

Lectures 11 – Nov 2, 2011 CSE 527 Computational Biology, Fall 2011

Instructor: Su-In Lee TA: Christopher Miles

Monday & Wednesday 12:00-1:20

Johnson Hall (JHN) 022

1

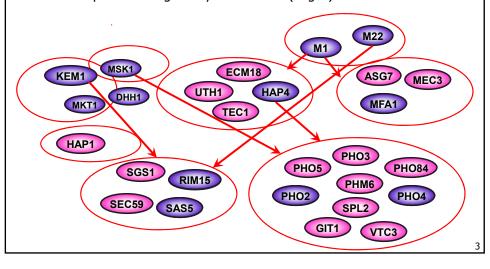
Outline

Evaluation of the inferred network

- Functional coherence of gene clusters
- Predicted regulatory interactions
- Multiple hypothesis testing
- Advanced topics
 - Structure learning via bootstrapping.
 - Inferring overlapping biological processes.
 - Incorporating prior knowledge.
- Systems genetics
 - Traditional approach
 - Systems biology approach

Review – Learning Regulatory Network

- What next?
 - Do gene clusters (modules) make sense?
 - Do predicted regulatory interactions (edges) make sense?



Functional Coherence of Gene Clusters

- Gene Ontology (GO) [http://www.geneontology.org/]
 - The GO database provides a controlled vocabulary to describe gene and gene product attribute in any organism.
 - Set of biological phrases (GO terms) which are applied to genes
 - Organized as three separate ontologies
 - Molecular functions
 - Biological processes
 - Cellular components
 - Each gene may
 - Have more than one in molecular function.
 - Take part in more than one biological process.
 - Act in more than one cellular component.

Structure of Ontologies

- Shows the relationship between different terms
 - One term may be a more specified description of another more general term.
 - Shows hierarchies of the terms (directed acyclic graph).
 - Each child-term is a member of its parent-term

```
■ all : all [view gene products]
  ☐ ■ G0:0008150 : biological_process [view gene products]

    ⊕ GO:0022610 : biological adhesion [view gene products]

     \blacksquare GO:0065007 : biological regulation [view gene products]

■ GO:0009758: carbohydrate utilization [view gene products]

■ GO:0015976: carbon utilization [view gene products]

■ GO:0001906 : cell killing [view gene products]

     ☐ ■ GO:0008283 : cell proliferation [view gene products]

■ GO:0003263: cardioblast proliferation [view gene products]

■ GO:0071838: cell proliferation in bone marrow [view gene products]

       ■ G0:0003295 : cell proliferation involved in atrial ventricular junction remodeling [view gene products]
       ☐ ■ GO:0035736 : cell proliferation involved in compound eye morphogenesis [view gene products]
          ■ GO:2000496: negative regulation of cell proliferation involved in compound eye morphogenesis [view gene products
          🖸 🏠 GO:2000497 : positive regulation of cell proliferation involved in compound eye morphogenesis [view gene products]

■ GO:2000495: regulation of cell proliferation involved in compound eye morphogenesis [view gene products]

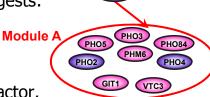
                                                                                                                      5
```

Create Functional Categories

- For each GO term,
 - Genes that have the same GO term form a functional category
- Other gene annotation systems
 - KEGG: Kyoto Encyclopedia of Genes and Genomes
 [http://www.genome.jp/kegg/]
 - Molecular Signature Database
 [http://www.broadinstitute.org/gsea/msigdb/index.jsp]

Predicted Regulatory Interaction I

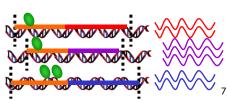
Say that your network suggests:



- If HAP4 is a transcription factor,
 - Targets should have a binding site for HAP4.
 - Or there should be different kind of evidence that HAP4 binds to genes in Module A (chip-chip or chip-seq data).

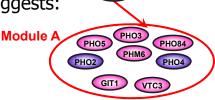
HAP4

Module A

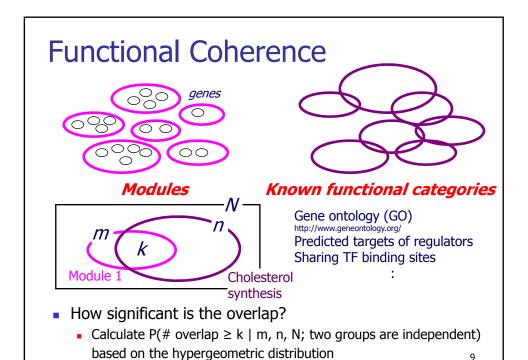


Predicted Regulatory Interaction II

Say that your network suggests:

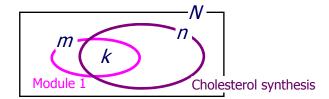


- If HAP4 really regulates module A, deletion (or overexpression) of HAP4 should lead to significant up/down- regulation of genes in module A.
 - There are many publicly available gene expression data that measure expression of genes after deleting/overexpressing a certain gene.



