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ABSTRACT
In the last decade we have witnessed a growing interest in process-
ing large data sets on large-scale distributed clusters. A big part of
the complex data analysis pipelines performed by these systems
consists of a sequence of relatively simple query operations, such
as joining two or more tables, or sorting. This tutorial discusses
several recent algorithmic developments for data processing in
such large distributed clusters. It uses as a model of computation
the Massively Parallel Computation (MPC) model, a simplification
of the BSP model, where the only cost is given by the amount of
communication and the number of communication rounds. Based
on the MPC model, we study and analyze several algorithms for
three core data processing tasks: multiway join queries, sorting
and matrix multiplication. We discuss the common algorithmic
techniques across all tasks, relate the algorithms to what is used
in practical systems, and finally present open problems for future
research.
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1 INTRODUCTION
In the last decade we have witnessed a huge and growing interest in
processing large data sets on large distributed clusters. This trend
began with the MapReduce framework [12], and has been widely
adopted by several other systems, including PigLatin [29], Hive [33],
Scope [10], Dremmel [28], Spark [38], and Myria [36] to name a
few. While the applications of such systems are diverse (e.g., ma-
chine learning and data analytics), most involve relatively standard
data processing tasks, such as identifying relevant data, cleaning,
filtering, sorting, joining, grouping, and extracting features [11, 15].
This has generated great interest in the study of algorithms for such
data processing tasks on large distributed clusters.

This tutorial is based on an upcoming survey paper we wrote for
the Foundations and Trends in Databases journal [25] and reviews
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recent results on efficient data processing on large distributed ar-
chitectures, primarily focusing on join processing and the relevant
classical results on parallel sorting and matrix multiplication. We
highlight the common algorithmic techniques that are used to per-
form these computations, as well as techniques to provide lower
bounds on the communication cost of algorithms. We identify the
existing or potential applications of these algorithmic techniques
by reviewing the actual algorithms used by systems in practice. For
each data processing task we review, we also discuss the important
open problems for future research.

Here is the outline of this tutorial proposal. Sections 2-5 give an
overview of the topics that we will cover, each corresponding to
one part of our tutorial. Each of these sections, except Section 2,
finishes with a discussion of important open problems.We conclude
in Section 6 with brief biographies of the authors.

2 MODELS OF PARALLEL COMPUTATION
The tutorial uses as model of computation the Massively Paral-
lel Computation Model [6], Fig. 1, which is a simplified variant of
Valiant’s Bulk Synchronous Parallel (BSP) model [34]. In this model
the data is distributed on several processors (servers), and compu-
tation proceeds in supersteps, where, in each superstep, the nodes
perform local computation followed by a global communication
(data reshuffle). We introduce MPC and discuss its parameters: the
number of processors p, the load per processor L, the number of
rounds r . We explain how the model captures speedup and scaleup,
which are widely used metrics in parallel databases [14]. Next, we
will discuss several classical models of parallel computation and
their relationship to MPC.

2.1 Circuits
One of the earliest models of parallel computation represents an al-
gorithm as a circuit. For any input of sizeN the computation is given
by a DAG, where each leaf represents one of the N inputs, and each
internal node represents some simple operation. The key parame-
ters of a circuit are the total number of nodes called workW , the
depth D, and the fan-in s of each node. We will briefly describe the
complexity classes NCk ,ACk , defined by family of Boolean circuits
with restrictions onW , D, and s . We then discuss the connection
between circuits and theMPCmodel. Circuits correspond naturally
to oblivious MPC algorithms, however non-oblivious MPC algo-
rithms are strictly more powerful than the corresponding circuit;
this is due to an observation made in [31].

2.2 The PRAMModel
While the circuit model is adequate for defining complexity classes,
and for proving lower bounds, the Parallel Random Access Machine
(PRAM) model is intended primarily for algorithm design. We will
introduce the PRAM model (a formal model corresponding to a
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shared-memory architecture), and discuss Brent’s theorem [8]. As
before, we explain the gap between the MPC model and the PRAM
model.

2.3 The BSP Model
To model shared-nothing architectures, Valiant introduced the Bulk
Synchronous Parallel (BSP) model [34]. A BSP algorithm runs in
supersteps, where each superstep consists of local computation
and communication, followed by a synchronization barrier. The
BSP model abstracts the communication in every superstep by
introducing the notion of the h-relation, which is defined as a com-
munication pattern where the maximum number of incoming or
outgoing messages per machine is h. Several refinements of BSP
were later considered in the literature, such as the EREW model,
the CREW model, and the Weak-CREW model. The MPC model
is a simplification, in that it ignores the internal computation time
and the network parameters.

