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Lectures 13 – Nov 9, 2011
CSE 527 Computational Biology, Fall 2011

Instructor: Su-In Lee
TA: Christopher Miles

Monday & Wednesday  12:00-1:20
Johnson Hall (JHN) 022

Regulatory Motif Finding II
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Outline
 Regulatory motif finding

 PWM, scoring function
 Expectation-Maximization (EM) methods (MEME)
 Gibbs sampling methods (AlignAce, BioProspector)

 More computational methods
 Greedy search method (CONSENSUS)
 Phylogenetic foot-printing method
 Graph-based methods (MotifCut)
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Finding Regulatory Motifs
 Say a transcription factor (TF) controls five 

different genes

 Each of the five genes will have binding sites for 
the TF in their promoter region

Gene 1
Gene 2
Gene 3
Gene 4
Gene 5

Binding sites for TF
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Finding Regulatory Motifs
 Given the upstream sequences of the genes that 

seem to be regulated by the same TFs,
 Find the TF-binding sites (motifs) in common
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Motif representation
 Consensus sequence

 May allow “degenerate” symbols in sequence
 E.g. N=A/C/G/T; W=A/T; S=C/G; R=A/G; Y=T/C etc

 Position specific scoring matrix
 Position weight matrix (PWM)

 A graph
 Node: k-mer
 Edge: distance between k-mers
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NTCATWCAS

Position Weight Matrix (PWM)
 The most widely used representation
 Assign probability to (A,G,C,T) in each position
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A 0 0 0.6 0 0.4 0 1

C 0 0 0 0 0 0 0

G 0 1 0.4 1 0.6 1 0

T 1 0 0 0 0 0 0

 Example
 Say that a TF binds to the 

following 5 sequences:

 Representations called motif 
logos illustrate the conserved 
and variable regions of a motif

TGGGGGA
TGAGAGA
TGGGGGA
TGAGAGA
TGAGGGA
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Position Weight Matrix (PWM)
 Let W be a PWM for a motif of length k, and S be 

an input sequence.
 How is a subsequence s (of length k) in S evaluated?

 Probabilistic score P(s|W)
 e.g. W  (k=7):

s : AGAGAGA
P(s|W) = (0.1) x (1) x (0.6) x (1) x (0.4) x (1) x (1)

 Given W, we can scan the input sequence S  for good 
matches to the motif
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A 0.1 0 0.6 0 0.4 0 1

C 0 0 0 0 0 0 0

G 0 1 0.4 1 0.6 1 0

T 0.9 0 0 0 0 0 0

Input sequence S

W 

Motif Finding Using EM Algorithm
 MEME works by iteratively refining PWMs and 

identifying sites for each PWM
 1. Estimate motif model (PWM)

 Start with a k-mer seed (random or specified)
 Build a PWM by incorporating some of background frequencies

 2. Identify examples of the model
 For every k-mer in the input sequences, identify its probability given 

the PWM model.

 3. Re-estimate the motif model
 Calculate a new PWM, based on the weighted frequencies of all k-

mers in the input sequences
 4. Iterate 2 & 3 until convergence.

Input sequence S
W 

PWM
Current motif
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Databases
TRANSFAC: http://www.gene-regulation.com/pub/databases.html#transfac

Binding sites (PWM)
9

More 
Databases

10

Species-specific:
SCPD (yeast) http://rulai.cshl.edu/SCPD/

DPInteract (e. coli) http://arep.med.harvard.edu/dpinteract/

Drosophila DNase I Footprint Database (v2.0) http://www.flyreg.org/
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Outline
 Regulatory motif finding

 PWM, scoring function
 Expectation-Maximization (EM) methods (MEME)
 Gibbs sampling methods (AlignAce, BioProspector)

 More computational methods
 Greedy search method (CONSENSUS)
 Phylogenetic foot-printing method
 Graph-based methods (MotifCut)
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CONSENSUS
 Popular algorithm for motif discovery, that uses a 

greedy approach
 Motif model: Position Weight Matrix (PWM)
 Motif score: information content
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Information Content
 PWM W:

 Wk = frequency of base  at position k
 q = frequency of base  by chance

 Information content of W:

W k log
W k

q {A ,C ,G ,T }


k


13

A 0.1 0 0.6 0 0.4 0 1

C 0 0 0 0 0 0 0

G 0 1 0.4 1 0.6 1 0

T 0.9 0 0 0 0 0 0

WA1, WC1, WG1, WT1

Information Content
 If Wk is always equal to q, i.e., if W is similar to 

random sequence, information content of W is 0.
 If W is different from q, information content is 

high.

 Information content of W:

14

W k log
W k

q {A ,C ,G ,T }


k


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CONSENSUS: Basic Idea
 Find a set of subsequences, one in each input sequence

Set of subsequences define a 
PWM.

Goal: This PWM should have 
high information content.