Examples

- Say N=1000, m=100, n=200 genes
 - If k = 40 genes in the intersection, p-value = 2.7410e-07.
 - If k = 30, p-value = 0.0039
 - If k = 20, p-value = 0.4394.



- How significant is the overlap?
 - Calculate p-value = P(# overlap ≥ k | m, n, N; two groups are independent), based on the hypergeometric distribution
 - What p-values are considered to be significant?

Multiple Hypothesis Testing

Say that there are 200 modules and 3000 functional categories

Modules

Known functional categories

- How many hypotheses are we testing?
 - \sim 200 x 3000 = 600,000
 - Is p-value of 0.001 significant? (p-value=0.001: frequency of observing the # genes in intersection by random.)
- P-values should be "corrected"
 - Bonferroni correction: min(1, p-value x # hypotheses)
 - FDR correction: control false discovery rate

11

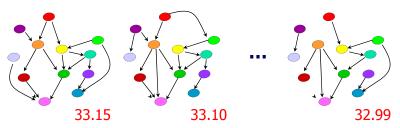
Outline

- Evaluation of the inferred network
 - Functional coherence of gene clusters
 - Predicted regulatory interactions
 - Multiple hypothesis testing
- Advanced topics

- Structure learning via bootstrapping.
- Inferring overlapping biological processes.
- Incorporating prior knowledge.
- Systems genetics
 - Traditional approach
 - Systems biology approach

Structure Learning Via Boostrapping

Many networks that achieve similar scores



- Which one would you choose?
 - Estimate the robustness of each network or each edge.

13

• How?? Learn the networks from multiple datasets.

Inferring sub-networks from perturbed expression profiles, Pe'er et al. Bioinformatics 2001

Bootstrapping

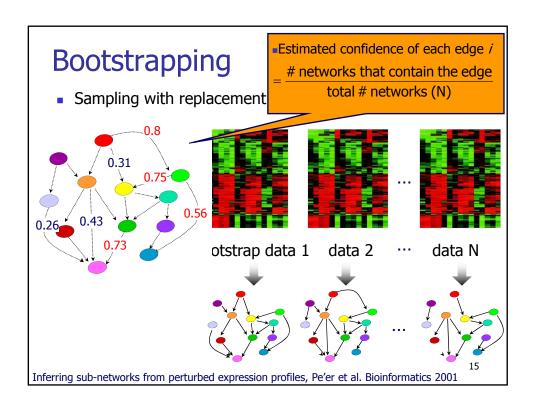
Sampling with replacement

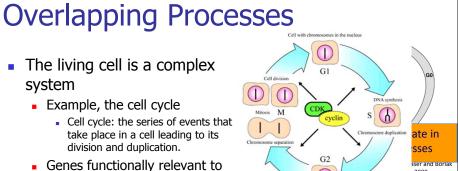
Seperiments

Original data

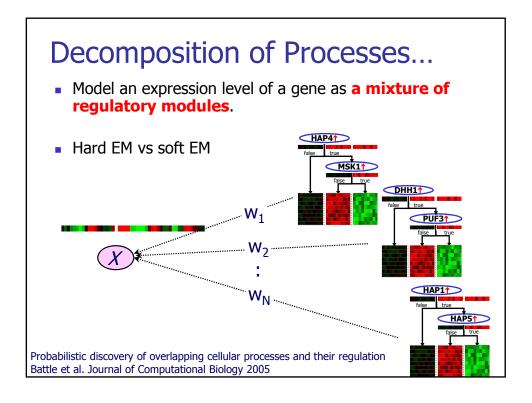
Bootstrap data 1 data 2 ... data N

Inferring sub-networks from perturbed expression profiles, Pe'er et al. Bioinformatics 2001





