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Outline

= Regulatory motif finding

= More computational methods
= Greedy search method (CONSENSUS)
= Phylogenetic foot-printing method
= Graph-based methods (MotifCut) <:|

= Before/ after motif finding

= Inferring signaling networks

Drawbacks of Existing Methods
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Perfectly conserved nucleotide dependency — ATG and CAT




Overview: Graph-Based Representation

= Nodes: k-mers of input sequence
» Edges: pairwise k-mer similarity

= Motif search - maximum density subgraph

MotifCut Algorithm

= Convert sequence into a collection of k-mers
= Each overlap/duplicate considered distinct

k=3
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/ Each k-mer is a node
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Motif Graph Representation

Nodes are k-mers

Edge weights are distances between k-mers
= How the edge weights are determined? (later)

Same k-mer node can appear multiple times.

» If @ certain k-mer appears frequently in the input
sequences, there are many nodes for that k-mer.

Finding over-represented similar k-mers - Finding
maximum density subgraph (MDS)

Motif Finding
= Find highest density subgraph
@ ()

@
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= Density is defined as sum of edge weights per
node: graph density A=|E|/|V|.

= Find the maximum density subgraph (MDS)




Motif Dependency in MDS

Motif with a Candidate K-Mer

Dependency PSSH with incorrect
dependencies
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MotifCut Algorithm

= Read input sequences

= Generate graph as previously described
= K-mers are generated by shifting one base pair

= Each k-mer in the sequence gets a node, including identical k-mers
= Graph contains as many nodes as there are base pairs

= Connect edges with weights based on distances between nodes
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= Find maximum density subgraphs (MDSs) 10




Edge Weights

= Semantics: Edge weight is the likelihood of two k-mers
to be in the same motif
()

@
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= Use Hamming distance as a way to quantify distance
between k-mers
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Edge Weights

= Let's make this a bit more precise:
= For every pair of vertices (v;, v;) create an edge with weight w;;

= Wy = f(Hamming distance between k-mers in v;, v;)

~ Pr(vi eMl|yv, eM)+Pr(vj eM |y, EM)
' [oPr(v, < B)+oPr(v, < B]]

t M - k-mers of binding site
Background distribution B - background k-mers

= But how to compute Pr(v, e M|v, e M) ?

= Simulate it!

= Way too many variables to account for analytically:
Background model, kmer length, hamming distance, etc...!?




Maximum Density Subgraph

= Standard graph theory method
= Max-flow / min-cut: simple and easy to implement

= However, its running time is O(nm log(n?m)), where n is
the number of vertices and m is the number of edges

= Need faster method

= Developed heuristic approach that utilizes max-
flow / min-cut method with modifications
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MotifCut Algorithm

= Find the maximum density subgraph (MDS)
= MDS optimization

Remove all eddes A B Pick one vertex
9 (do this for every
below a certain vertex)
threshold
D
Use standard

Put back all algorithm to
neighboring edges calculate densest
for that vertex subgraph

Repeat for every vertex 14




Synthetic Experiment Results
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MotifCut: regulatory motifs finding with maximum density subgraphs. Fratkin et al. Bioinformatics (2006).
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Yeast Test Results
= Gold standard data (Harbinson et al., 2004)
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Outline

= Regulatory motif finding

= More computational methods
= Greedy search method (CONSENSUS)
= Phylogenetic foot-printing method
= Graph-based methods (MotifCut)

= Before/ after motif finding <::|

= Inferring signaling networks

17

What After Motif Finding ?

= Experiments to confirm results
= DNasel footprinting & gel-shift assays
= Tells us which subsequences are the binding sites

18




Before Motif Finding

= How do we obtain a set of sequences on which to

run motif finding ?

= In other words, how do we get genes that we believe
are regulated by the same transcription factor ?

= Two high-throughput experimental methods: ChIP-

chip and microarray.

= - I Gene 1

= I I Gene 2
Y o 1 Gene 3

| [ /- BN Gened
=\ / BN Genes

\WBinding sites for TF

Before Motif Finding

= ChIP-chip
= Take a particular transcription factor TF

= Take hundreds or thousands of promoter
sequences

= Measure how strongly TF binds to each
of the promoter sequences

= Collect the set to which TF binds
strongly, do motif finding on these

= Gene expression data

= Collect set of genes with similar
expression (activity) profiles and do
motif finding on these.




