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Review: Gene Regulation

= Expression level of Regulator controls the expression levels
of Targets it binds to.
= Regulator’s expression is predictive of Targets’ expression
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Segal et al., Nature Genetics 2003; Lee et al., PNAS 2006




Review: Inferring the regulatory networks

“Expression data”
= Input: measurement of mRNA levels of all genes

= Gene expression data N == -
conditions,
L Output: individuals, etc 8
= Bayesian network representing
how genes regulate each other -
at the transcriptional level, and v
how these interactions govern

gene expression levels.
= Algorithm:

= Score-based structure learning
of Bayesian networks
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Review: The Module Networks Concept
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Outline

Motivation
= Why are we interested in inferring the regulatory network?

Algorithms for learning regulatory networks
= Tree-CPDs with Bayesian score
= Linear Gaussian CPDs with regularization

Evaluation of the method
= Statistical evaluation
= Biological interpretation

Advanced topics

= Many models can get similar scores. Which one would you
choose?

= A gene can be involved in multiple modules.
= Possible to incorporate prior knowledge? 5

Motivations

= "Gene A regulates gene B’s expression”
= Important basic biology questions

= "Gene A regulates gene B in condition C”

= Condition C: disease states (cancer/normal, subtypes),
phenotypes, species (evolutionary processes),
developmental stages, cell types, experimental conditions

= Example application (C: disease states)
= Understanding histologic transformation in lymphoma
= Lymphoma: the most common type of blood cancer in the US.

= Transformation of Follicular Lymphoma (FL) to Diffuse
Large B-Cell Lymphoma (DLBCL)

= Occurs in 40-60% of patients; Dramatically worse prognosis
= Goal: Infer the mechanisms that drive transformation.




Predicting Cancer Transformation

= Network-based approach
» Different network features = transformation mechanism?
= Early diagnosis of transformation; therapeutic implications?
= Share as many networks features as possible = more robust

than inferring two networks separately.
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Motivation

Algorithms for learning regulatory networks <:I
= Tree-CPDs with Bayesian score
= Linear Gaussian CPDs with regularization

Evaluation of the method

= Statistical evaluation

= Biological interpretation
Advanced topics

= Many models can get similar scores. Which one would you

choose?
= A gene can be involved in multiple modules.
= Possible to incorporate prior knowledge?
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Learning

= Structure learning

= Find the structure that maximizes Bayesian score
log P(S|D) (or via regularization)

= Expectation Maximization (EM) algorithm

= M-step: Given a partition of the genes into modules,
learn the best regulation program (tree CPD)
for each module.

= E-step: Given the inferred regulatory programs, we
reassign genes into modules such that the
associated regulation program best predicts each
gene’s behavior.
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Learning Regulatory Network :>©/\ ;)

= Iterative procedure (EM)
= Cluster genes into modules (E-step)
= Learn a regulatory program for each module (tree model) (M step)

Maximum increase in the
structural score (Bayesian) _

From Expression to Regulation (M-step)

= Combinatorial search over the space of trees

Arrays sorted in
original order

Arrays sorted
accordingto —
expression of HAP4

Segal et al. Nat Genet 2003 12




From Expression to Regulation (M-step)

Segal et al. Nat Genet 2003 13

Learning Control Programs
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Learning Control Programs

u Split as long as the
score improves

CHAP4 A >
Lo :
u Score of HAP4 split:

A, A

( Y Y ) log P(M | D) o

log JP(Dapapl Mu, o )P(u,c) dudo

+log [P(Dyapas| M, 0 )P(u,0) dudo
u Score of HAP4/YGRO043C split:

log PIM | D)

log S A(Drppan /M1, 0)P(w, o) dudo

+ 109 [ P(Dyppss Dycroason /M, 0)P(u, o) dudo
+ 109 [ P(Dyypss Dysrossc IMst, 0)P (,U/O'bs dudo

Review — Learning Regulatory Network

= Iterative procedure
= Cluster genes into modules (E-step)

= Learn a regulatory program for each module (M-step)
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Module Networks*

= Learning quickly runs
out of statistical power
= Poor regulator selection
lower in the tree

= Many correct regulators
not selected
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= Arbitrary choice among
correlated regulators
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= Combinatorial search
= Multiple local optima

* Segal et al., Nature Genetics 2003
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Regulation as Linear Regression

minimize,, (W;X; + ... WyXy - Epoqule)?

parameters = g

Etargets= W1 Xq+...+Wy Xy+€

= But we often have very large N
= ... and linear regression gives them all nonzero weight!

