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Lectures 14 – Nov 14, 2011
CSE 527 Computational Biology, Fall 2011

Instructor: Su-In Lee
TA: Christopher Miles

Monday & Wednesday  12:00-1:20
Johnson Hall (JHN) 022

Inferring Protein-Signaling 
Networks
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Course Announcement
 http://www.cs.washington.edu/education/courses/cse527/11au/notes.html
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Outline
 Regulatory motif finding

 More computational methods
 Greedy search method (CONSENSUS)
 Phylogenetic foot-printing method
 Graph-based methods (MotifCut)

 Before/ after motif finding

 Inferring signaling networks
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Drawbacks of Existing Methods

Perfectly conserved nucleotide dependency — ATG and CAT

Resulting PSSM
WRONG!

Independence assumption: biologically unrealistic
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Overview: Graph-Based Representation
 Nodes: k-mers of input sequence

 Edges: pairwise k-mer similarity

 Motif search  maximum density subgraph
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MotifCut Algorithm
 Convert sequence into a collection of k-mers

 Each overlap/duplicate considered distinct
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k=3

Each k-mer is a node
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Motif Graph Representation
 Nodes are k-mers
 Edge weights are distances between k-mers

 How the edge weights are determined? (later)
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AGTGGGAC

AGTGGGAC

AGTGCGAC

AGTGCTAC
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 Same k-mer node can appear multiple times.
 If a certain k-mer appears frequently in the input 

sequences, there are many nodes for that k-mer. 

 Finding over-represented similar k-mers → Finding 
maximum density subgraph (MDS)

Motif Finding
 Find highest density subgraph

 Density is defined as sum of edge weights per 
node: graph density λ=|E|/|V|.

 Find the maximum density subgraph (MDS)
8
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Motif Dependency in MDS
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MotifCut Algorithm
 Read input sequences
 Generate graph as previously described

 K-mers are generated by shifting one base pair
 Each k-mer in the sequence gets a node, including identical k-mers
 Graph contains as many nodes as there are base pairs
 Connect edges with weights based on distances between nodes

 Find maximum density subgraphs (MDSs) 10
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Edge Weights
 Semantics: Edge weight is the likelihood of two k-mers

to be in the same motif

 Use Hamming distance as a way to quantify distance 
between k-mers

GG AA CC CC GG
GG AA CC CC GG 0TT AACC 123
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Edge Weights
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Background distribution
M  k-mers of binding site
B  background k-mers

 Let’s make this a bit more precise:
 For every pair of vertices (vi, vj) create an edge with weight wij

 wij = f(Hamming distance between k-mers in vi, vj)

 But how to compute ? 

 Simulate it!
 Way too many variables to account for analytically: 

Background model, kmer length, hamming distance, etc…
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Maximum Density Subgraph
 Standard graph theory method

 Max-flow / min-cut: simple and easy to implement
 However, its running time is O(nm log(n2m)), where n is 

the number of vertices and m is the number of edges

 Need faster method

 Developed heuristic approach that utilizes max-
flow / min-cut method with modifications
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MotifCut Algorithm
 Find the maximum density subgraph (MDS)
 MDS optimization
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Remove all edges 
below a certain 
threshold 

Pick one vertex 
(do this for every 
vertex)

Put back all 
neighboring edges 
for that vertex

Use standard 
algorithm to 
calculate densest 
subgraph

Repeat for every vertex
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Synthetic Experiment Results
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Input size in nucleotides
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MotifCut: regulatory motifs finding with maximum density subgraphs. Fratkin et al. Bioinformatics (2006).

Yeast Test Results
 Gold standard data (Harbinson et al., 2004)

16
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Outline
 Regulatory motif finding

 More computational methods
 Greedy search method (CONSENSUS)
 Phylogenetic foot-printing method
 Graph-based methods (MotifCut)

 Before/ after motif finding

 Inferring signaling networks
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What After Motif Finding ?
 Experiments to confirm results
 DNaseI footprinting & gel-shift assays
 Tells us which subsequences are the binding sites

18
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Before Motif Finding
 How do we obtain a set of sequences on which to 

run motif finding ?
 In other words, how do we get genes that we believe 

are regulated by the same transcription factor ?
 Two high-throughput experimental methods: ChIP-

chip and microarray.

