 + . . .+ cmqm, c

2
1v1 + . . .+ c2mvm) =

(q, c21v1 + . . .+ c2mvm) and (q, c21v1 + . . .+ c2mvm)→ (q, v),
we obtain S→ Q.

Thus, determinacy fully characterizes linear answerabil-
ity. But it cannot characterize general answerability. Recall
that we do not specify a noise distribution in the defini-
tion of a query answering mechanism. If the query answer-
ing mechanism does not use Gaussian noise, then non-linear
composition functions may play an important role in query
answering. This follows from the existence of an unbiased
non-linear estimator whose variance is smaller than linear
estimators [18] when the noise distribution is not Gaussian.

In this paper we restrict our discussion to linear answer-
ability; in other words, we assume that the buyer will at-
tempt to derive new answers from existing queries only by
computing linear combinations. By Prop. 9, we will use the
determinacy relation S→ Q instead of linear answerability.

Deciding determinacy, S→ Q, can be done in polynomial
time using a quadratic program. The program first deter-
mines whether q can be represented as a linear combination
of queries in S. If the answer is yes, the quadratic program
further checks whether there is a linear combination such
that the variance of answering q with variance at most v.

Proposition 10. Verifying whether a set S of m queries
determines a query Q can be done in PTIME(m,n).

Proof. Given a set S = {(q1, v1), . . . , (qm, vm)} and a
query (q, v), the following quadratic program outputs the

minimum possible variance to answer q using linear combi-
nations of queries in S.

Given: q,q1, . . . ,qm, v1, . . . , vm,

Minimize: c21v1 + . . .+ c2mvm,

Subject to: c1q1 + . . .+ cmqm = q.

Once the quadratic program is solved, one can compare
c21v1 + . . . + c2mvm with v. According to the Prop. 9 S →
(q, v) if and only if c21v1+. . .+c2mvm ≤ v. Since the quadratic
program above has m variables and the constraints are a lin-
ear equation on n-dimensional vectors, it can be solved in
PTIME(m,n) [4]. Thus the verification process can be done
in PTIME(m,n) as well.

3.3 Arbitrage-free Price Functions: Definition
Arbitrage is possible when the answer to a query Q can

be obtained more cheaply than the advertised price π(Q)
from an alternative set of priced queries. When arbitrage
is possible it complicates the interface between the buyer
and market maker: the buyer may need to reason carefully
about his queries to achieve the lowest price, while at the
same time the market maker may not achieve the revenue
intended by some of his advertised prices.

Definition 11 (Arbitrage-free). A price function
π(Q) is arbitrage-free if ∀m ≥ 1, {Q1, . . . ,Qm} → Q im-
plies:

π(Q) ≤
m∑
i=1

π(Qi).

Example 12. Consider a query (q, v) offered for price
π(q, v). A buyer who wishes to improve the accuracy of
the query may ask the same query n times, (q, v), (q, v),
. . ., (q, v), at a total cost of n · π(q, v). The buyer then
computes the average of the query answers to get an es-
timated answer with a much lower variance, namely v/n.
The price function must ensure that the total payment col-
lected from the buyer covers the cost of this lower variance,
in other words n · π(q, v) ≥ π(q, v/n). If π is arbitrage free,
then it is easy to check that this condition holds. Indeed,
{(q, v), . . . , (q, v)} → (nq, nv) → (q, v/n), and arbitrage-
freeness implies π(q, v/n) ≤ π(q, v) + . . . + π(q, v) = n ·
π(q, v).

We prove that any arbitrage-free pricing function satisfies
the following simple properties:

Proposition 13. Let π be an arbitrage-free pricing func-
tion. Then:

(1) The zero query is free: π(0, v) = 0.

(2) Higher variance is cheaper: v ≤ v′ implies π(q, v) ≥
π(q, v′).

(3) The zero-variance query is the most expensive4: π(q, 0)≥
π(q, v) for all v ≥ 0.

(4) Infinite noise is free: if π is a continuous function, then
π(q,∞) = 0.

4It is possible that π(q, 0) =∞.



Proof. For (1), we have ∅ → (0, 0) by the first rule
of Def. 8 (taking k = 0, i.e. S = ∅) and (0, 0) → (0, v)
by the third rule; hence π(0, v) = 0. (2) follows from
(q, v) → (q, v′) when v ≤ v′. (3) follows immediately,
since all variances are v ≥ 0. For (4), we use the second
rule to derive (1/c · q, v) → (q, c2 · v), hence π(q,∞) =
limc→∞ π(q, c2 · v) ≤ limc→∞ π(1/c ·q, v) = π(0, v) = 0.

Arbitrage-free price functions have been studied before
[19, 22], but only in the context of deterministic (i.e. unper-
turbed) query answers. Our definition extends those in [19,
22] to queries with perturbed answers.

3.4 Arbitrage-free Price Functions: Synthesis
Next we address the question of how to design arbitrage-

free pricing functions. Obviously, the trivial pricing func-
tion π(Q) = 0, for all Q, under which every query is free,
is arbitrage-free, but we want to design non-trivial pric-
ing functions. For example, it would be a mistake for the
market-maker to charge a constant price c > 0 for each
query, i.e. π(Q) = c for all Q, because such a pricing func-
tion leads to arbitrage (this follows from Prop. 13).

