

Regulatory Motif Finding II

Lectures 13 – Nov 9, 2011 CSE 527 Computational Biology, Fall 2011

Instructor: Su-In Lee TA: Christopher Miles

Monday & Wednesday 12:00-1:20

Johnson Hall (JHN) 022

1

Outline

- Regulatory motif finding
 - PWM, scoring function
 - Expectation-Maximization (EM) methods (MEME)
 - Gibbs sampling methods (AlignAce, BioProspector)
- More computational methods
 - Greedy search method (CONSENSUS)
 - Phylogenetic foot-printing method
 - Graph-based methods (MotifCut)

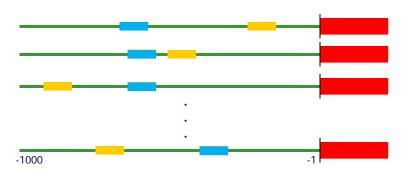
Finding Regulatory Motifs

- Say a transcription factor (TF) controls five different genes
- Each of the five genes will have binding sites for the TF in their promoter region

3

Finding Regulatory Motifs

- Given the upstream sequences of the genes that seem to be regulated by the same TFs,
- Find the TF-binding sites (motifs) in common



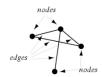
Motif representation

- Consensus sequence
 - May allow "degenerate" symbols in sequence
 - E.g. N=A/C/G/T; W=A/T; S=C/G; R=A/G; Y=T/C etc NTCATWCAS
- Position specific scoring matrix
 - Position weight matrix (PWM)

A graph

Node: k-mer

Edge: distance between k-mers

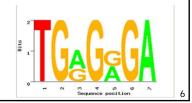


ŗ

Position Weight Matrix (PWM)

- The most widely used representation
- Assign probability to (A,G,C,T) in each position
- Example
 - Say that a TF binds to the following 5 sequences:
- Representations called motif logos illustrate the conserved and variable regions of a motif

Α	0	0	0.6	0	0.4	0	1
С	0	0	0	0	0	0	0
G	0	1	0.4	1	0.6	1	0
Т	1	0	0	0	0	0	0



Position Weight Matrix (PWM)

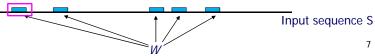
- Let W be a PWM for a motif of length k, and S be an input sequence.
- How is a subsequence s (of length k) in S evaluated?
 - Probabilistic score P(s|W)
 - e.g. W (k=7):

Α	0.1	0	0.6	0	0.4	0	1
С	0	0	0	0	0	0	0
G	0	1	0.4	1	0.6	1	0
Т	0.9	0	0	0	0	0	0

s: AGAGAGA

P(s|W) = (0.1) x (1) x (0.6) x (1) x (0.4) x (1) x (1)

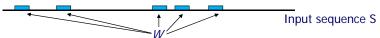
 Given W, we can scan the input sequence S for good matches to the motif



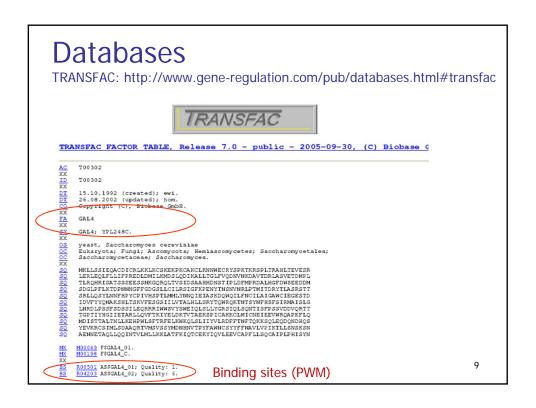
Motif Finding Using EM Algorithm

- MEME works by iteratively refining PWMs and identifying sites for each PWM
 - 1. Estimate motif model (PWM)
 - Start with a k-mer seed (random or specified)
 - Build a PWM by incorporating some of background frequencies

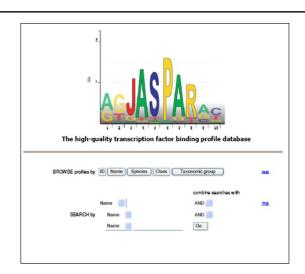
- 2. Identify examples of the model
 - For every k-mer in the input sequences, identify its probability given the PWM model.



- 3. Re-estimate the motif model
 - Calculate a new PWM, based on the weighted frequencies of all k-mers in the input sequences
- 4. Iterate 2 & 3 until convergence.