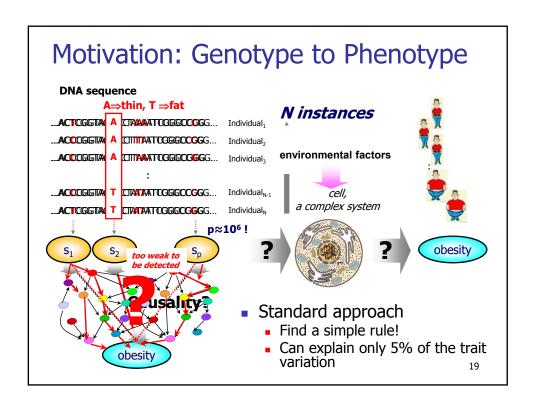
- cell cycle regulation in the specific cell cycle phase
- Mutually exclusive clustering as a common approach to analyzing gene expression
 - (+) genes likely to share a common function
 - (-) group genes into mutually exclusive clusters
 - (-) no info about genes relation to one another



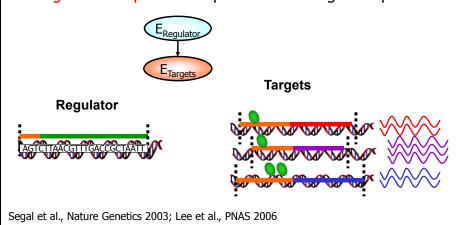
Outline

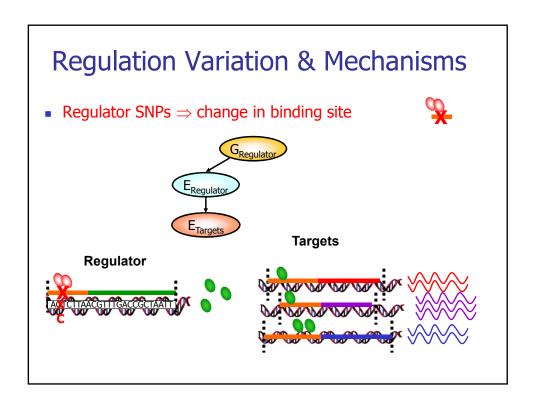
- Evaluation of the inferred network
 - Functional coherence of gene clusters
 - Predicted regulatory interactions
 - Multiple hypothesis testing
- Advanced topics
 - Structure learning via bootstrapping.
 - Inferring overlapping biological processes.
 - Incorporating prior knowledge.
- Systems genetics

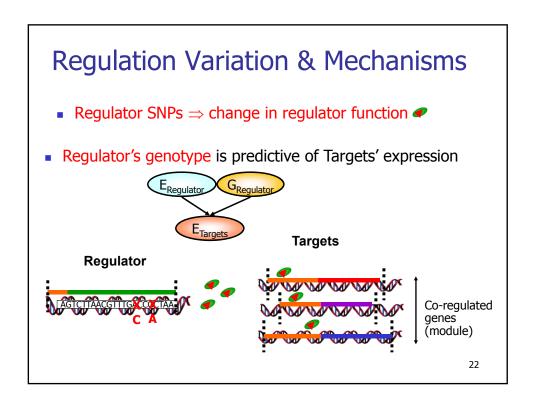
- Traditional approach
- Systems biology approach (example application, Lee et al. PLoS Genetics 2009)

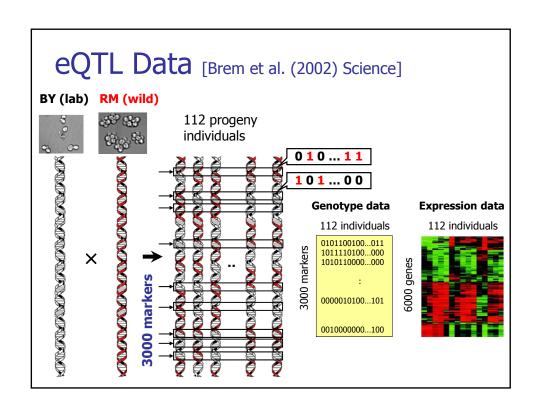


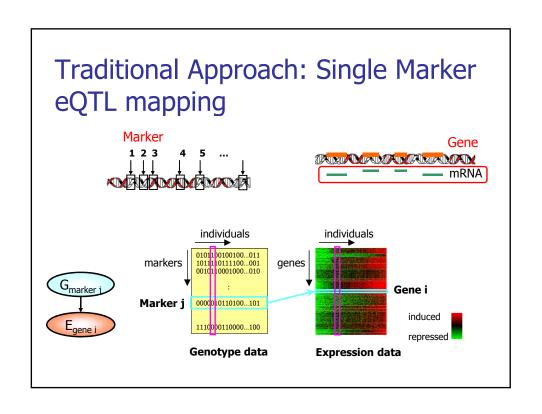
- Activity level of Regulator changes the expression levels of Targets it binds to.
- Regulator's expression is predictive of Targets' expression