We start by analyzing how an arbitrage-free price function
π(q, v) depends on the variance v. By (2) of Prop. 13 we
know that it is monotonically decreasing in v, and by (4) it
cannot be independent of v (unless π is trivial). The next
proposition shows that it cannot decrease faster than 1/v:

Proposition 14. For any arbitrage-free price function π
and any linear query q, π(q, v) = Ω(1/v).

Proof. Suppose the contrary: there exists a linear query
q and a sequence {vi}∞i=1 such that limi→∞ vi = +∞ and
limi→∞ viπ(q, vi) = 0. Select i0 such that vi0 > 1 and
vi0π(q, vi0) < π(q, 1)/2. Then, we can answer π(q, 1) by
asking the query π(q, vi0) at most dvi0e times and comput-
ing the average. For these dvi0e queries we pay:

dvi0eπ(q, vi0) ≤ (vi0 + 1)π(q, vi0) < 2vi0π(q, vi0) < π(q, 1),

which implies that we have arbitrage, a contradiction.

Our next step is to understand the dependency on q, and
for that we will assume that π is inverse proportional to
v, in other words that it decreases at a rate 1/v, which
is the fastest rate allowed by the previous proposition. Set
π(q, v) = f2(q)/v, for some positive function f that depends
only on q. We prove that π is arbitrage-free iff f is a semi-
norm. Recall that a semi-norm is a function f : Rn → R
that satisfies the following properties5:

• For any c ∈ R and any q ∈ Rn, f(cq) = |c|f(q).

• For any q1, q2 ∈ Rn, f(q1 + q2) ≤ f(q1) + f(q2).

We prove:

Theorem 15. Let π(q, v) be a price function s.t. π(q, v) =
f2(q)/v for some function f .6 Then π(q, v) is arbitrage-free
iff f(q) is a semi-norm.

5Taking c = 0 in the first property implies f(0) = 0; if the
converse also holds, i.e. f(q) = 0 implies q = 0, then f
is called a norm. Also, recall that any semi-norm satisfies
f(q) ≥ 0, by the triangle inequality.
6In other words, f(q) =

√
π(q, v)v is independent of v.

Proof. (⇒) : Assuming π is arbitrage-free, we prove that
f is a semi-norm. For c 6= 0, by the second rule of Def. 8,
we have both:

(q, v)→(cq, c2v)

(cq, c2v)→(
1

c
× cq, (1

c
)2 × c2v)→ (q, v)

Therefore both π(q, v) ≤ π(cq, c2v) and π(q, v) ≥ π(cq, c2v)
hold, thus π(q, v) = π(cq, c2v). This implies that, if c 6= 0,

f(cq) =
√
π(cq, c2v)c2v = |c|

√
π(q, v)v = |c|f(q).

If c = 0, we also have f(cq) =
√
π(cq, c2v)c2v = 0 =

|c|f(q).
Next we prove that f(q1 + q2) ≤ f(q1) + f(q2). Set

the variances v1 = f(q1) and v2 = f(q2); then we have
f(q1) = π(q1, v1) and f(q2) = π(q2, v2). By the first rule
in Def. 8 we have {(q1, v1), (q2, v2)} → (q1 + q2, v1 + v2),
and therefore:

f2(q1 + q2)

f(q1) + f(q2)
=π(q1 + q2, v1 + v2)

≤π(q1, v1) + π(q2, v2) = f(q1) + f(q2)

which proves the claim.
(⇐) : Suppose π(q, v) = f2(q)/v and f(q) is a semi-norm.

According to Prop. 9, {(q1, v1), . . . , (qm, vm)}→(q, v) if and
only if there exists c1, . . . , cm such that c1q1+. . .+cmqm = q
and c21v1 + . . .+ c2mvm ≤ v. Then,

m∑
i=1

π(qi, vi) =

m∑
i=1

f2(qi)

vi
=

(
∑m
i=1

f2(qi)
vi

)(
∑m
i=1 c

2
i vi)∑m

i=1 c
2
i vi

≥
(
∑m
i=1 |ci|f(qi))

2∑m
i=1 c

2
i vi

=
(
∑m
i=1 f(ciqi))

2∑m
i=1 c

2
i vi

≥ f(q)2

v
= π(q, v),

where the first inequality follows from the Cauchy-Schwarz
inequality and the second comes from the sub-additivity of
the semi-norm.

As an immediate application of the theorem, let us in-
stantiate f to be one of the norms L2, L∞, Lp, or a weighted
L2 norm. This implies that the following four functions are
arbitrage-free:

π(q, v) =||q||22/v =
∑
i

q2
i /v (1)

π(q, v) =||q||2∞/v = max
i
q2
i /v (2)

π(q, v) =||q||2p/v = (
∑
i

qpi )2/p/v p ≥ 1 (3)

π(q, v) =(
∑
i

wi · q2
i )/v w1, . . . , wn ≥ 0 (4)

However, these are not the only arbitrage-free pricing func-
tions: the proposition below gives us a general method for
synthesizing new arbitrage-free pricing functions from exist-
ing ones. Recall that a function f : (R̄+)k → R̄+ is called
subadditive if for any two vectors x,y ∈ (R̄+)k, f(x + y) ≤
f(x) + f(y); the function is called non-decreasing if x ≤ y
implies f(x) ≤ f(y).



