

Inferring Transcriptional Regulatory Networks from Gene Expression Data II

Lectures 9 – Oct 26, 2011 CSE 527 Computational Biology, Fall 2011

Instructor: Su-In Lee TA: Christopher Miles

Monday & Wednesday 12:00-1:20

Johnson Hall (JHN) 022

1

Review: Gene Regulation

- Expression level of Regulator controls the expression levels of Targets it binds to.
- Regulator's expression is predictive of Targets' expression

Targets

Regulator

Segal et al., Nature Genetics 2003; Lee et al., PNAS 2006

Review: Inferring the regulatory networks "Expression data" Input: measurement of mRNA levels of all genes Gene expression data Arrays: conditions, Output: Bayesian network representing how genes regulate each other at the transcriptional level, and Q≈2x10⁴ how these interactions govern (for human) gene expression levels. e_Q Algorithm: Score-based structure learning "Transcriptional of Bayesian networks regulatory network" Challenge: Too many possible structures Solutions: Control the complexity of the structure, Module nétworks

Outline

- Motivation
 - Why are we interested in inferring the regulatory network?
- Algorithms for learning regulatory networks
 - Tree-CPDs with Bayesian score
 - Linear Gaussian CPDs with regularization
- Evaluation of the method
 - Statistical evaluation
 - Biological interpretation
- Advanced topics
 - Many models can get similar scores. Which one would you choose?
 - A gene can be involved in multiple modules.
 - Possible to incorporate prior knowledge?

5

Motivations

- "Gene A regulates gene B's expression"
 - Important basic biology questions
- "Gene A regulates gene B in condition C"
 - Condition C: disease states (cancer/normal, subtypes), phenotypes, species (evolutionary processes), developmental stages, cell types, experimental conditions
- Example application (C: disease states)
 - Understanding histologic transformation in lymphoma
 Lymphoma: the most common type of blood cancer in the US.
 - Transformation of Follicular Lymphoma (FL) to Diffuse Large B-Cell Lymphoma (DLBCL)
 - Occurs in 40-60% of patients; Dramatically worse prognosis
 - Goal: Infer the mechanisms that drive transformation.

Predicting Cancer Transformation

- Network-based approach
 - Different network features ⇒ transformation mechanism?
 - Early diagnosis of transformation; therapeutic implications?
 - Share as many networks features as possible ⇒ more robust than inferring two networks separately.

Outline

- Motivation
- Algorithms for learning regulatory networks

- Tree-CPDs with Bayesian score
- Linear Gaussian CPDs with regularization
- Evaluation of the method
 - Statistical evaluation
 - Biological interpretation
- Advanced topics
 - Many models can get similar scores. Which one would you choose?
 - A gene can be involved in multiple modules.
 - Possible to incorporate prior knowledge?

Learning

- Structure learning
 - Find the structure that maximizes Bayesian score log P(S|D) (or via regularization)
- Expectation Maximization (EM) algorithm
 - M-step: Given a partition of the genes into modules, learn the best regulation program (tree CPD) for each module.
 - E-step: Given the inferred regulatory programs, we reassign genes into modules such that the associated regulation program best predicts each gene's behavior.

- Learning quickly runs out of statistical power
 - Poor regulator selection lower in the tree
 - Many correct regulators not selected
- Arbitrary choice among correlated regulators
- Combinatorial search
 - Multiple local optima

* Segal et al., Nature Genetics 2003

Regulation as Linear Regression

 $minimize_w (w_1x_1 + ... w_Nx_N - E_{Module})^2$

- But we often have very large N
- ... and linear regression gives them all nonzero weight!

Problem: This objective learns too many regulators

- Induces sparsity in the solution w (many w_i's set to zero)
 - Provably selects "right" features when many features are irrelevant
- Convex optimization problem
 - No combinatorial search
 - Unique global optimum
 - Efficient optimization

* Tibshirani, 1996

Outline

- Motivation
- Algorithms for learning regulatory networks
- Evaluation of the method

- Statistical evaluation
- Biological interpretation
- Advanced topics
 - Many models can get similar scores. Which one would you choose?
 - A gene can be involved in multiple modules.
 - Possible to incorporate prior knowledge?

Module Evaluation Criteria

- Are the module genes functionally coherent?
- Do the regulators have regulatory roles in the predicted conditions C (see slide 6)?
- Are the genes in the module known targets of the predicted regulators?
- Are the regulators consistent with the cisregulatory motifs (TF binding sites) found in promoters of the module genes?

Outline

- Motivation
- Algorithms for learning regulatory networks
- Evaluation of the method
- Advanced topics

- Many models can get similar scores. Which one would you choose?
- A gene can be involved in multiple modules.
- Possible to incorporate prior knowledge?

31

Structural learning via boostrapping

Many networks that achieve similar scores

- Which one would you choose?
 - Estimate the robustness of each network or each edge.
 - How?? Learn the networks from multiple datasets.

32

Inferring sub-networks from perturbed expression profiles, Pe'er et al. Bioinformatics 2001

Overlapping Processes

- The living cell is a complex system
 - Example, the cell cycle
 - Cell cycle: the series of events that take place in a cell leading to its division and duplication.
 - Genes functionally relevant to cell cycle regulation in the specific cell cycle phase

- Mutually exclusive clustering as a common approach to analyzing gene expression
 - (+) genes likely to share a common function
 - (-) group genes into mutually exclusive clusters
 - (-) no info about genes relation to one another

35

Decomposition of Processes...

 Model an expression level of a gene as a mixture of regulatory modules.

