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Lectures 9 – Oct 26, 2011
CSE 527 Computational Biology, Fall 2011

Instructor: Su-In Lee
TA: Christopher Miles

Monday & Wednesday  12:00-1:20
Johnson Hall (JHN) 022

Inferring Transcriptional 
Regulatory Networks from 
Gene Expression Data II
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Review: Gene Regulation

Regulator

Targets

 Expression level of Regulator controls the expression levels 
of Targets it binds to.

 Regulator’s expression is predictive of Targets’ expression

ERegulator

ETargets

Segal et al., Nature Genetics 2003; Lee et al., PNAS 2006
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Review: Inferring the regulatory networks

 Input: 
 Gene expression data

 Output:
 Bayesian network representing 

how genes regulate each other 
at the transcriptional level, and 
how these interactions govern 
gene expression levels.

 Algorithm:
 Score-based structure learning 

of Bayesian networks 
 Challenge: Too many possible 

structures
 Solutions: Control the 

complexity of the structure, 
Module networks

“Expression data”
measurement of mRNA levels of all genes

e1 eQe6
…

Q≈2x104

(for human)

Arrays:
conditions, 
individuals, etc

“Transcriptional 
regulatory network”

A
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C
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Review: The Module Networks Concept
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Outline
 Motivation

 Why are we interested in inferring the regulatory network?

 Algorithms for learning regulatory networks
 Tree-CPDs with Bayesian score
 Linear Gaussian CPDs with regularization

 Evaluation of the method
 Statistical evaluation
 Biological interpretation

 Advanced topics
 Many models can get similar scores. Which one would you 

choose?
 A gene can be involved in multiple modules.
 Possible to incorporate prior knowledge? 5

Motivations
 “Gene A regulates gene B’s expression”

 Important basic biology questions

 “Gene A regulates gene B in condition C”
 Condition C: disease states (cancer/normal, subtypes), 

phenotypes, species (evolutionary processes), 
developmental stages, cell types, experimental conditions

 Example application (C: disease states)
 Understanding histologic transformation in lymphoma

 Lymphoma: the most common type of blood cancer in the US.
 Transformation of Follicular Lymphoma (FL) to Diffuse 

Large B-Cell Lymphoma (DLBCL)
 Occurs in 40-60% of patients; Dramatically worse prognosis

 Goal: Infer the mechanisms that drive transformation.
6
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Predicting Cancer Transformation
 Network-based approach

 Different network features  transformation mechanism?
 Early diagnosis of transformation; therapeutic implications?

 Share as many networks features as possible  more robust 
than inferring two networks separately.

Follicular Lymphoma

Diffuse Large B-Cell 
Lymphoma

gene expression data

N1 patients 
with FL

N2 patients 
with DLBCL

e1 eQ
…e5

regulatory networks

Outline
 Motivation
 Algorithms for learning regulatory networks

 Tree-CPDs with Bayesian score
 Linear Gaussian CPDs with regularization

 Evaluation of the method
 Statistical evaluation
 Biological interpretation

 Advanced topics
 Many models can get similar scores. Which one would you 

choose?
 A gene can be involved in multiple modules.
 Possible to incorporate prior knowledge?

8
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X1

X3 X4

X5 X6

X2
Module 2

Module 3

Module 1

truefalse

X4 

-3

P(Level)

Level

. .
 . 

 

truefals
e

3

P(Level)

Level

0

P(Level)

Level

X3

Context A
Context B Context C

(μA,σA)

Goal
 Identify modules (member genes)
 Discover module regulation program

genes
(X’s)

experiments

Regulation program

X1

X3 X4

Candidate 
regulators

HAP4 

Heat Shock?
truefalse

truefalse

CMK1

10

Learning
 Structure learning

 Find the structure that maximizes Bayesian score
log P(S|D) (or via regularization)

 Expectation Maximization (EM) algorithm
 M-step: Given a partition of the genes into modules, 

learn the best regulation program (tree CPD)
for each module.

 E-step: Given the inferred regulatory programs, we 
reassign genes into modules such that the 
associated regulation program best predicts each 
gene’s behavior.
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 Iterative procedure (EM)
 Cluster genes into modules (E-step)
 Learn a regulatory program for each module (tree model) (M-step)

Learning Regulatory Network

PHO5

PHM6

SPL2

PHO3
PHO84

VTC3GIT1

PHO2

GPA1

ECM18

UTH1
MEC3

MFA1

SAS5SEC59

SGS1

PHO4

ASG7

RIM15

HAP1

TEC1

M1

MSK1

M22

KEM1

MKT1
DHH1

PHO2

HAP4
MFA1

SAS5
PHO4

RIM15

Maximum increase in the 
structural score (Bayesian)

Candidate regulators
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From Expression to Regulation (M-step)
 Combinatorial search over the space of trees