Proposition 16. Let f : (R̄+)k → R̄+ be a subadditive,
non-decreasing function. For any arbitrage-free price func-
tions π1, . . . , πk, the function π(Q) = f(π1(Q), . . . , πk(Q))
is also arbitrage-free.

Proof. For any query Q, let π̄(Q) = (π1(Q), . . . , πk(Q)).
Assume {(q1, v1), . . . , (qm, vm)} → (q, v). We have:

π̄(Q) ≤
∑
i

π̄(Qi) because each πj is arbitrage-free

f(π̄(Q)) ≤f(
∑
i

π̄(Qi)) because f is non-decreasing

≤
∑
i

f(π̄(Qi)) because f is sub-additive

Prop. 16 allows us to synthesize new arbitrage-free price
function from existing arbitrage-free price functions. Below
we include some operations that satisfy the requirements
in Prop. 16.

Corollary 17. If π1, . . . , πk are arbitrage-free price func-
tions, then so are the following functions:

• Linear combination: c1π1 + . . .+ ckπk, c1, . . . , ck ≥ 0.

• Maximum: max(π1, . . . , πk);

• Cut-off: min(π1, c), where c ≥ 0;

• Power: πc1 where 0 < c ≤ 1;

• Logarithmic: log(π1 + 1);

• Geometric mean:
√
π1 · π2.

Proof. It is clear that all the functions above are mono-
tonically increasing. One can check directly that maximum
and cut-off functions are sub-additive. Sub-additivity for
the rest follows from the following:

Lemma 18. Let f : (R̄+)k → R̄+ be a non-decreasing
function s.t. f(0) = 0 and all second derivatives are contin-
uous. Then, if ∂2f/∂xi∂xj ≤ 0 for all i, j = 1, . . . , k, then
f is sub-additive.

Proof. Denote fi = ∂f/∂xi and fij = ∂2f/∂xi∂xj .
We apply twice the first-order Taylor approximation f(x)−
f(0) =

∑
i(∂f/∂xi)(ξ) · xi, once to g(y) = f(x + y)− f(y),

and the second time to h(x) =
∑
j(fj(x + ξ)− fj(ξ)) · yj :

f(x) + f(y)− f(x + y) = [f(x)− f(0)] + [f(x + y)− f(y)]

= g(0)− g(y) = −
∑
j

gj(ξ) · yj

= −
∑
j

(fj(x + ξ)− fj(ξ)) · yj = −
∑
ij

fij(η + ξ) · xi · yj ≥ 0

Example 19. For a simple illustration we will prove that
the pricing function π(q, v) = maxi |qi|/

√
v is arbitrage free.

Start from π1(q, v) = maxi q
2
i /v, which is arbitrage-free by

Eq. 2, then notice that π = (π1)1/2, hence π is arbitrage-free
by Corollary 17.

3.5 Selling the True Private Data
While under differential privacy perturbation is always

necessary, in data markets the data being sold is usually un-
perturbed. Perturbation is only a tool to reduce the price for
the buyer. Therefore, a reasonable pricing function π(q, v)
needs to give a finite price for a zero variance, and none of
our simple pricing functions in Eq. 1-Eq. 4 have this prop-
erty.

One can design arbitrage-free pricing functions that re-
turn a finite price for the unperturbed data by using any
bounded function with the properties required by Prop. 16.
For example, apply the cut-off function ( Corollary 17) to
any of the pricing functions in Eq. 1-Eq. 4. More sophisti-
cated functions are possible by using sigmoid curves, often
used as learning curves by the machine learning community.
Many of those curves are concave and monotonically increas-
ing over R+, which, by Lemma 18, are subadditive on R+

when f(0) = 0. Thus, we can apply functions of those learn-
ing curves that are centered at 0 to Prop. 16 so as to generate
smooth arbitrage-free price functions with finite maximum.
Other such functions are given by the following (the proof
in the full paper [21]):

Corollary 20. Given an arbitrage-free price function π,
each of the following functions is also arbitrage-free and
bounded: atan(π), tanh(π), π/

√
π2 + 1.

Example 21. Suppose we want to charge a price p for
the true, unperturbed result of a query q. Assume ||q||22 = n,
and let π1(q, v) = ||q||22/v = n/v be the pricing function in
Eq. 1. It follows that the function7

π(q, v) =
2p

Π
· atan(c · π1(q, v)) =

2p

Π
· atan(c

n

v
)

is arbitrage-free. Here c > 0 is a parameter. For exam-
ple, suppose the buyer cannot afford the unperturbed query
(v = 0), and settles instead for a variance v = Θ(n) (it
corresponds to a standard deviation

√
n, which is sufficient

for some applications); for concreteness, assume v = 5n.
Then π(q, v) = 2p

Π
· atan(c/5). To make this price afford-

able, we choose c� 1, in which case the price becomes π ≈
2·c·p/(5·Π) = 0.13·c·p. In Example 4 the price of the unper-
turbed query was p = $10, 000, and we wanted to charge $1
for the variance v = 5n = 5000: for that we can use the pric-
ing function π above, with c = 1/(0.13 ·p) = 7.85 ·10−4. We
can now answer the question in Example 4: the cost of the
query with variance v = 50 is π(q, v) = 2p

Π
·atan(100 ·c/5) =

$99.94.