Outline

= Regulatory motif finding
= More computational methods
= Before/ after motif finding

= Inferring signaling networks <j
= Signaling network
= Flow cytometry
= Bayesian networks

21

Gene Regulation

= Transcriptional regulation is one of many
regulatory mechanisms in the cell

Focus of today’s lecture

Post-translational control

Protein activation
(by chemical modification)

E Feedback inhibition
‘ (protein inhibits
transcription of its
own gene)

DNA PR

Source: Mallery, University of Miami 22




Post-translational Modification

= Most proteins undergo some form of modification following translation.
= Phosphorylation is the most studied and best understood post-
translation modification.
= Addition of a phosphate (PO43") group to a protein
= It activates or deactivates many protein enzymes

Phosphorylation
Ad o @D = OD
Activators, Receptor site @ @ omones,
repressors, _ :> ' neurotransmitters,
other proteins transcription factors

% I:> Change cell function

= Interventions — artificially introducing chemicals which

activate/repress the phosphorylation of a protein. 23

Cellular Signaling Networks

= Cellular signaling

= Part of a complex system of communication that governs
basic cellular activities and coordinates cell actions.

= The ability of cells to perceive and correctly respond to their
microenvironment is the basis of development, tissue
repair, and immunity as well as normal tissue homeostasis.

Mg EAK MK fcamninTcr

Fos Jin

Overview of signal transduction

pathways
Source: Wikipedia




Cellular Signaling Networks

= Reversible phosphorylation is a major regulatory
mechanism controlling the signaling pathway.

targets via tyrosine kinases and phosphatases.

events can be difficult.

= Many signaling pathways, including the insulin/IGF-1 signaling
pathway, transduce signals from the cell surface to downstream

= Elucidating complex signaling pathway phosphorylation
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Source: Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).
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Overview of signal transduction
pathways 25
Source: Wikipedia
= Classic signaling network and points of intervention
= Human T cell (white blood cell)
- = Meas_ured
proteins
- Raf\
5. p2came MAPKKK MAPKKK {Aekﬂl}k
Inhibitors l l
6. G06976 1
7. AKT inh MEK4/7 MEK3/6 Erk1/2
8. Psitect l l §
9.U0126
10. LY284002 .;:mrﬂ (p3s]
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Flow Cytometry

= Quantitatively measure as given proteins’ expression
levels and their phosphorylation states.

Cell suspension

RO —

Because each cell is
treated as an independent

observation, flow Detector

cytometric data provide a 4
statistically large sample 3
V 2
Relative protein
levels per cell 27
Protein A Protein B Protein C

Flow Cytometry Data

Regulatory Networks:

Signal Networks: Gene Expression Data
Flow Cytometry Data Experiments
Cells
(]
2 4
2 8 -
2 £ -Module
500 | “1 000 1500 " 2000
\ Y y
Intervention conditions
| Phosphorylated protein levels | | Gene expression levels |

> ,_\/ RNA
A

Repressor Actlvator

A\ Activator or Inhibitor binding site binding site




Bayesian Networks

= Directionality via intervention

Constructed a
Real Net Bayes Net

& &

= Structure preservation

Constructed
Bayes Net

D
o X ik st

Real Net
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Bayesian Networks
= Directed Acyclic Graphs (DAGS)

Conditional independence

Q o P(B|D,&'5)=P(BI&'5)
B @ Parents of B

(BLD|AE)

() )

Independent

Bayesian network analysis of signaling networks: a primer. Pe’er D. Science STKE (2005).
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= Signal network
(protein regulation)

Individual cells,
Acﬂvator/[nhlb/tors

Discrete phosphorylated protein
levels

Bayesian Networks

= Regulatory networks
(gene regulation)

odule 1

v

@ Module 2]
¥ !
Module 3

Continuous gene
expression levels

@

Structure Learning

Signal Networks:
Flow Cytometry Data

Cells

Proteins

500 1000 1500 2000

Intervention conditions

Learn DAG structure
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Overview

[Conditions (multi well format) } {Multiparameter Flow Cytometry J

perturbation a

perturbation b

Datasets
of cells

» condition ‘a’
» condition ‘b’
econdition...'n”

Influence :
diagram of Bayesian
measured Netwo_rk
variables Analysis
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Source: Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).

