

Lectures 15 – Nov 16, 2011 CSE 527 Computational Biology, Fall 2011

Instructor: Su-In Lee TA: Christopher Miles

Monday & Wednesday 12:00-1:20

Johnson Hall (JHN) 022

1

Closing the Loop

- Thank you for your participation to the survey!
- Things that helped you
 - A very diverse set of topics
 - Well-organized
 - "Who is with me?"
 - Quality of the slides
- Things that did not help you
 - Lack of depth
 - Intended to be achieved through problem sets and projects
 - HW problems
 - Needs to improve clarity

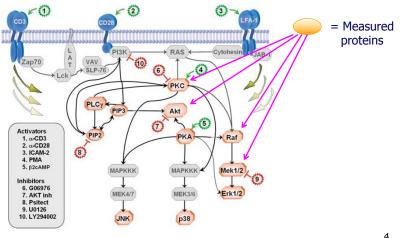
Outline

- Inferring the protein-signaling network
 - Computational problem
 - Structure score
 - Structure search
 - Interventional modeling
 - Evaluation of results
 - Conclusion
- Key learning points
 - Structure learning of Bayesian network
 - Intervention modeling
 - Evaluation of the inferred biological network

3

Inferring Signaling Networks

 Signaling networks are full of post-translational regulatory mechanisms (e.g. phosphorylation)

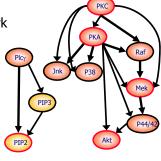


t

Computational Problem

- Given data D
- Cells

 prat prate | Pr
- Goals
 - Infer the causal interaction network

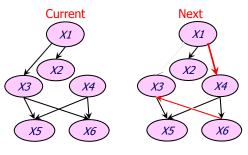


- Structure learning of Bayesian network
 - General machine learning problem
 - Applicable to different areas in network biology

5

Structure Search

- Score-based learning algorithm
 - Given a set of all possible structures and the scoring function, we aim to select the highest scoring network structure.
- Greedy hill-climbing search
 - Make one edge change which maximizes the graph score



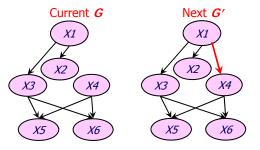
Add an edge Remove an edge Reverse an edge

*Constrained to non-cyclic modifications

Importance of score decomposition

Score Decomposition

- Greedy hill-climbing search
 - Make one edge change which maximizes the graph score



Add an edge

Compare G and G' in terms of the structure score

7

- If score decomposability holds,
 - Score of $G = S_1(X_1, PaX_1) + S_2(X_2, PaX_2) + ... + S_6(X_6, PaX_6)$, where $S_1(X_1, PaX_1)$ is a "FamScore" for node X_1
 - When $G \rightarrow G'$, we only need to re-compute $S_4(X_4, PaX_4)$
- How about commonly used structure scores?

Maximum Likelihood D = Data G=Graph θ = CPT values for each node X $\theta_{ijk} = P(Xi=k \mid Parents(Xi)=j)$ $N_{ijk} = \#$ times Xi=k and Find G that maximizes: Parents(Xi)=j in the Data P(Data=D | Graph=G, Θ_{MLE}) N_{ijk} = # times Xi=k and K=#discrete levels of X Parents(Xi)=j in the Data #proteins #parent $\theta_{iik} = P(Xi=k \mid Parents(Xi)=j)$ [# of (0,0,0)] / [# of (0,0,*)]Conditional Probability Table (CPT) D = [(0,0,0), (0,0,1),(1,1,1), (1,0,0),0 (1,1,1), (1,0,1),= | 0 Θ_{C31} (1,0,0), (1,0,1)] 8