4. PRIVACY LOSS
In this section we describe the second component of the

pricing framework in Fig. 1: the privacy loss εi. Recall that,
for each buyer’s query Q = (q, v), the market maker defines
a random function KQ, such that, for any database instance
x, the random variable KQ(x) has expectation q(x) and
variance less than or equal to v. By answering the query
through this mechanism, the market maker leaks some in-
formation about each data item xi, and its owner expects
to be compensated appropriately. In this section we define

7We use Π for the constant pi to avoid confusion with the
pricing function π.



formally the privacy loss, and establish a few of its proper-
ties. In the next section we will relate the privacy loss to
the micro-payment that the owner expects.

Our definition of privacy loss is adapted from differential
privacy, which compares the output of a mechanism with
and without the contribution of the data item xi. For that,
we need to impose a bound on the possible values of xi.
We fix a bounded domain of values X ⊆ R, and assume
that each data item xi is in X. For example, in case of
binary data values X = {0, 1} (0 = owner does not have the
feature, 1 = she does have the feature), or in case of ages,
X = [0, 150], etc.

Given the database instance x, denote by x(i) the database
instance obtained by setting xi = 0 and leaving all other val-
ues unchanged. That is, x(i) represents the database with-
out the item i.

Definition 22. Let K be any mechanism (meaning: for
any database instance x, K(x) is a random variable). The
privacy loss to user i, in notation εi(K) ∈ R̄+ is defined as:

εi(K) =supS,x

∣∣∣∣log
Pr (K(x) ∈ S)

Pr (K(x(i)) ∈ S)

∣∣∣∣
where x ranges over Xn and S ranges over measurable sets
of R.

We explain the connection to differential privacy in the
next section. For now, we derive some simple properties of
the privacy loss function. The following are well known [11]:

Proposition 23. (1) Suppose K is a deterministic mech-
anism. Then εi(K) = 0 when K is independent of the input
xi, and εi(K) =∞ otherwise. (2) Let K1, . . . ,Km, be mech-
anisms with privacy losses ε1, . . . , εm. Let K = c1 ·K1 +. . .+
cm ·Km be a new mechanism computed using a linear combi-
nation. Then its privacy loss is ε(K) = |c1|·ε1+. . .+|cm|·εm.

In this paper we restrict the mechanism to be data-
independent.

Definition 24. A query-answering mechanism K is called
data independent if, for any query Q = (q, v), KQ(x) =
q(x) + ρ(v), where ρ(v) is a random function.

In other words, a data-independent mechanism for an-
swering Q = (q, v) will first compute the true query answer
q(x), then add a noise ρ(v) that depends only on the buyer’s
specified variance, and is independent on the database in-
stance. We prove:

Proposition 25. Let K be any data-independent mecha-
nism. If the query Q = (q, v) has the ith component equal
to zero, qi = 0, then εi(KQ) = 0. In other words, users who
do not contribute to a query’s answer suffer no privacy loss.

Proof. The two random variables KQ(x) and KQ(x(i))

are equal, because KQ(x) = q(x) + ρ(v) = q(x(i)) + ρ(v) =

KQ(x(i)), which proves the claim.

In contrast, a data-dependent mechanism might compute
the noise as a function of all data items x, and may result
in a privacy loss for the data item xi even when qi = 0. For
that reason we only consider data-independent mechanisms
in this paper.

The privacy loss given by Def. 22 is difficult to compute
in general. Instead, we will follow the techniques developed
for differential privacy, and give an upper bound based on
query sensitivity. Let γ = supx∈X |x|.

Definition 26 (Personalized Sensitivity).The sen-
sitivity si of a query q at data item xi is defined as

si = supx∈Xn |q(x)− q(x(i))| = γ · |qi|.

We let Lap(b) denote the one-dimensional Laplacian dis-
tribution centered at 0 with scale b and the corresponding

probability density function g(x) = 1
2·be

− |x|
b .

Definition 27. The Laplacian Mechanism, denoted L,
is the data-independent mechanism defined as follows: for a
given query Q = (q, v) and database instance x, the mech-
anism returns LQ(x) = q(x) + ρ, where ρ is noise with

distribution Lap(b) and b =
√
v/2.

The following is known from the work on differential pri-
vacy [11].

Proposition 28. Let L be the Laplacian mechanism and
Q = (q, v) be a query. Then, the privacy loss of individual
i is bounded by:

εi(LQ) ≤ γ√
v/2
|qi|.