19

Gene 1
Gene 2
Gene 3
Gene 4
Gene 5

Binding sites for TF

Before Motif Finding
 ChIP-chip

 Take a particular transcription factor TF
 Take hundreds or thousands of promoter 

sequences
 Measure how strongly TF binds to each 

of the promoter sequences
 Collect the set to which TF binds 

strongly, do motif finding on these

 Gene expression data
 Collect set of genes with similar 

expression (activity) profiles and do 
motif finding on these.

20
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Outline
 Regulatory motif finding

 More computational methods
 Before/ after motif finding

 Inferring signaling networks
 Signaling network
 Flow cytometry
 Bayesian networks

21

Gene Regulation
 Transcriptional regulation is one of many 

regulatory mechanisms in the cell
Focus of today’s lecture

Source: Mallery, University of Miami 22
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Post-translational Modification
 Most proteins undergo some form of modification following translation.
 Phosphorylation is the most studied and best understood post-

translation modification.
 Addition of a phosphate (PO43-) group to a protein
 It activates or deactivates many protein enzymes

23

ProteinPO4

Receptor site

ProteinPO4

Change cell function

Hormones,  
neurotransmitters, 
transcription factors

Activators, 
repressors,  
other proteins

Phosphorylation

 Interventions – artificially introducing chemicals which 
activate/repress the phosphorylation of a protein.

Cellular Signaling Networks
 Cellular signaling

 Part of a complex system of communication that governs 
basic cellular activities and coordinates cell actions. 

 The ability of cells to perceive and correctly respond to their 
microenvironment is the basis of development, tissue 
repair, and immunity as well as normal tissue homeostasis.

24
Overview of signal transduction 
pathways
Source: Wikipedia



13

Cellular Signaling Networks

Overview of signal transduction 
pathways
Source: Wikipedia
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 Reversible phosphorylation is a major regulatory 
mechanism controlling the signaling pathway.
 Many signaling pathways, including the insulin/IGF-1 signaling 

pathway, transduce signals from the cell surface to downstream 
targets via tyrosine kinases and phosphatases.

 Elucidating complex signaling pathway phosphorylation 
events can be difficult.

Signaling Networks – Example
 Classic signaling network and points of intervention
 Human T cell (white blood cell)

26
Source: Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).

= Measured 
proteins
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Flow Cytometry
 Quantitatively measure as given proteins’ expression 

levels and their phosphorylation states.

Flow

Laser

Cell suspension

Detector

2
3

4

Protein A Protein B Protein C

Relative protein 
levels per cell 27

Because each cell is 
treated as an independent 
observation, flow 
cytometric data provide a 
statistically large sample

Flow Cytometry Data
Regulatory Networks:
Gene Expression Data

Experiments
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Signal Networks:
Flow Cytometry Data

Intervention conditions
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praf
pmek
plcg

PIP2
PIP3

p44/42
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Module

Repressor
binding site

Repressor

Activator
binding site

Activator

RNA

Gene expression levelsPhosphorylated protein levels

Activator or Inhibitor 28

ProteinPO4 ProteinPO4



15

Bayesian Networks
 Directionality via intervention

 Structure preservation

29

Bayesian Networks
 Directed Acyclic Graphs (DAGs)

30
Bayesian network analysis of signaling networks: a primer. Pe’er D. Science STKE (2005).

B

Conditional independence

P( B | D, A, E ) = P( B | A, E )

( B D | A, E )

Independent

Parents of B
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Bayesian Networks
 Signal network

(protein regulation)
 Regulatory networks

(gene regulation)

Continuous gene 
expression levels 

Discrete phosphorylated protein 
levels

Protein A

Protein C Protein D

Protein E Protein F

Protein B

Individual cells, 
Activator/Inhibitors

= 5

Gene E Gene F

Gene B Module 2

Module 3

Module 1
Gene A

Gene C Gene D

Heat Shock

Structure Learning
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Signal Networks:
Flow Cytometry Data