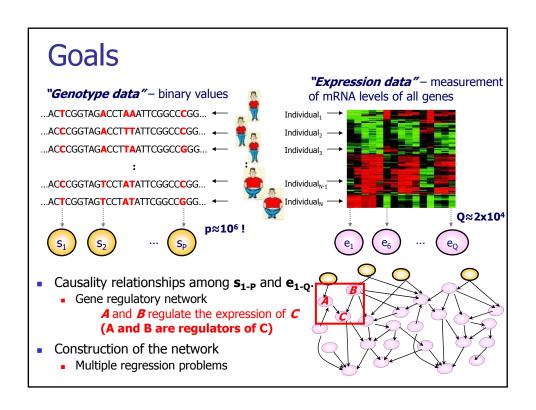


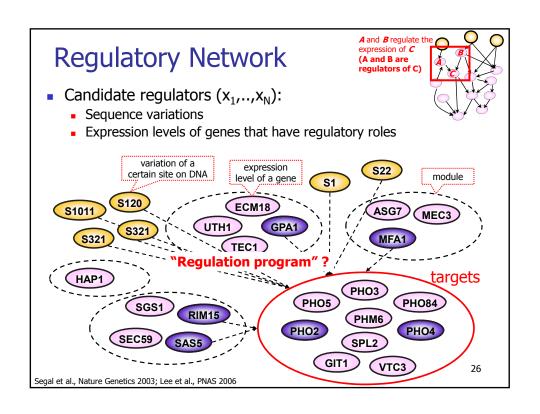






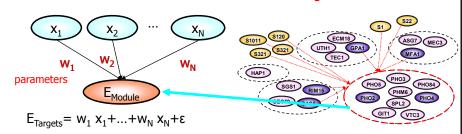






Regulation as Linear Regression

minimize_w
$$(w_1x_1 + ... w_Nx_N - E_{Targets})^2$$



- But we often have very large N
- ... and linear regression gives them all nonzero weight!

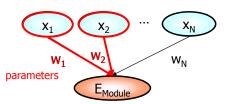
Problem: This objective learns too many regulators

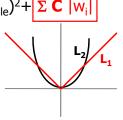
27

L₁ term

Lasso* (L₁) Regression

minimize_w $(w_1x_1 + ... w_Nx_N - E_{Module})^2 + \sum C |w_i|$

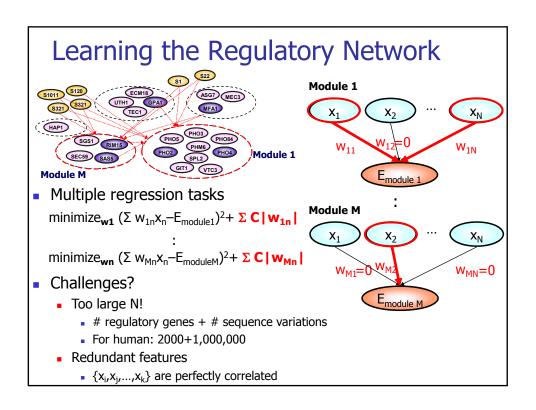


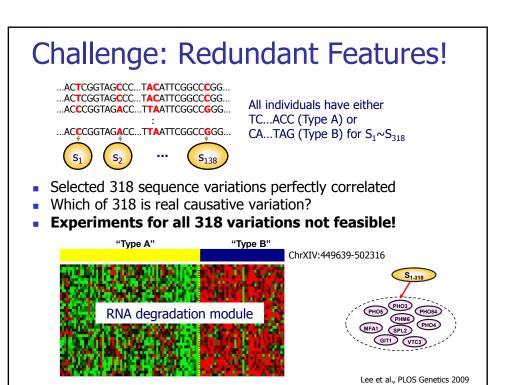


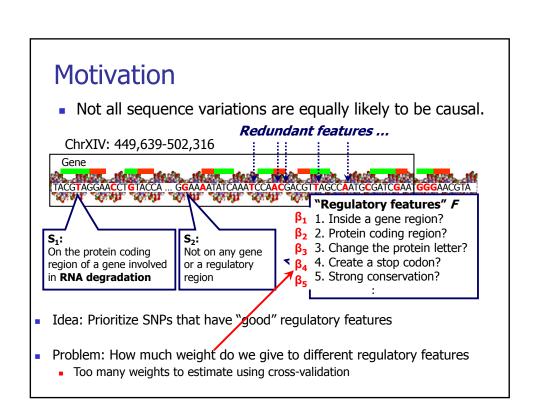
- Induces sparsity in the solution w (many w_i's set to zero)
 - Provably selects "right" features when many features are irrelevant
- Convex optimization problem
 - No combinatorial search
 - Unique global optimum
 - Efficient optimization