5. MICRO-PAYMENTS TO DATA OWNERS
In this section we describe the third component of the

pricing framework of Fig. 1: the micro-payments µi. By
answering a buyer’s query Q, using some mechanism KQ,
the market maker leaks some of the private data of the data
owners; he must compensate each data owner with a micro-
payment µi(Q), for each data item xi that they own. The
micro-payment close the loop in Fig. 1: they must be cov-
ered by the buyer’s payment π, and must also be a function
of the degree of the privacy loss εi. We make these connec-
tions precise in the next section. Here, we state two simple
properties that we require the micro-payments to satisfy.

Definition 29. Let µi be a micro-payment function. We
define the following two properties:

Fairness For each i, if qi = 0, then µi(q, v) = 0.

Micro arbitrage-free For each i, µi(Q) is an arbitrage-
free pricing function.

Fairness is self-explanatory: data owners whose data is not
queried should not expect payment. Arbitrage-freeness is a
promise that the owner’s loss of privacy will be compensated,
and that there is no way for the buyer to circumvent the
due micro-payment by asking other queries and combining
their answers. This is similar to, but distinct from arbitrage-
freeness of π, and must be verified for each user.

6. BALANCED PRICING FRAMEWORKS
Finally, we discuss the interaction between the three com-

ponents in Fig. 1, the query price π, the privacy loss εi, and
the micro-payments µi, and define formally when a pricing
framework is balanced. Then, we give a general procedure
for designing a balanced pricing framework.



6.1 Balanced Pricing Frameworks: Definition
The contract between the data owner of item xi and the

market-maker consists of a non-decreasing function Wi :
R̄+ → R̄+, s.t. Wi(0) = 0. This function represents a
guarantee to the data owner that she will be compensated
with at least µi ≥ Wi(εi) in the event of a privacy loss εi.
We denote W = (W1, . . . ,Wn) the set of contracts between
the market-maker and all data owners.

The connection between the micro-payments µi, the query
price π and the privacy loss εi is captured by the following
definition.

Definition 30. We say that the micro-payment functions
µi, i = 1, . . . , n are cost-recovering for a pricing function π
if, for any query Q, π(Q) ≥

∑
i µi(Q).

Fix a query answering mechanism K. We say that a
micro-payment function µi is compensating for a contract
function Wi, if for any query Q, µi(Q) ≥Wi(εi(KQ)).

The market maker will insist that the micro-payment func-
tions is cost-recovering: otherwise, he will not be able to pay
the data owners from the buyer’s payment. A data owner
will insist that the micro-payment function is compensat-
ing: this enforces the contract between her and the market-
maker, guaranteeing that she will be compensated at least
Wi(εi), in the event of a privacy loss εi.

Fix a query answering mechanism K. We denote a pricing
framework (π, ε, µ,W), where π(Q), µi(Q) are the buyer’s
price and the micro-payments, ε = (ε1, . . . , εn) where εi(KQ)
is the privacy loss corresponding to the mechanism K, and
Wi(ε) is the contract with the data owner i.

Definition 31. A pricing framework (π, ε, µ,W) is bal-
anced if (1) π is arbitrage-free and (2) the micro-payment
functions µ are fair, micro arbitrage-free, cost-recovering for
π, and compensating for W.

We explain how the contract between the data owner and
the market maker differs from that in privacy-preserving
mechanisms. Let ε > 0 be a small constant. A mecha-
nism K is called differentially private [10] if, for any user i
and for any measurable set S, and any database instance x:

Pr (K(x) ∈ S) ≤ eε × Pr
(
K(x(i)) ∈ S

)
In differential privacy, the basic contract between the mech-
anism and the data owner is the promise to every user that
her privacy loss is no larger than ε. In our framework for
pricing private data we turn this contract around. Now, pri-
vacy is lost, and Def. 22 quantifies this loss. The contract
is that the users are compensated according to their privacy
loss. At an extreme, if the mechanism is ε-differentially pri-
vate for a tiny ε, then each user will receive only a tiny
micro-payment Wi(ε); as her privacy loss increases, she will
be compensated more.

The micro-payments circumvent a fundamental limitation
of differentially-private mechanisms. In differential privacy,
the buyer has a fixed budget ε for all queries that he may
ever ask. In order to issue N queries, he needs to divide the
privacy budget among these queries, and, as a result, each
query will be perturbed with a higher noise; after issuing
these N queries, he can no longer query the database, be-
cause otherwise the contract with the data owner would be
breached. In our pricing framework there is no such limi-
tation, because the buyer simply pays for each query. The

budget is now a real dollar budget, and the buyer can ask as
many query as he wants, with as high accuracy as he wants,
as long as he has money to pay for them.

6.2 Balanced Pricing Frameworks: Synthesis
Call (ε, µ,W) semi-balanced if all micro-payment func-

tions are fair, micro-arbitrage free, and compensating w.r.t.
K; that is, we leave out the pricing function π and the cost-
recovering requirement. The first step is to design a semi-
balanced set of micro-payment functions.