Problem: This objective learns too many regulators
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Lasso* (L,) Regression L. tom

m'nlm'zew (W1X1 + WNXN = EModuIe)2+ 2 C |W|||

parameters

= Induces sparsity in the solution w (many w;'s set to zero)

= Provably selects “right” features when many features are
irrelevant

= Convex optimization problem
= No combinatorial search
= Unique global optimum
= Efficient optimization
* Tibshirani, 1996

Learning Regulatory Network

= Cluster genes into modules
= Learn a regulatory program for each module

. Ly regression
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Lee et al., PLoS Genet 2009




Learning the reqgulatory network

= Multiple regression tasks Module 1
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Motivation
Algorithms for learning regulatory networks

Evaluation of the method

» Statistical evaluation

= Biological interpretation

Advanced topics

= Many models can get similar scores. Which one would
you choose?

= A gene can be involved in multiple modules.

= Possible to incorporate prior knowledge?
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Statistical Evaluation

= Cross-validation test
= Divide the data (experiments) into training and test data
= Compute the likelihood function for the Test data

experiments “Test data”
“Test likelihood”
How well the network fits
to the test data?
o [
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Regulatory network
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Module Evaluation Criteria

= Are the module genes functionally coherent?

= Do the regulators have regulatory roles in the
predicted conditions C (see slide 6) ?

= Are the genes in the module known targets of the
predicted regulators?

= Are the regulators consistent with the c¢is-
regulatory motifs (TF binding sites) found in
promoters of the module genes?
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Functional Coherence

genes

Modules Known functional categories

N Gene ontology (GO)
m /7 http://www.geneontology.org/
Predicted targets of regulators
Sharing TF binding sites
Module 1 Cholesterol :

synthesis
= How significant is the overlap?

= Calculate P(# overlap = k | K, n, N; two groups are independent)
based on the hypergeometric distribution
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Module Functional Coherence
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u_Metabolic: AA, respiration, glycolysis, galactose
u Stress: Oxidative stress, osmotic stress

u Cellular localization: Nucleas, ER

u Cellular processes: Cell cycle, sporulation, mating

u Molecular functions: Protein folding, RNA & DNA processing, trafficking




Respiration Module

¢ Oxidalive Phosphorylation (26, 5e-3

Mitochondrion (31, 7e-32)

Aerobic Respiration (12, 2e-13)

u HAP4 known to up regulate Oxid. Phos.

u HAP4, MSN4, XBP1 known to be
regulators under predicted conditions

Phosphorylation (26, 5e-3

Aerobic Respiration (12, 2e-13)

Mitochondrion (31, 7e-32)
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Respiration Module
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u HAP4 known to up regulate Oxid. Phos.

u HAP4, MSN4, XBP1 known to be
regulators under predicted conditions

u HAP4 Binding site
found in 39/55 genes =%

Oxidative Phosphorylation (26, 5e-3

Mitochondrion (31, 7e-32)
Aerobic Respiration (12, 2e-13)
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Outline

Motivation
Algorithms for learning regulatory networks
Evaluation of the method

Advanced topics <::I

= Many models can get similar scores. Which one
would you choose?

= A gene can be involved in multiple modules.
= Possible to incorporate prior knowledge?
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Structural learning via boostrapping

= Many networks that achieve similar scores

R AE T

@
33.15 33.10 32.99

= Which one would you choose?
= Estimate the robustness of each network or each edge.
= How?? Learn the networks from multiple datasets.
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Inferring sub-networks from perturbed expression profiles, Pe’er et al. Bioinformatics 2001




Bootstrapping

= Sampling with replacement

experiments

Original data Bootstrap data 1 data 2

T SN
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Inferring sub-networks from perturbed expression profiles, Pe’er et al. Bioinformatics 2001

sEstimated confidence of each edge /7

BOOtStra p pl ng _ # networks that contain the edge

total # networks (N)

= Sampling with replacement

Inferring sub-networks from perturbed expression profiles, Pe’er et al. Bioinformatics 2001




Overlapping Processes

el with chromosomes in the nucleus

(D

= The living cell is a complex al

system ®‘ @ \ /,

= Example, the cell cycle _—

= Cell cycle: the series of events that | | \m"" )
take place in a cell leading to its « atein

division and duplication. \ sses
= Genes functionally relevant to i
cell cycle regulation in the
specific cell cycle phase s

= Mutually exclusive clustering as a common approach to
analyzing gene expression
= (+) genes likely to share a common function
= (-) group genes into mutually exclusive clusters
= (-) no info about genes relation to one another

Decomposition of Processes...

= Model an expression level of a gene as a mixture of
regulatory modules.

= Hard EM vs soft EM

false

Probabilistic discovery of overlapping cellular processes and their regulation
Battle et al. Journal of Computational Biology 2005