Local Probability Model

= Conditional Probability Tables D = DPate G=Grapn

6 = CPT values for each node X

B = P( Xi=k | Parents(Xi)=j )

N; = # times Xi=k and
Parents(Xi)=j in the Data

Conditional Probability Table (CPT)

k —————
| A | B | P(c=0|Pa) | P(C=I|Pa)
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Maximum Likelihood Score

i imi . D = Data G=Graph
= Find G that maximizes: 0 = CPT values for each node X
P( Data=D | Graph=G, © 6 = P( Xi=k | Parents(Xi)=j )
(Dat | P + Owe ) Ny = # times Xi=k and
K=#discrete levels of X Nijk =P# tiﬂge(sx ?§i=}$ a?ﬁ oat Parents(Xi)=j in the Data
arents(Xi)=j in the Data

. f#parent
fiproteins ¢rates

= 1_[ l_[ (H B l ) =) Oy M = Nige/ 3 Nigi

i=1 j:‘] ie=1 T

B = P( Xi=k | Parents(Xi)=j )

Conditional Probability Table (CPT)

k ——

,,
1 1 ll n
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Structure Score

= Bayesian score (Structure | Data)
= log P(Data | Structure) + log P(Structure)

= Decomposability
log P(Data | Structure )
= ¥, FamScore( X, Parents(X) | Data )

OO
P
©
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Bayesian network analysis of signaling networks: a primer. Pe’er D. Science STKE (2005).




Stru Ctu re SCO re g - CDF?'It'ava?uzeEr?oF;heach node X

B = P( Xi=k | Parents(Xi)=j )

] P( Data=D I Graph=G ) Ny = # times _X| _k_and
— IP(DlG e) P(GIG) de Parents(Xi)=j in the Data

PC0,0lG) Fultinomial  Dirichlet prior ~ Dir(a)
(see page 35)

K=#discrete levels of X Njj = # times Xi=k and Dirichlet
Parents(Xi)=j in the Data normalizer
. #pam /
#proteins ¢pqtes v [OK \ K

[ X 1 iy
rolo= || ] L--(H””“ ) By | [0 |20
i=1 j=1  \ k=1 T k=1T

0y =Simplex {3,8y = 1} 8% = P( Xi=k | Parents(Xi)=j )

D. Heckerman. A Tutorial on Learning with Bayesian Networks. 1999, 1997, 1995.
G. Cooper E. Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine 37
Learning, 9, 309-347. 1992.

Stru Ctu re SCO re g == CDI?'It'ava(I;uzeSri?oﬁheach node X

B = P( Xi=k | Parents(Xi)=j )
N; = # times Xi=k and
Parents(Xi)=j in the Data
Dirichlet normalizer

‘‘‘‘‘ I e)
B H oy — ldﬂ lg=1"\"1J
W= AKH T(ZE_ )

#parent
#proteins states

P(D|G) =

i=1 j=1

B;js "+ ikl ) g,
H(ar,)f l_[ e ¥
arent

#proteins”p

states
l—[ [‘!—T B(a;; + N;;
P(DIG) — ( ij 1})

B(a;:
i=1 j=1 (@)

#parent
#proteins grares

P(D|G) =

K
F(Zk=1 %) l_[ ['(atiji + Niji)
i=1 j=1 r(zle aijk + Nijk) [‘(al'jk)

G. Cooper E. Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine 38
Learning, 9, 309-347. 1992.




Stru Ctu re SCO re g == CDF?'It'avaCI;uZeSr?oF;heach node X

B = P( Xi=k | Parents(Xi)=j )
Ny = # times Xi=k and
Parents(Xi)=j in the Data

#proteins #gf : ::;t < ©
P(D|G) = I (Xk=1%ijx) 1—[ T(aijx + Nijr)
- L r(zf{(—la“‘k +NU.’€) r(aljk)
=1 j=1 = %=1
l J
T
#parent

states oK K
(=1 aij I'(a;j + Nij
FamScore(X;,Pa;|D) = log | | Q1 i) | | (@i 1jk)
i) kot

j=1 L(Ek=1 @ijic + N T(aj)
#proteins
Score(G|D) = Z FamScore(X;, Pa;|D)
i=1

Score(G|D) =1logP(D|G) +logP(G)
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Bayesian Score
= P( Data=D | Graph=G ) D = Data G=Graph

6 = CPT values for each node X
= [ P(D|G,B) P(B|G) d6 8 = P( Xi=k | Parents(Xi)=j )
L Y ) Y J Ny = # times Xi=k and
Multinomial Dirichlet prior ~ Dir(a)  Parents(Xi)=j in the Data

#parent

#iproteins ¢rgres " K

o K
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k=1

i=1 j=1

mp 0,5 =(Ny+ay)/ 3, (N + “{1{)

Conditional Probability Table (CPT)

k —
[ A | B | P(c=0jpa) | P(C=1]Pa)
0

“Imaginary” counts

i 0 O + Oy =1
0 | Oc + O =1
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