2.4 MapReduce-Based Models
Following the introduction of MapReduce [12], several theoretical
models were introduced in the literature to capture computations in
this setting. We will briefly describe the following: the MapReduce
class (MRC) of algorithms by Karloff et al. [22], a variant of the
BSP model by Goodrich et al. [17], and the model developed by
Afrati et al. [1].

2.5 Connection to the External Memory Model
We conclude this part of the tutorial by discussing an interesting
connection between the MPC model and the External Memory
Model [35], by presenting the result in [24]: any MPC algorithm
can be converted naturally to an external memory algorithm.

3 CONJUNCTIVE QUERIES
In this part of the tutorial, we discuss algorithms for computing
multiway joins in a distributed cluster. Join processing is one of the
most critical and well-studied tasks in a data processing pipeline.
We start by presenting algorithms for the simplest case of a two-
way join, which serves as a warm-up scenario to introduce the main
techniques. Next, we focus on algorithms for multiway joins that
are restricted to a single communication round. Finally, we show
how the algorithms can be extended to multiple rounds.

3.1 Two-way Joins
In the first part, we illustrate how to compute the natural join of
two large relations,

R (A,B) Z S (B,C )

There exist two main algorithmic techniques for join processing:
hash-based and sort-based algorithms. We present the hash-based
algorithm here, and defer the sort-based algorithm for Section 4.

The parallel hash-join is the most common parallel join algorithm
in several parallel systems, and operates by distributing each tuple
from R,S by hashing on the value of the join attribute. An analysis
of the parallel hash-join tells us that, for input of size IN and p
processors, there is a particular threshold for data skew (defined as
the maximum frequency of a value in a relation), below which the

load is O (IN/p), but above which there is no optimal guarantee. To
deal with such skewed instances, we introduce an algorithm that
achieves the optimal load in a single round, by treating each one of
the skewed values separately.

3.2 Single-round Algorithms
We initiate the discussion of multiway join algorithms by consider-
ing algorithms that operate using a single communication round.
The core algorithmic tool in this case is the Hypercube (or Shares)
algorithm [2], which is a generalization of the parallel hash-join al-
gorithm. We explain the Hypercube algorithm through the example
of the triangle query, which will be used extensively throughout this
tutorial. The Hypercube algorithm is optimal amongst single-round
algorithms on skew-free databases. We examine the speedup of
the Hypercube algorithm, showing how it generally differs from
an ideal linear speedup: in particular, the speedup will be of the
form ∼ p1/τ

∗

, where τ ∗ is a parameter dependent on the join query
called the fractional edge packing number.

When the data is skewed, the Hypercube algorithm does not per-
form optimally anymore. We show how we can extend the Hyper-
cube algorithm from skew-free data to arbitrary data, and describe a
worst-case optimal algorithm called SkewHC [7]. This algorithm is
obtained by running different instances of the Hypercube algorithm
on various skewed subsets of the input data. Skewed data causes
the speedup of the algorithm to worsen compared to the speedup
on skew-free data, and this can be proven to be unavoidable, if we
want to compute the query in one round.

We end the presentation of single-round algorithms with a brief
discussion of output-sensitive algorithms, which are algorithms
designed to be sensitive to the size of the output data (and not only
the input data).

3.3 Multi-round Algorithms
For a parallel algorithm in the MPCmodel, each additional round in-
curs a significant cost. Nevertheless, there are cases where running
a query in multiple rounds can significantly reduce the communi-
cation cost per round, and in many cases it makes sense to trade
off rounds for communication per round. We describe here several
results known for query processing in multiple rounds.

We start with a lower bound [24] for any algorithm that computes
the query in a constant number of rounds, which tells us that
no multiway join query can be computed with load better than
Ω(IN/p1/ρ

∗

). Here, ρ∗ is another query-dependent parameter called
the fractional edge covering number.

The above lower bound can be matched for several classes of
queries by using multiple rounds to remove the penalty incurred
by skewed values [23]. The additional rounds are used to process
the skewed values, and the number of rounds depends only on the
structure of the query.

Next, we discuss a more traditional usage of multiple rounds.
This technique computes simpler operators one at a time in order
to reduce the load, or the total communication cost. For example,
we may compute a query in a traditional way, one join at a time,
using a number of rounds equal to the depth of the query plan. In
the absence of skew each join has linear speedup, which makes this
approach attractive in practice. The challenge here is that the size
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Figure 1: The MPC model of parallel computation.

of the intermediate results may increase significantly compared
to the input size IN. We describe techniques based on Yannakakis’
algorithm [37] and on tree decompositions, which lead to an output-
sensitive algorithm.