Intervention conditions

500 1000 1500 2000

praf
pmek
plcg

PIP2
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p44/42
pakts473

PKA
PKC
P38
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Learn DAG structure

Protein A

Protein C Protein D

Protein E Protein F

Protein B
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Overview

Influence     
diagram of 
measured 
variables

Bayesian 
Network  
Analysis

Datasets  
of cells

• condition ‘a’
• condition ‘b’
•condition…‘n’

Multiparameter Flow Cytometry

perturbation a

perturbation n

perturbation b

Conditions (multi well format)

Source: Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).
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Local Probability Model
 Conditional Probability Tables

34

D = Data  G=Graph
θ = CPT values for each node X
θijk = P( Xi=k | Parents(Xi)=j )
Nijk = # times Xi=k and 

Parents(Xi)=j in the Data

ΘC10 ΘC11

ΘC20 ΘC21

ΘC30 ΘC31

ΘC40 ΘC41
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Maximum Likelihood Score
 Find G that maximizes:

P( Data=D | Graph=G, ΘMLE )

35

D = Data  G=Graph  
θ = CPT values for each node X
θijk = P( Xi=k | Parents(Xi)=j )
Nijk = # times Xi=k and 

Parents(Xi)=j in the DataNijk = # times Xi=k and 
Parents(Xi)=j in the Data

θijk = P( Xi=k | Parents(Xi)=j )

K=#discrete levels of X

Θijk
ML = Nijk / ∑k Nijk

ΘC10 ΘC11

ΘC20 ΘC21

ΘC30 ΘC31

ΘC40 ΘC41

Structure Score
 Bayesian score (Structure | Data)

= log P(Data | Structure) + log P(Structure)

 Decomposability
log P(Data | Structure )
= ΣX FamScore( X, Parents(X) | Data ) 

= ΣX log P( X, Parents(X) | Data ) 

Bayesian network analysis of signaling networks: a primer. Pe’er D. Science STKE (2005).

X

36
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Structure Score
 P( Data=D | Graph=G )

= ∫ P(D|G,θ)  P(θ|G)  dθ

37

Dirichlet prior ~ Dir(α)Multinomial
(see page 35)

D = Data  G=Graph  
θ = CPT values for each node X
θijk = P( Xi=k | Parents(Xi)=j )
Nijk = # times Xi=k and 

Parents(Xi)=j in the Data

Nijk = # times Xi=k and 
Parents(Xi)=j in the Data

θijk = P( Xi=k | Parents(Xi)=j )

K=#discrete levels of X

Θij = Simplex  {∑kθijk = 1}

Dirichlet 
normalizer

D. Heckerman. A Tutorial on Learning with Bayesian Networks.  1999, 1997, 1995.
G. Cooper E. Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine 
Learning, 9, 309-347. 1992.

Structure Score
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D = Data  G=Graph  
θ = CPT values for each node X
θijk = P( Xi=k | Parents(Xi)=j )
Nijk = # times Xi=k and 

Parents(Xi)=j in the Data

G. Cooper E. Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine 
Learning, 9, 309-347. 1992.
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Structure Score

39

D = Data  G=Graph  
θ = CPT values for each node X
θijk = P( Xi=k | Parents(Xi)=j )
Nijk = # times Xi=k and 

Parents(Xi)=j in the Data

Bayesian Score
 P( Data=D | Graph=G )

= ∫ P(D|G,θ)  P(θ|G)  dθ
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D = Data  G=Graph  
θ = CPT values for each node X
θijk = P( Xi=k | Parents(Xi)=j )
Nijk = # times Xi=k and 

Parents(Xi)=j in the Data

Θijk
BS = (Nijk + αijk) / ∑k (Nijk + αijk)

ΘC10 ΘC11

ΘC20 ΘC21

ΘC30 ΘC31

ΘC40 ΘC41

Dirichlet prior ~ Dir(α)Multinomial

“Imaginary” counts