Arrays sorted in 
original order

HAP4 

Arrays sorted 
according to 

expression of HAP4
Segal et al. Nat Genet 2003

PHO5
PHM6

PHO3
PHO84

VTC3GIT1

PHO2

HAP4

PHO4

12
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From Expression to Regulation (M-step)

HAP4 SIP4 

Segal et al. Nat Genet 2003

PHO5
PHM6

PHO3
PHO84

VTC3GIT1

PHO2

HAP4

PHO4

SIP4
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Learning Control Programs

HAP4 

0 0

u Score:

log P(M | D) 

log ∫P(D| M,, )P(,) dd

u Score of HAP4 split:

log P(M | D) 

log ∫P(DHAP4| M,, )P(,) dd

+ log ∫P(DHAP4| M,, )P(,) dd

0

Segal et al. Nat Genet 2003
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Learning Control Programs
HAP4 

0 0

u Split as long as the 
score improves

HAP4 

0 0

YGR043C

0

u Score of HAP4/YGR043C split:

log P(M | D) ∝
log ∫P(DHAP4|M,,)P(,) dd
+ log ∫P(DHAP4DYGR043C|M,,)P(,) dd

+ log ∫P(DHAP4DYGR043C|M,,)P(,) dd

u Score of HAP4 split:

log P(M | D) ∝

log ∫P(DHAP4| M,, )P(,) dd
+ log ∫P(DHAP4| M,, )P(,) dd

 Iterative procedure
 Cluster genes into modules (E-step)
 Learn a regulatory program for each module (M-step)

Review – Learning Regulatory Network

PHO5

PHM6

SPL2

PHO3
PHO84

VTC3GIT1

PHO2

GPA1

ECM18

UTH1
MEC3

MFA1

SAS5SEC59

SGS1

PHO4

ASG7

RIM15

HAP1

TEC1

M1

MSK1

M22

KEM1

MKT1
DHH1

PHO2

HAP4
MFA1

SAS5
PHO4

RIM15

Maximum increase in 
Bayesian score

Candidate 
regulators

HAP4

MSK1

truefalse

truefalse
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Module Networks*
 Learning quickly runs 

out of statistical power
 Poor regulator selection 

lower in the tree 
 Many correct regulators 

not selected 

 Arbitrary choice among 
correlated regulators

 Combinatorial search
 Multiple local optima

repressor

true

repressor 
expression

false

m
od
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le
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m

true

activatoractivator 
expression

false

target gene 
expression

induced

repressed

Activator Repressor

Genes in module

Gene1 Gene2 Gene3

* Segal et al., Nature Genetics 2003

Tree regression

Regulation as Linear Regression
minimizew (w1x1 + … wNxN - EModule)2

 But we often have very large N
 … and linear regression gives them all nonzero weight!

xN
…x1 x2

w1
w2 wN

EModule

Problem: This objective learns too many regulators

parameters
w1

w2 wN

ETargets= w1 x1+…+wN xN+ε

PHO5

PHM6

SPL2

PHO3
PHO84

VTC3GIT1

PHO2

TEC1

GPA1

ECM18

UTH1
MEC3

MFA1

SAS5SEC59

SGS1

PHO4

ASG7

RIM15

HAP1

PHO2

GPA1
MFA1

SAS5
PHO4

RIM15

S1

S120
S1011

S321
S321

S22

18
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Lasso* (L1) Regression
minimizew (w1x1 + … wNxN - EModule)2+  C |wi|

 Induces sparsity in the solution w (many wi‘s set to zero)
 Provably selects “right” features when many features are 

irrelevant

 Convex optimization problem
 No combinatorial search
 Unique global optimum
 Efficient optimization

xN
…x1 x2

w1
w2 wN

EModule

parameters
w1

w2

x1 x2

* Tibshirani, 1996

L2 L1

L1 term

 Cluster genes into modules
 Learn a regulatory program for each module

Learning Regulatory Network

S1

S120

S22

S1011

S321

PHO5

PHM6

SPL2

PHO3
PHO84

VTC3GIT1

PHO2

TEC1

GPA1

ECM18

UTH1
MEC3

MFA1

SAS5SEC59

SGS1

PHO4

ASG7

RIM15

HAP1

PHO2

GPA1
MFA1

SAS5
PHO4

RIM15

Lee et al., PLoS Genet 2009

L1 regression
minimizew (Σwixi - ETargets)2+  C |wi|

S321
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Learning the regulatory network
 Multiple regression tasks

xN
…x1 x2

Emodule 1

w11
w12 w1N

:

xN
…

Emodule M

wM1
wM2 wMN

Module 1

PHO5

PHM6

SPL2

PHO3
PHO84

VTC3GIT1

PHO2

TEC1

GPA1

ECM18

UTH1
MEC3

MFA1

SAS5SEC59

SGS1

PHO4

ASG7

RIM15

HAP1

PHO2

GPA1
MFA1

SAS5
PHO4

RIM15

S1

S120
S1011

S321
S321

S22

Module 1

Module M

=0

=0 =0

minimizew1 (Σ w1nxn–Emodule1)2+  C|w1n|

minimizewn (Σ wMnxn–EmoduleM)2+  C|wMn|

:

Module M

x1 x2

Outline
 Motivation
 Algorithms for learning regulatory networks
 Evaluation of the method

 Statistical evaluation
 Biological interpretation

 Advanced topics
 Many models can get similar scores. Which one would 

you choose?
 A gene can be involved in multiple modules.
 Possible to incorporate prior knowledge?