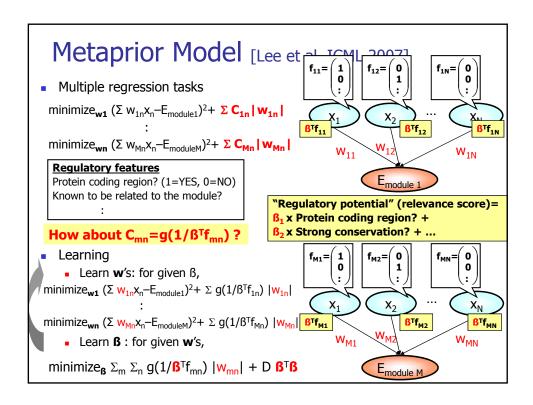
* Tibshirani, 1996

Learning Regulatory Network Cluster genes into modules Learn a regulatory program for each module **S22** S120 ECM18 S1011 ASG7 MEC3 UTH1 GPÁ1 S321 S321 MFA1 TEC1 HAP1 PHO5 PHO84 SGS1 RIM15 L₁ regression minimize_w ($\Sigma w_i x_i$ SEC59 GIT1 VTC3 Lee et al., PLoS Genet 2009







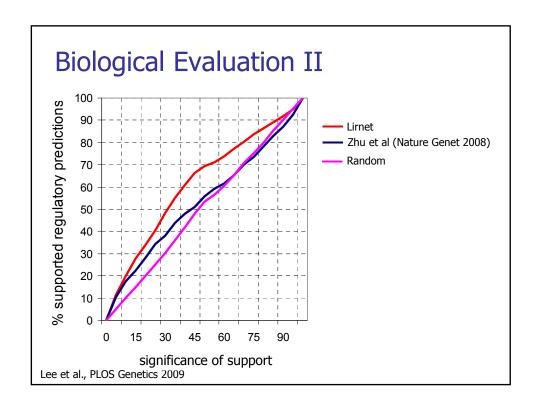


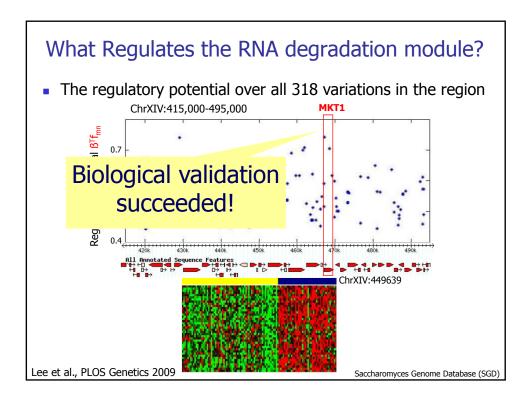
Transfer Learning

- What do regulatory potentials B^Tf_{mn} do?
 - They do **not** change selection of "strong" regulators those where prediction of targets is clear
 - They only help disambiguate between weak ones
- Strong regulators help teach us what to look for in other regulators

Transfer of knowledge between different regression tasks

Biological Evaluation I How many predicted interactions have support in **other** data? Deletion/ over-expression microarrays [Hughes et al. 2000; Chua et al. 2006] ChIP-chip binding experiments [Harbison et al. 2004] Transcription factor binding sites [MacIsaac et al. 2006] mRNA binding pull-down experiments [Gerber et al. 2004] Literature-curated signaling interactions Supported interactions Decision tree regression 70 ■ L₁ Regression 60-■ Bayesian L₁(Metaprior) 50 Reg 30 20 % Module %interactions Lee et al., PLOS Genetics 2009





Summary

- Motivation
 - Why are we interested in inferring the regulatory network?
- Algorithms for learning regulatory networks
 - Tree-CPDs with Bayesian score
 - Linear Gaussian CPDs with regularization
- Evaluation of the method
 - Statistical evaluation
 - Biological interpretation
- Advanced topics
 - Structure learning via bootstrapping.
 - Inferring overlapping biological processes.
 - Incorporating prior knowledge.
- Systems genetics
 - Traditional approach
 - Systems biology approach