High information content means
that the motif “stands out”.
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CONSENSUS: Basic Idea

Start with a subsequence in 
one input sequence

Build the set of subsequences
incrementally, adding one 
subsequence at a time

Until the entire set is built
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CONSENSUS: the greedy heuristic
 Suppose we have built a partial set of subsequences {s1,s2,…,si} 

so far.
 Have to choose a subsequence si+1 from the input sequence Si+1

 Consider each subsequence s of Si+1

 Compute the score (information content) of the PWM made from 
{s1,s2,…,si,s} 

 Choose the s that gives the PWM with highest score, and assign 
si+1  s

s1

si

s2

s3

:

Outline
 Regulatory motif finding

 PWM, scoring function
 Expectation-Maximization (EM) methods (MEME)
 Gibbs sampling methods (AlignAce, BioProspector)

 More computational methods
 Greedy search method (CONSENSUS)
 Phylogenetic foot-printing method
 Graph-based methods (MotifCut)
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Phylogenetic footprinting
 So far, the input sequences were the “upstream”

(promoter) regions of genes believed to be “co-
regulated”

 A special case: the input sequences are promoter 
regions of the same gene, but from multiple species.
 Such sequences are said to be “orthologous” to each other.

19

species

Phylogenetic Footprinting

Input sequences

Related by an
evolutionary tree

Find motif

20
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Phylogenetic Footprinting
 Formally speaking,

 Given:
 Phylogenetic tree T,
 set of orthologous sequences at leaves of T,
 length k of motif
 threshold d

 Problem:
 Find each set S of k-mers, one k-mer from each leaf, 

such that the “parsimony” score of S in T is at most d.
21

AGTCGTACGTGAC... (Human)

AGTAGACGTGCCG... (Chimp)

ACGTGAGATACGT... (Rabbit)

GAACGGAGTACGT... (Mouse)

TCGTGACGGTGAT... (Rat)

Size of motif sought: k = 4

Small Example

22
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Parsimony score: 1 mutation

AGTCGTACGTGAC...

AGTAGACGTGCCG...

ACGTGAGATACGT...

GAACGGAGTACGT...

TCGTGACGGTGAT...ACGG
ACGT

ACGT

ACGT

Solution
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An Exact Algorithm
(Blanchette’s algorithm)

Wu [s] = best parsimony score for subtree rooted at node u,
if u is labeled with string s.

AGTCGTACGTG

ACGGGACGTGC

ACGTGAGATAC

GAACGGAGTAC

TCGTGACGGTG

… 
ACGG: 2
ACGT: 1
...

… 
ACGG: 0
ACGT: 2
...

… 
ACGG: 1
ACGT: 1
...

… 

ACGG: +
ACGT: 0
...

… 
ACGG: 1 
ACGT: 0 
...

4k entries

… 
ACGG: 0 
ACGT: +
...

… 
ACGG:
ACGT :0   
...

… 
ACGG:
ACGT :0   
...

… 
ACGG:
ACGT :0   
...

24
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Wu [s] =    min (  Wv [t] + d(s, t)  ) 
v: child   t

of u

Recurrence

25

AGTCGTACGTG

ACGGGACGTGC

ACGTGAGATAC

GAACGGAGTAC

TCGTGACGGTG

… 
ACGG: 2
ACGT: 1
...

… 
ACGG: 0
ACGT: 2
...

… 
ACGG: 1
ACGT: 1
...

… 

ACGG: +
ACGT: 0
...

… 
ACGG: 1 
ACGT: 0 
...

4k entries

… 
ACGG: 0 
ACGT: +
...

… 
ACGG:
ACGT :0   
...

… 
ACGG:
ACGT :0   
...

… 
ACGG:
ACGT :0   
...

Running Time
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Wu [s] =    min (  Wv [t] + d(s, t)  ) 
v: child   t

of u

O(k 42k )
time per node
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Outline
 Regulatory motif finding

 PWM, scoring function
 Expectation-Maximization (EM) methods (MEME)
 Gibbs sampling methods (AlignAce, BioProspector)

 More computational methods
 Greedy search method (CONSENSUS)
 Phylogenetic foot-printing method
 Graph-based methods (MotifCut)
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Drawbacks of Existing Methods

Perfectly conserved nucleotide dependency — ATG and CAT

Resulting PSSM
WRONG!

Independence assumption: biologically unrealistic

28
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Overview
 Nodes: k-mers of input sequence

 Edges: pairwise k-mer similarity

 Motif search  maximum density subgraph

29

MotifCut Algorithm
 Convert sequence into a collection of k-mers

 Each overlap/duplicate considered distinct

30
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MotifCut Algorithm
 For every pair of vertices (vi, vj) create an edge 

with weight wij

 wij = f(# mismatches bet. k-mers in vi, vj)
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   
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Background distribution

M  k-mers of binding site
B  background k-mers

Resulting Graph

Note: should be maximally connected!

32
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Motif Finding
 Find highest density subgraph

 Density is defined as sum of edge weights per node
 Find the maximum density subgraph (MDS)

What After Motif Finding ?
 Experiments to confirm results
 DNaseI footprinting & gel-shift assays
 Tells us which subsequences are the binding sites

35
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Before Motif Finding
 How do we obtain a set of sequences on which to 

run motif finding ?
 In other words, how do we get genes that we 

believe are regulated by the same transcription 
factor ?

 Two high-throughput experimental methods: 
ChIP-chip and microarray.
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Before Motif Finding
 ChIP-chip

 Take a particular transcription factor TF
 Take hundreds or thousands of 

promoter sequences
 Measure how strongly TF binds to each 

of the promoter sequences
 Collect the set to which TF binds 

strongly, do motif finding on these

 Gene expression data
 Collect set of genes with similar 

expression (activity) profiles and do 
motif finding on these.
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