3.4 Existing Systems and Open Problems
We conclude this part by discussing how multiway joins are com-
puted in existing parallel systems, such as Hive, SparkSQL, Myria,
and some graph processing systems that evaluate subgraph queries.
We also present some of the open problems. One important prob-
lem we will emphasize is designing a constant-round distributed
multiway join algorithm that is worst-case optimal for any query.

4 SORTING
We next present an overview of parallel sorting for shared-nothing
architectures. Sorting is a fundamental operation in data processing,
both as a stand-alone task and as a subroutine in other queries,
such as joining two tables in a distributed cluster [18] or computing
parallel similarity joins of tables [18]. We present lower bounds on
the communication and round costs of sorting and algorithms from
existing systems and literature. We finish by showing an application
of sorting in a distributed sort-merge binary join algorithm that
achieves stronger guarantees than the Hypercube algorithm.

4.1 Lower Bounds
We first review two simple lower bounds for parallel sorting in
the MPC model, under the assumption that the load per round per
processor is bounded by L. The first bound shows that the total
amount of communication is Ω(N logL N ) and is adapted from Ag-
garwal et. al. [5]’s I/O complexity of sorting in the external memory
model. This bound assumes a comparison-based model. The second
bound shows that the number of rounds is Ω(logL N ) and derives
from a fundamental result on circuits. It therefore applies to any
computational model, and, thus, is stronger. Figure 2 summarizes
these results. These lower bounds hold regardless of p. We must
have p ≥ N /L in order for the processors to be able to store the

Figure 2: Lower Bounds on Sorting.

entire input data but, beyond that, p is not a relevant factor in deter-
mining the distributed complexity of sorting. This contrasts with
both joins and matrix multiplication, where one can sometimes
affect communication/load or rounds by increasing p.

4.2 Parallel Sorting Algorithms
We start by reviewing existing sorting algorithms used in practice.
Specifically, we discuss the winners of the GraySort benchmark of
the popular Sort Benchmark [32]. These algorithms use relatively
small number of processors with large memory and therefore have
coarse-grained parallelism. On a cluster with p processors, all of
these algorithms use the same main idea of finding p−1 splitters,
and partitioning the elements to be sorted in one round, then sorting
locally. We discuss different ways to pick the splitters and demon-
strate that these algorithms are essentially optimal for the load they
incur: they asymptotically meet the communication lower bound
curve and corresponding round lower bound on the right-end of
Figure 2.

We next review algorithms from literature that handle the harder
case of efficiently sorting under fine-grained parallelism. Our
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primary goal here is to present the audience the ideas behind
Goodrich’s algorithm [16]. This algorithm has great theoretical
value because it is the optimal deterministic distributed algorithm,
i.e., matches the sorting lower bounds from Figure 2 asymptotically
for every L. However the algorithm is very technical. Instead we
briefly give overviews of two algorithms from theoretical literature
and discuss how Goodrich’s algorithm uses the ideas in these algo-
rithms: (1) Odd-Even Merge-Sort, which is a O (log2 (n))-step PRAM
algorithm; and (2)Cole’s Algorithm, which is aO (log(n))-step PRAM
algorithm. These algorithms develop the idea of distributed ranked
lists, which is a core idea used by Goodrich’s algorithm.

4.3 Sort-based Join
We next review a recent binary join algorithm from reference [18],
which uses Goodrich’s algorithm as a subroutine to achieve the
stronger guarantees of the skew-resilient SkewHC algorithm we
discussed in Section 3. Briefly to join two tables R (A,B) Z S (B,C ),
this algorithm first concatenates R,S into a single table (containing
IN elements) and sorts these elements on B. For any given value
B = b, there are two cases: (1) If all tuples with value B = b are
in the same machine, then the processor u holding these tuples
can compute the join of these tuples locally. (2) If the tuples with
B = b span two or more processors, then the algorithm allocates a
fraction of the p processors, in an extra round of computation, to
compute their Cartesian product using the algorithm we discussed
in Section 3. There can be at most p − 1 crossing values b, and by
picking an appropriate fraction of processors for each Cartesian
product, we show that the algorithm achieves a load Lmatching the
load of SkewHC, implying that we can alternatively handle skew
by sorting.

4.4 Open Problems
The complexity of sorting in the distributed setting is well under-
stood and Goodrich’s algorithm matches the communication and
round lower bounds asymptotically. In contrast, research in how to
use sorting to design efficient join algorithm has recently started
and is less understood. One important limitation of the sort-merge
algorithm from Section 4.3 is that it can process joins over two ta-
bles. We will discuss this limitation and the open problem of using
sorting to join more than two tables.