More Databases



Species-specific:

SCPD (yeast) http://rulai.cshl.edu/SCPD/

DPInteract (e. coli) http://arep.med.harvard.edu/dpinteract/

Drosophila DNase I Footprint Database (v2.0) http://www.flyreg.org/

Outline

- Regulatory motif finding
 - PWM, scoring function
 - Expectation-Maximization (EM) methods (MEME)
 - Gibbs sampling methods (AlignAce, BioProspector)
- More computational methods

- Greedy search method (CONSENSUS)
- Phylogenetic foot-printing method
- Graph-based methods (MotifCut)

11

CONSENSUS

- Popular algorithm for motif discovery, that uses a greedy approach
- Motif model: Position Weight Matrix (PWM)
- Motif score: information content

Information Content

- PWM W:
 - $W_{\beta k}$ = frequency of base β at position k
 - q_{β} = frequency of base β by chance

W _{A1} , W _{C1} , W _{G1} , W _{T1}									
Α	0.1	Ó,	6.6/	0	0.4	0	1		
С	0	.0	.o	0	0	0	0		
G	0	1/	0.4	1	0.6	1	0		
Т	0.9	0	0	0	0	0	0		

Information content of W:

$$\sum_{k} \sum_{\beta \in \{A,C,G,T\}} W_{\beta k} \log \frac{W_{\beta k}}{q_{\beta}}$$

13

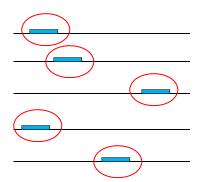
Information Content

- If $W_{\beta k}$ is always equal to q_{β} , i.e., if W is similar to random sequence, information content of W is 0.
- If W is different from q, information content is high.
- Information content of W:

$$\sum_{k} \sum_{\beta \in \{A,C,G,T\}} W_{\beta k} \log \frac{W_{\beta k}}{q_{\beta}}$$

CONSENSUS: Basic Idea

• Find a set of subsequences, one in each input sequence



Set of subsequences define a PWM.

Goal: This PWM should have high information content.

High information content means that the motif "stands out".

15

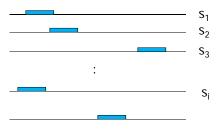
Start with a subsequence in one input sequence

Build the set of subsequences incrementally, adding one subsequence at a time

Until the entire set is built

CONSENSUS: the greedy heuristic

- Suppose we have built a partial set of subsequences $\{s_1, s_2, ..., s_i\}$ so far.
- Have to choose a subsequence S_{i+1} from the input sequence S_{i+1}
- Consider each subsequence s of S_{i+1}
- Compute the score (information content) of the PWM made from {s₁,s₂,...,s_i,s}
- Choose the s that gives the PWM with highest score, and assign $s_{i+1} \leftarrow s$

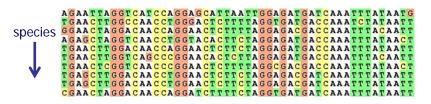


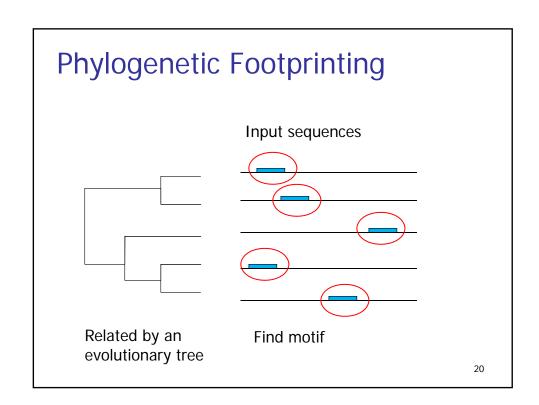
Outline

- Regulatory motif finding
 - PWM, scoring function
 - Expectation-Maximization (EM) methods (MEME)
 - Gibbs sampling methods (AlignAce, BioProspector)
- More computational methods
 - Greedy search method (CONSENSUS)
 - Phylogenetic foot-printing method
 - Graph-based methods (MotifCut)

Phylogenetic footprinting

- So far, the input sequences were the "upstream" (promoter) regions of genes believed to be "co-regulated"
- A special case: the input sequences are promoter regions of the same gene, but from multiple species.
 - Such sequences are said to be "orthologous" to each other.





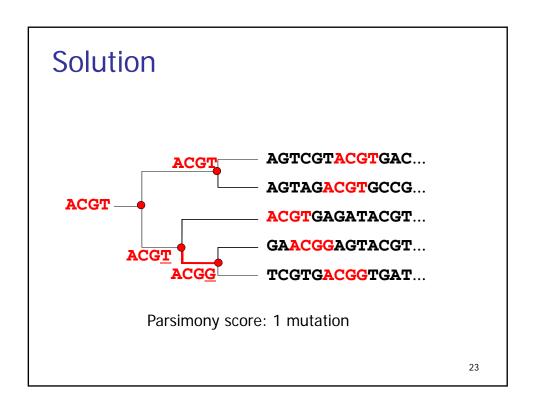
Phylogenetic Footprinting

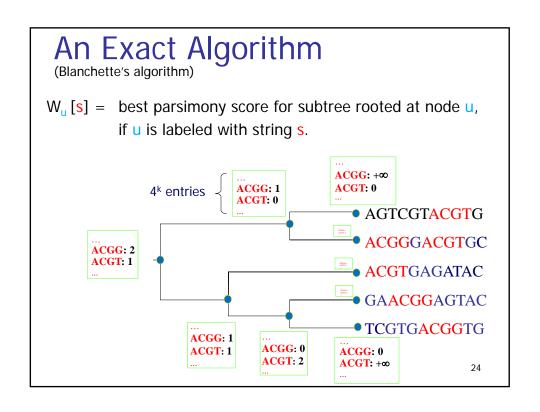
- Formally speaking,
- Given:
 - Phylogenetic tree *T*,
 - set of orthologous sequences at leaves of T,
 - length *k* of motif
 - threshold d
- Problem:
 - Find each set S of k-mers, one k-mer from each leaf, such that the "parsimony" score of S in T is at most d.