Proposition 32. Let L be the Laplacian Mechanism, and
let the contract functions be linear, Wi(εi) = ci · εi, where
ci > 0 is a fixed constant, for i = 1, . . . , n. Define the micro-
payment functions µi(Q) = γ·ci√

v/2
|qi|, for i = 1, . . . , n. Then

(ε, µ,W) is semi-balanced.

Proof. Each µi is fair, because qi = 0 implies µi = 0.
By setting wi = 2γ2 · c2i and wj = 0 for j 6= i in Eq. 4, the

function πi(Q) =
2γ2·c2i ·q

2
i

v
is arbitrage free. By Corollary 17,

the function µi(Q) = (πi(Q))1/2 is also arbitrage-free, which
means that µi is micro-arbitrage free. Finally, by Prop. 28,
we have Wi(εi(LQ)) = ci · εi(LQ) ≤ ci

γ√
v/2
|qi| = µi(Q),

proving that µi is compensating.

Next, we show how to derive new semi-balanced micro-
payments from existing ones.

Proposition 33. Suppose that (ε, µj ,Wj) is semi-
balanced, for j = 1, . . . , k (where µj = (µj1, . . . , µ

j
n), and

Wj = (W j
1 , . . . ,W

j
n), for j = 1, . . . , k), and let fi : (R̄+)k →

R̄+, i = 1, . . . , n, be n non-decreasing, sub-additive func-
tions s.t. fi(0) = 0, for all i = 1, . . . , n. Define µi =
fi(µ

1
i , . . . , µ

k
i ), and Wi = fi(W

1
i , . . . ,W

k
i ), for each i =

1, . . . , n. Then, (ε, µ,W) is also semi-balanced, where µ =
(µ1, . . . , µn) and W = (W1, . . . ,Wn).

Proof. First, we prove fairness for µi: if qi = 0, then
µ1
i (Q) = . . . = µki (Q) = 0 because, by assumption, each µji

is fair. Hence, fi(µ
1
i (Q), . . . , µki (Q)) = 0 because fi(0) =

0. Next, by Prop. 16, each µi is arbitrage-free. Finally,
each µi is compensating for Wi, because the functions fi are
non-decreasing, and each µji is compensating for W j

i , hence
fi(µ

1
i (Q), . . . , µki (Q) ≥ fi(W 1

i (εi(KQ)), . . . ,W k
i (εi(KQ))) =

Wi(ε(KQ)).

We can use this proposition to design micro-payment func-
tions that allow the true private data of an individual to be
disclosed, as in Sect. 3.5. We illustrate this with an example.

Example 34. Consider Example 3, where several voters
give a rating in {0, 1, 2, 3, 4, 5} to each of two candidates
A and B. Thus, x1, x2 represent the ratings of voter 1,
x3, x4 of voter 2, etc. Suppose voter 1 values her privacy
highly, and would never accept a total disclosure: we choose
linear contract functions W1(ε) = W2(ε) = c · ε for her
two votes, and define the micro-payments as in Prop. 32,
µi(Q) = 6·c√

v/2
|qi| for i = 1, 2. On the other hand, voter 2

is less concerned about her privacy, and is willing to sell the
true values of her votes, at some high price d > 0: then
we choose bounded contract functions W3(ε) = W4(ε) =
2 · d/Π · atan(ε) (which is sub-additive, by Corollary 20),
and define the micro-payments accordingly, µi(Q) = 2 ·d/Π ·



atan( 6√
v/2
|qi|), for i = 3, 4. By Prop. 33 this function is

also compensating and micro arbitrage-free, and, moreover,
it is bounded by µi ≤ d, where the upper bound d is reached
by the total-disclosure query (v = 0).

Finally, we choose a payment function such as to ensure
that the micro-payments are cost-recovering.

Proposition 35. (1) Suppose that (ε, µ,W) is semi-
balanced, and define π(Q) =

∑
i µi(Q). Then, (π, ε, µ,W)

is balanced.
(2) Suppose that (π, ε, µ,W) is balanced and π′ ≥ π is any

arbitrage-free pricing function. Then (π′, ε, µ,W) is also
balanced.

Proof. Claim (1) follows from Corollary 17 (the sum of
arbitrage-free functions is also arbitrage-free), while claim
(2) is straighforward.

To summarize, the synthesis procedure for a pricing frame-
work proceeds as follows. Start with the simple micro-
payment functions given by Prop. 32, which ensure linear
compensation for each user. Next, modify both the micro-
payment and the contract functions using Prop. 33, as de-
sired, in order to adjust to the preferences of individual
users, for example, in order to allow a user to set a price
for her true data. Finally, define the query price to be the
sum of all micropayments (Prop. 35), then increase this price
freely, by using any method in Corollary 17.

7. DISCUSSION
In this section, we discuss two problems in pricing pri-

vate data, and show how they affect our pricing framework.
The first is how to incentivize data owners to participate in
the database and truthfully report their privacy valuations,
which is reflected in her contract function Wi: this prop-
erty is called truthfulness in mechanism design. The second
concerns protection of the privacy valuations itself, meaning
that the contract Wi may also leak information to the buyer.