Structure Score D = Data G=Graph θ = CPT values for each node X $\begin{array}{l} \theta_{ijk} = P(\ \text{Xi=k} \mid \text{Parents}(\text{Xi}) = j \) \\ N_{ijk} = \# \ \text{times} \ \text{Xi=k} \ \text{and} \\ \text{Parents}(\text{Xi}) = j \ \text{in the Data} \end{array}$ Bayesian score P(Data=D | Graph=G) $= \int P(D|G,\theta) P(\theta|G) d\theta P(\theta_{ij1},...,\theta_{ijK}) \sim \prod_{k=1}^{K} P(\theta_{ij1},...,\theta_{ijK})$ Dirichlet prior $\sim Dir(\alpha)$ $P(D, \theta | G)$ $N_{ijk} = \#$ times Xi=k and Dirichlet K=#discrete levels of X Parents(Xi)=j in the Data #proteins #parent states $\Theta_{ii} = \text{Simplex } \{\sum_{k} \theta_{iik} = 1\}$ $\theta_{iik} = P(Xi=k \mid Parents(Xi)=j)$ D. Heckerman. A Tutorial on Learning with Bayesian Networks. 1999, 1997, 1995. G. Cooper E. Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning, 9, 309-347. 1992

```
Structure Score

D = \text{Data } G = \text{Graph}
\theta = \text{CPT } \text{values for each node } X
\theta_{ijk} = P(Xi = k \mid \text{Parents}(Xi) = j)
N_{ijk} = \# \text{ times } Xi = k \text{ and }
\text{Parents}(Xi) = j \text{ in the Data}
Dirichlet \text{ normalizer}
B(\alpha) = \int_{\Delta^K} \prod_{k=1}^K \theta_k^{\alpha_k - 1} d\theta = \frac{\prod_{k=1}^K \Gamma(\alpha_i)}{\Gamma(\sum_{k=1}^K \alpha_i)}
P(D|G) = \prod_{i=1}^{\#proteins} \prod_{j=1}^{\#parent} \frac{1}{B(\alpha_{ij})} \int_{\theta_{ij}}^{\square} \left( \prod_{k=1}^K \theta_{ijk}^{N_{ijk} + \alpha_{ijk} - 1} \right) d\theta_{ij}
P(D|G) = \prod_{i=1}^{\#proteins} \prod_{j=1}^{\#parent} \frac{B(\alpha_{ij} + N_{ij})}{B(\alpha_{ij})}
P(D|G) = \prod_{i=1}^{\#proteins} \prod_{j=1}^{\#parent} \frac{\Gamma(\sum_{k=1}^K \alpha_{ijk})}{\Gamma(\sum_{k=1}^K \alpha_{ijk} + N_{ijk})} \prod_{k=1}^K \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})}
O(G) = \prod_{i=1}^{\#proteins} \prod_{j=1}^{\#parent} \frac{\Gamma(\sum_{k=1}^K \alpha_{ijk} + N_{ijk})}{\Gamma(\sum_{k=1}^K \alpha_{ijk} + N_{ijk})} \prod_{k=1}^K \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})}
```

Structure Score

$$D = \text{Data } G = \text{Graph}$$

$$\theta = \text{CPT } \text{values for each node } X$$

$$\theta_{ijk} = P(Xi = k \mid \text{Parents}(Xi) = j)$$

$$N_{ijk} = \# \text{ times } Xi = k \text{ and}$$

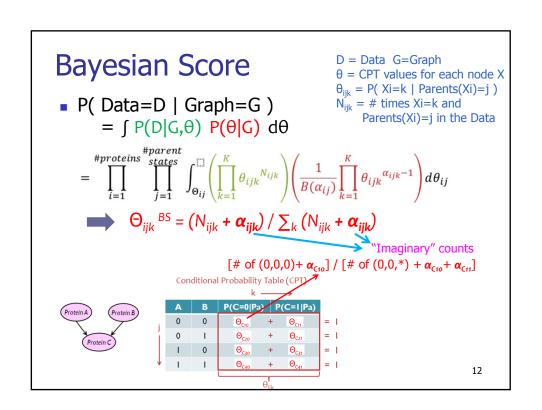
$$P(D|G) = \prod_{i=1}^{\#proteins} \prod_{j=1}^{\#parent} \frac{\Gamma(\sum_{k=1}^{K} \alpha_{ijk})}{\Gamma(\sum_{k=1}^{K} \alpha_{ijk} + N_{ijk})} \prod_{k=1}^{K} \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})}$$

$$FamScore(X_i, Pa_i|D) = \log \prod_{j=1}^{\#parent} \frac{\Gamma(\sum_{k=1}^{K} \alpha_{ijk} + N_{ijk})}{\Gamma(\sum_{k=1}^{K} \alpha_{ijk} + N_{ijk})} \prod_{k=1}^{K} \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})}$$

$$Score(G|D) = \sum_{i=1}^{\#proteins} FamScore(X_i, Pa_i|D) + \log P(G)$$

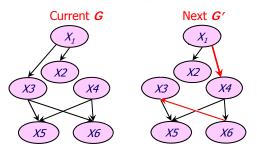
$$Decomposability!$$

$$Score(G|D) = \log P(D|G) + \log P(G)$$



Structure Learning Algorithm

- Greedy hill-climbing search
 - Make one edge change which maximizes the graph score