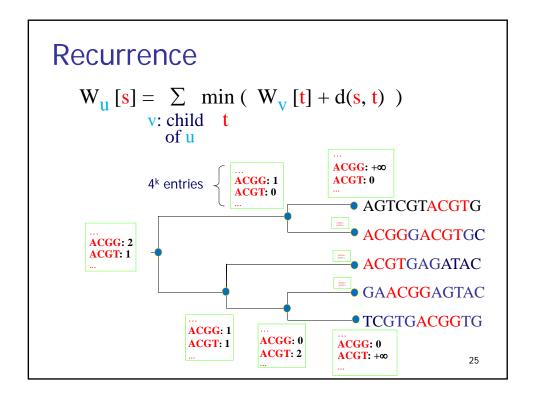
21

Small Example

Size of motif sought: k = 4







Running Time

$$\begin{aligned} W_{u}^{}\left[s\right] &= \sum_{\substack{v: \ child \\ of \ u}} min\left(\begin{array}{c} W_{v}^{}\left[t\right] + d(s,t) \end{array} \right) \end{aligned}$$

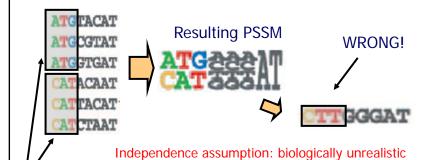
$$O(k \cdot 4^{2k})$$
 time per node

Outline

- Regulatory motif finding
 - PWM, scoring function
 - Expectation-Maximization (EM) methods (MEME)
 - Gibbs sampling methods (AlignAce, BioProspector)
- More computational methods
 - Greedy search method (CONSENSUS)
 - Phylogenetic foot-printing method
 - Graph-based methods (MotifCut)

27

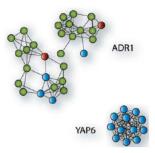
Drawbacks of Existing Methods



Perfectly conserved nucleotide dependency — ATG and CAT

Overview

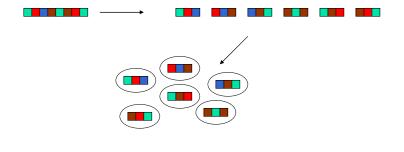
- Nodes: k-mers of input sequence
- Edges: pairwise k-mer similarity
- Motif search → maximum density subgraph



29

MotifCut Algorithm

- Convert sequence into a collection of k-mers
 - Each overlap/duplicate considered distinct



MotifCut Algorithm

- For every pair of vertices (v_i, v_j) create an edge with weight w_{ij}
- $w_{ij} = f(\# \text{ mismatches bet. k-mers in } v_i, v_j)$

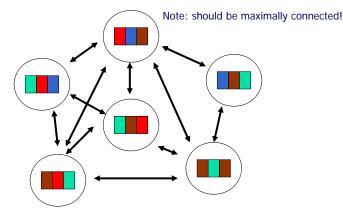
$$w_{ij} = \frac{\Pr(v_i \in M \mid v_j \in M) + \Pr(v_j \in M \mid v_i \in M)}{\theta(\Pr(v_i \in B)) + \theta(\Pr(v_j \in B))}$$

Background distribution

 $M \rightarrow k$ -mers of binding site $B \rightarrow background k$ -mers

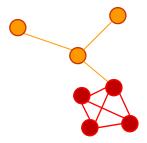
31

Resulting Graph



Motif Finding

Find highest density subgraph



- Density is defined as sum of edge weights per node
- Find the maximum density subgraph (MDS)

What After Motif Finding?

- Experiments to confirm results
- DNasel footprinting & gel-shift assays
- Tells us which subsequences are the binding sites

Before Motif Finding

- How do we obtain a set of sequences on which to run motif finding?
- In other words, how do we get genes that we believe are regulated by the same transcription factor?
- Two high-throughput experimental methods: ChIP-chip and microarray.

36

Before Motif Finding

- ChIP-chip
 - Take a particular transcription factor TF
 - Take hundreds or thousands of promoter sequences
 - Measure how strongly TF binds to each of the promoter sequences
 - Collect the set to which TF binds strongly, do motif finding on these
- Gene expression data
 - Collect set of genes with similar expression (activity) profiles and do motif finding on these.