7.1 Truthfulness
How can we incentivize a user to participate, and to reveal

her true assessment for the privacy loss of a data item xi? All
things being equal, the data owner will quote an impossibly
high price, for even a tiny loss of her privacy. In other words,
she would choose a contract function W (ε) that is as close
to ∞ as possible.

Incentivizing users to report their true valuation is a goal
of mechanism design. This has been studied for private data
only in the restricted case of a single query, and has been
shown to be a difficult task. Ghosh and Roth [15] show that
if the privacy valuations are sensitive, then it is impossible
to design truthful and individually rational direct revela-
tion mechanisms. Fleischer et al circumvent this impossibil-
ity result by assuming that the privacy valuation is drawn
from known probability distributions [12]. Also, according
to some experimental studies [1], the owner’s valuation is
often complicated and difficult for the owner to articulate
and different people may have quite different valuations. In-
deed, without a context or reference, it is hard for people to
understand the valuation of their private data. The design
of a truthful and private mechanism for private data, even
for a single query, remains an active research topic.

We propose a simpler approach, adopted directly from
that introduced by Aperjis and Huberman [2]. Instead of
asking for their valuations, users are given a fixed number
of options. For example, the users may be offered a choice
between two contract functions, shown in Fig. 2, which we
call Options A and B (following [2]):

Option A For modest privacy losses, there is a small micro-
payment, but for significant privacy losses there is a
significant micro-payment.

Option B There is a non-zero micro-payment for even the
smallest privacy losses, but even the maximal payment
is much lower than that of Option A.

While these options were initially designed for a sampling-
based query answering mechanism [2], they also work for
our perturbation-based mechanism. Risk-tolerant users will
typically choose Option A, while risk-averse users will choose
Option B. Clearly, a good user interface will offer more than
two options; designing a set of options that users can easily
understand is a difficult task, which we leave to future work.
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Figure 2: Two options for the contract function W .
Option A makes a small micro-payment for small
privacy losses and a large payment for large privacy
losses. Option B pays even for small privacy losses,
but for large privacy losses pays less than A. Risk-
neutral users would typically choose Option A, while
risk-averse users choose Option B.

7.2 Private Valuations
When users have sufficient freedom to choose their pri-

vacy valuation (i.e. their contract function Wi), then we
may face another difficult problem: the privacy valuation
may be strongly correlated with the data xi itself. In that
case, even releasing the price of a query may lead to privacy
loss, a factor not considered in our framework. For example,
consider a database of HIV status: xi = 1 means that data
owner i has HIV, xi = 0 means that she does not. Typically,
users who have HIV will set a much higher value on privacy
of their xi than those who don’t have HIV. For example,
users without HIV may ask for $1 for xi, while users who do
have HIV may ask for $1000. Then, a savvy buyer may sim-
ply ask for the price of a query, without actually purchasing
the query, and determine with some reasonable confidence
whether a user has HIV. Hiding the valuation itself is a dif-
ficult problem, which is still being actively researched in
mechanism design [12].



If the price itself is private, then inquires about prices
need to be perturbed in the same fashion as queries on the
data. Thus, the price π(Q) and the micro-payments µi(Q)
need to be random variables. Queries are answered using
a mechanism K, while prices are computed using a (possi-
bly different) mechanism K′. We show, briefly, that, if the
contract functions are linear Wi = ci · εi, then it is possible
to extend our pricing framework to ensure that data owners
are compensated both for the privacy loss from the query
and the privacy loss from the price function. The proper-
ties of arbitrage-freeness, cost-recovery, and compensation
are now defined in terms of expected values. For exam-
ple, a randomized price function π(Q) is arbitrage-free, if
{Q1, . . . ,Qm} → Q implies E (π(Q)) ≤

∑m
i=1 E (π(Qi)).

Now the privacy loss for data item xi includes two parts.
One part is due to the release of the query answer, and the
other part is due to the release of the price. Their values
are εi(K) and εi(K′) respectively. A micropayment is com-
pensating if E (µi(Q)) ≥ ci · (εi(K) + εi(K′)).

As for the data items, we assume that the constants ci
used in the contract function are drawn from a bounded do-
main Y ⊆ R, and denote δ = supc∈Y |c| (in analogy to γ
defined in Sect. 4). Assume that both K and K′ are Lapla-

cian mechanisms. Given a query Q = (q, v) , set b =
√
v/2,

choose some8 b′ > δ, tunable by the market maker. K is the
mechanism that, on an input x, returns q(x) +ρ, where ρ is
a noise with distribution Lap(b). K′ is the mechanism that,

on an input c, returns a noisy price γb′

b·(b′−δ)
∑
i ci|qi| + ρ′,

where ρ′ is a noise with distribution Lap(b′). We denote the

exact price, γ·b′
b·(b′−δ)

∑
i ci · |qi|, as E (K′(c)). The sensitivity

of the mechanism K is si(K) = γ · |qi| (Def. 26). If we define

si(K′) = γ·b′·|qi|δ
b·(b′−δ) , then we prove (in the full paper [21]):

εi(K) ≤ si(K)

b
, εi(K′) ≤

si(K′)
b′

.