Add an edge Remove an edge Reverse an edge Update $S_4(X_4, PaX_4)$ when $G \rightarrow G'$

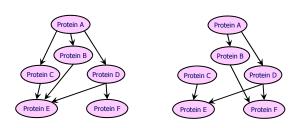
Update $S_3(X_3, PaX_3)$ when $G \rightarrow G'$

Update $S_3(X_3, PaX_3)$ when $G \rightarrow G'$

Repeat to make one edge changes until the score no longer increases (find local maxima)

Model Averaging

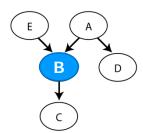
Generate N graphs using bootstrapped data



- Confidence(feature f) = # graphs with feature f / # graphs
- Select a confidence threshold

Causal Networks

Bayes net is NOT a causal net



Conditional Independence

(A \(E)\)
(B \(D \| A,E)\)
(C \(\pm A,D,E \| B)\)
(D \(\pm B,C,E \| A)\)
(E \(\pm A,D)

- Does structure learning of the Bayesian network reveal causal relationships?
 - Not necessarily...

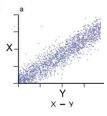
15

Pe'er D. Bayesian Network Analysis of Signaling Networks: A Primer. Science STKE. April 2005.

Causal Networks

Simple example

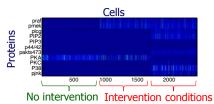
• Given D= $\{<0,0>,<0,1>,<0,0>,...,<1,1>\}$, we can compute the Bayesian scores of both graphs \rightarrow very similar! (e.g. -6.46, -6.78)



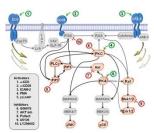
- Data D' containing "intervention" samples can improve the accurate inference of causal relationships
 - **D**' = { (0,0), (0,1), [do(X=1),1], (0,0), [do(X=0),0], [do(X=0),0], (1,1), ..., (1,1) }

Observation vs Intervention Data

Training data D'



 In each intervention condition, add a chemical known to inhibit/ activate a certain protein



How do we treat the data from intervention conditions? 17

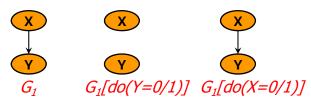
Intervention Modeling

Let's say that the "real" network is:

- Observational / interventional data would be like:
 - D'={ (0,0), (1,1), (0,0), (0,0), (1,1), (0,1), (1,1), (1,0), (0,0)...
 [do(X=0),0], [do(X=1),1], [do(X=0),0], [do(X=0),0], [do(X=1),1],...
 [1, do(Y=0)], [1, do(Y=1)], [0,do(Y=0)], [0,do(Y=1)], [0,do(Y=1)],... }
- How should the scores be computed in each case?
 - Let's consider ML score

Intervention Modeling

- D'={ (0,0), (1,1), (0,0), (0,0), (1,1), (0,1), (1,1), (1,0), (0,0)...
 [do(X=0),0], [do(X=1),1], [do(X=0),0], [do(X=0),0], [do(X=1),1],...
 [1, do(Y=0)], [1, do(Y=1)], [0,do(Y=0)], [0,do(Y=1)], [0,do(Y=1)],...}
- When computing the structure score, the training samples in D are assumed to come from the same underlying network. However, do(X=0/1) means that X is forced to have value 0/1 and does not depend on it's parents.
 - We should treat the "intervention" samples differently account when computing the score.

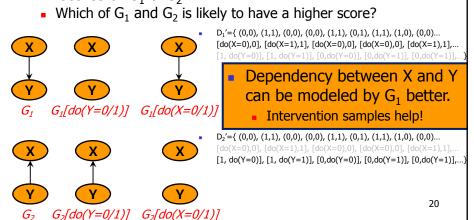


■ When estimating MLE for Y's CPD, ignore the samples with [do(Y=0/1)]