22
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genes

experiments “Test data”

“Test likelihood”
How well the network fits 
to the test data?

?

 Cross-validation test
 Divide the data (experiments) into training and test data
 Compute the likelihood function for the Test data

Statistical Evaluation

Regulatory network

24

Module Evaluation Criteria
 Are the module genes functionally coherent?
 Do the regulators have regulatory roles in the 

predicted conditions C (see slide 6) ?
 Are the genes in the module known targets of the 

predicted regulators?
 Are the regulators consistent with the cis-

regulatory motifs (TF binding sites) found in 
promoters of the module genes?
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Functional Coherence

 How significant is the overlap?
 Calculate P(# overlap ≥ k | K, n, N; two groups are independent)

based on the hypergeometric distribution

Modules Known functional categories
Gene ontology (GO)
http://www.geneontology.org/

Predicted targets of regulators
Sharing TF binding sites

:

k
m n 

N 

Module 1 Cholesterol 
synthesis

genes
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Module Functional Coherence

u Metabolic: AA, respiration, glycolysis, galactose

u Stress: Oxidative stress, osmotic stress

u Cellular localization: Nucleas, ER

u Cellular processes: Cell cycle, sporulation, mating

u Molecular functions: Protein folding, RNA & DNA processing, trafficking 
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Respiration Module

u HAP4 known to up regulate Oxid. Phos.

28

Respiration Module

u HAP4 known to up regulate Oxid. Phos.

u HAP4, MSN4, XBP1 known to be 
regulators under predicted conditions
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Respiration Module

u HAP4, MSN4, XBP1 known to be 
regulators under predicted conditions

u HAP4 known to up regulate Oxid. Phos.

u HAP4 Binding site
found in 39/55 genes

30

Respiration Module

u HAP4 Binding site
found in 39/55 genes

u HAP4, MSN4, XBP1 known to be 
regulators under predicted conditions

u HAP4 known to up regulate Oxid. Phos.

u MSN4 Binding site
found in 28/55 genes
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Outline
 Motivation
 Algorithms for learning regulatory networks
 Evaluation of the method
 Advanced topics

 Many models can get similar scores. Which one 
would you choose?

 A gene can be involved in multiple modules.
 Possible to incorporate prior knowledge?

31

32

Structural learning via boostrapping 
 Many networks that achieve similar scores

 Which one would you choose?
 Estimate the robustness of each network or each edge.
 How??  Learn the networks from multiple datasets.

Inferring sub-networks from perturbed expression profiles, Pe’er et al. Bioinformatics 2001

…

33.15 33.10 32.99
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Bootstrapping
 Sampling with replacement

Original data Bootstrap data 1 data 2 data N…

…

ge
ne

s

experiments

…

Inferring sub-networks from perturbed expression profiles, Pe’er et al. Bioinformatics 2001

34

Bootstrap data 1 data 2 data N…

…

Bootstrapping
 Sampling with replacement

…

(N) networks # total
edge the containthat  networks #



Estimated confidence of each edge i 

0.8

0.31

0.43
0.56

0.26

0.75

0.73

Inferring sub-networks from perturbed expression profiles, Pe’er et al. Bioinformatics 2001
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Overlapping Processes
 The living cell is a complex 

system
 Example, the cell cycle

 Cell cycle: the series of events that 
take place in a cell leading to its 
division and duplication.

 Genes functionally relevant to 
cell cycle regulation in the 
specific cell cycle phase

Partial figure from 
Maaser and Borlak 
Oct. 2008

Genes participate in 
multiple processes

 Mutually exclusive clustering as a common approach to 
analyzing gene expression
 (+) genes likely to share a common function
 (-) group genes into mutually exclusive clusters
 (-) no info about genes relation to one another

36

Decomposition of Processes…
 Model an expression level of a gene as a mixture of 

regulatory modules.

 Hard EM vs soft EM

Probabilistic discovery of overlapping cellular processes and their regulation
Battle et al. Journal of Computational Biology 2005

X 

w1

w2

wN

:

HAP4

MSK1

truefalse

truefalse

DHH1

PUF3

truefalse

truefalse

HAP1

HAP5
truefalse

truefalse