Proposition 36. Let K,K′ be Laplacian mechanisms (as
described above) and Q = (q, v) be a query. Set (as above),

b =
√
v/2 and b′ > δ. Define:

π(Q) =K′(c) = E
(
K′(c)

)
+ ρ′

µi(Q) =(
si(K)

b
+
si(K′)
b′

) · ci +
π(Q)−E (K′(c))

n
,

∀i = 1, . . . , n

Then, (π, µ, ε,W) is a balanced mechanism.

8. RELATED WORK
Recent investigation of the tradeoff between privacy and

utility in statistical databases was initiated by Dinur and
Nissim [9], and culminated in [11], where Dwork, McSh-
erry, Nissim and Smith introduced differential privacy and
the Laplace mechanism. The goal of this line of research is
to reveal accurate statistics while preserving the privacy of
the individuals. There have been two (somewhat artificially
divided) models involved: the non-interactive model, and
the interactive model. In this paper, we use an interactive
model, in which queries arrive on-line (one at a time) and
the market maker has to charge for them appropriately and

8When b′ ≤ δ, the expectation of the price π is infinite.

answer them. There is a large and growing literature on dif-
ferential privacy; we refer the readers to the recent survey
by Dwork [10]. There is privacy loss in releasing statistics
in a differentially private sense (quantified in terms of the
privacy parameter/budget ε). However, this line of research
does not consider compensating the privacy loss.

Ghosh and Roth [15] initiated a study of how to incentivize
individuals to contribute their private data and to truthfully
report their privacy valuation using tools of mechanism de-
sign. They consider the same problem as we do, pricing
private data, but from a different perspective: there is only
one query, and the individuals’ valuations of their data are
private. The goal is to design a truthful mechanism for
disclosing the valuation. In contrast, we assume that the
individuals’ valuations are public, and focus instead on the
issues arising from pricing multiple queries consistently. An-
other key difference is that we require not only accuracy but
also unbiasedness for the noisy answer to a certain query,
while in [15] answers are not unbiased. There have been
some follow-ups to [15], e.g. [12, 23, 31, 7]; a good survey is
[30]. There are some other papers that consider privacy and
utility in the context of mechanism design, e.g. [26, 6].

Economic perspectives on the regulation and control of
private information have a long history [33, 27]. A national
information market, where personal information could be
bought and sold, was proposed by Laudon [20]. Garfinkel et
al. [14] proposed a methodology for releasing approximate
answers to statistical queries and compensating contributing
individuals as the basis for a market for private data. That
methodology does not use a rigorous measure of privacy loss
or protection and does not address the problem of arbitrage.

Recently Balazinska, Howe and Suciu [3] initiated a study
of data markets in the cloud (for general-purpose data, not
specifically private data). Subsequently, [19] proposed a
data pricing method which first sets explicit price points on
a set of views and then computes the implied price for any
query. However, they did not consider the potential privacy
risks of their method. The query determinacy used in [19]
is instance-based, and as a result, the adversary could (in
the worst case) learn the entire database solely by asking
the prices of queries (for free). Li and Miklau study data
pricing for linear aggregation queries [22] using a notion of
instance-independent query determinacy. This avoids some
privacy risks, but it is still sometimes possible to infer query
answers for which the buyer has not paid. Both of the above
works consider a model in which unperturbed query answers
are exchanged for payment. In this paper we consider noisy
query answers and use an instance-independent notion of
query determinacy, which allows us to formally model pri-
vate disclosures and assign prices accordingly.

Aperjis and Huberman [2] describe a simple strategy to
collect private data from individuals and compensate them,
based on an assumption in sociology that some people are
risk averse. By doing so, buyers could compensate individ-
uals with relatively less money. More specifically, a buyer
may access the private data of an individual with probabil-
ity 0.2, and offer her two choices: if the data is accessed,
then she would be paid $10, otherwise she would receive
nothing; she would receive $1 regardless whether her data
would be used or not. Then a risk-averse person may choose
the second choice, and consequently the buyer can save $1
in expectation. In their paper, the private data of an in-
dividual is either entirely exposed, or completely unused.



In our framework, there are different levels of privacy, the
privacy loss is carefully quantified and compensated, and
thus the data is better protected. Finally, Riederer et al.
[29] propose auction methods to sell private data to aggre-
gators, but an owner’s data is either completely hidden or
totally disclosed and the price of data is ultimately deter-
mined by buyers without consideration of owners’ personal
privacy valuations.

9. CONCLUSIONS
We have introduced a framework for selling private data.

Buyers can purchase any linear query, with any amount of
perturbation, and need to pay accordingly. Data owners,
in turn, are compensated according to the privacy loss they
incur for each query. In our framework buyers are allowed
to ask an arbitrary number of queries, and we have designed
techniques for ensuring that the prices are arbitrage-free,
meaning that buyers are guaranteed to pay for any infor-
mation they may further extract from the queries. Our
pricing framework is balanced, in the sense that the buyer’s
price covers the micro-payments to the data owner, and each
micro-payment compensates the users according to their pri-
vacy loss.

An interesting open question is whether we can achieve
both truthfulness (as discussed in [15]) and arbitrage-freeness
(as discussed in the current paper) when pricing private
data.
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