5 DENSE MATRIX MULTIPLICATION
In the final part of the tutorial, we will give an overview of the
results on multiplying two n × n dense matrices by conventional
algorithms, i.e. those that perform all n3 elementary multiplications.
If the matrices A and B are stored in tables A(i,k ,v ) and B (k , j,v ),
where (i,k) and (k , j) represent the index of a non-zero entry, and v
is the value of that entry, then matrix multiplication is equivalent
to the following relational query that consists of a join and a group-
by-aggregate operations:

select A.i, B.j, sum(A.v * B.v)
from A, B
where A.k = B.k
group by A.i, B.j

We refer to this query as the matrix multiplication query.

Figure 3: Lower Bounds on Dense Matrix Multiplication.

5.1 Lower Bounds
Similar to sorting, we start by stating three simple lower bounds,
shown in Figure 3, under the assumption that the load per round
per processor is bounded by L. First is the lower-bound on the
communication cost of algorithm that run for a single round (or-
ange curve in Figure 3) [1]. The second is the lower bound on the
communication of algorithms that can run any number of rounds
(black curve in Figure 3) [19, 20]. The third is the lower bound on
the number of rounds needed by algorithms (shown by dots in
Figure 3) [30]. Similar to sorting, the latter two lower bounds are
adapted from results from I/O complexity of matrix multiplication
in the external memory model. Interestingly, we will show that
these lower bounds correspond separately to the communication
and round lower bounds for the join and group-by-and-aggregate
operations of the matrix multiplication query.

5.2 Single-round Algorithm
We next review the optimal one-round algorithm that has its roots
in reference [27] and has been adapted to a model of MapReduce
in reference [1]. The algorithm works values of L between 2n and
2n2, since if L ≥ 2n2, one can perform the entire multiplication in a
single machine in one round, and if L < 2n, no one-round algorithm
can get enough input elements to produce any of the outputs. We let
t = L/2n. The algorithm partitions the n × n matrices A and B into
n/t matrices of sizes t × n. In other words, A is a block matrix that
is horizontally partitioned into matrices A1, . . . ,An/t , while B is
vertically partitioned into matrices B1, . . . ,Bn/t . Then the product
C is a block matrix whose blocks are the products AuBv , for all
u,v = 1,n/t . The algorithm uses p = n2/t2 = 4n4/L2 processors,
identified by pairs (u,v ) with u,v = 1,n/t . Thus, processor (u,v )
receives the matricesAu ,Bv : it multiplies them locally, then outputs
the result AuBv . We show that this single rectangular partitioning
technique matches the communication lower bound for one-round
algorithms exactly.

5.3 Multi-round Algorithms
The multi-round matrix multiplication algorithm allows a wider
range of the load L, even below 2n, and also a wider range of pro-
cessors p, to capture the entire range of the curves in Figure 3.
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The multi-round algorithm we describe is from reference [26]. Let
L∗

def
= L/3 instead of L and denote H def

= n√
L∗
. The algorithm block

partitions A and B into H × H square matrices Auh and Bhv of
size
√
L∗ ×

√
L∗, where u,h = 1,H . The product C = AB is a block

matrix, where each block isCuv =
∑
h=1,H AuhBhv , for u,v = 1,H .

The algorithm computes the H3 matrix products AuhBhv and then
aggregates these products to compute Cuv . Since the memory of
each of the p processors is L = 3L∗, during each round a proces-
sor can compute only a single product AuhBhv . Depending on the
number of processors available, the algorithm performs some frac-
tion of these H3 products. Once all of the products are performed,
the algorithm uses an aggregation tree method to aggregate the
products. We will show that this simple square partitioning tech-
nique asymptotically matches the communication and round lower
bounds for multi-round algorithms.

We will also show that the well-studied two-dimensional al-
gorithms [3, 9, 13] correspond to the special case of this multi-
round algorithm when the number of processors p is minimum,
i.e., enough to hold the input and output matrices. In contrast the
three-dimensional algorithms [3, 4, 13, 21] correspond to the special
case when there are enough processors to perform all of the H3

partial products in a single round.

5.4 Open Problems
We will conclude by discussing some interesting open problems
related to matrix multiplication. An important question we will
discuss is the limitations for non conventional algorithms, such as
Strassen-like algorithms. We will also discuss if such algorithm can
find applications in join processing. Since Strassen-like algorithms
use in an essential way subtraction, this would require a novel
representation of database relations, where tuples may have either
positive or negative multiplicities.
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