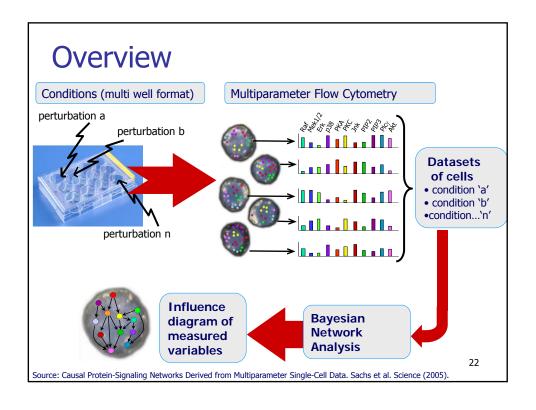
19

Intervention Modeling

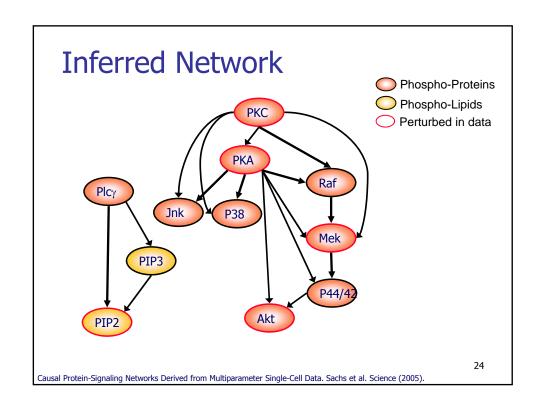
- D'={ (0,0), (1,1), (0,0), (0,0), (1,1), (0,1), (1,1), (1,0), (0,0)... [do(X=0),0], [do(X=1),1], [do(X=0),0], [do(X=0),0], [do(X=1),1],... [1, do(Y=0)], [1, do(Y=1)], [0,do(Y=0)], [0,do(Y=1)], [0,do(Y=1)],...}
- ML scores of G₁ & G₂:

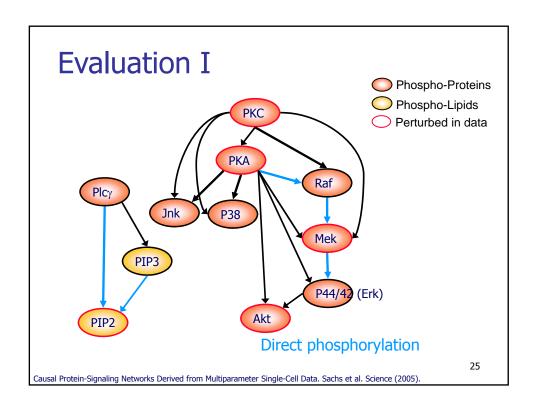


Intervention Modeling Compute the score with intervention data* Modified FamScore Si Ignore counts for the intervened node Current Compute the score with intervention data* Current Compute the score with intervention data* Cells Productivator No intervention Inhibit X3 Activate X6 do(X3=0) do(X6=1) Intervention conditions 21 *G. Cooper E. Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning, 9, 309-347. 1992.



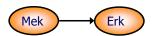
Signaling Networks — Example Classic signaling network and points of intervention Human T cell (white blood cell) Mexicol String Intervention conditions Stimuli: anti-CD3, anti-CD28, ICAM-2 Inhibitors to: Akt, PKC, PIP3, Mek Activators of: PKC, PKA Source: Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).





Features of Approach

Direct phosphorylation:

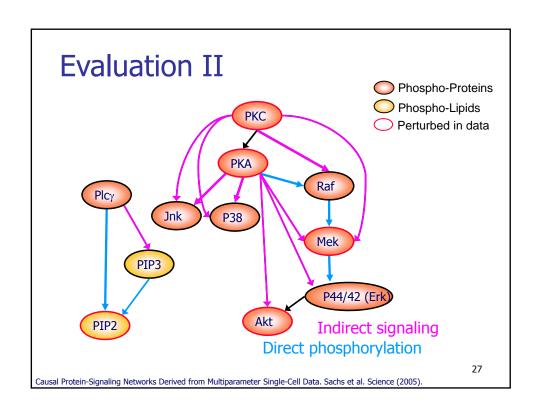


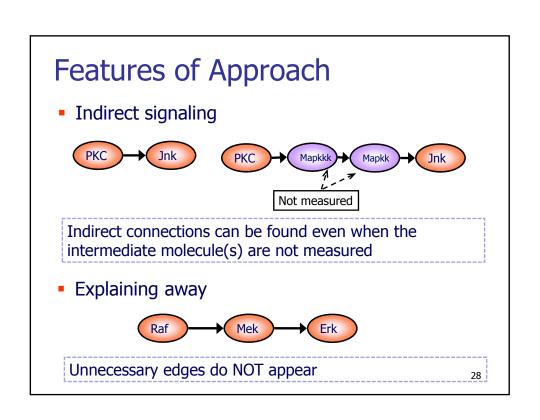
Difficult to detect using other forms of high-throughput data:

- Protein-protein interaction data
- Microarrays

26

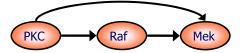
Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).



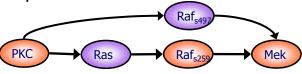


Indirect signaling - Complex example

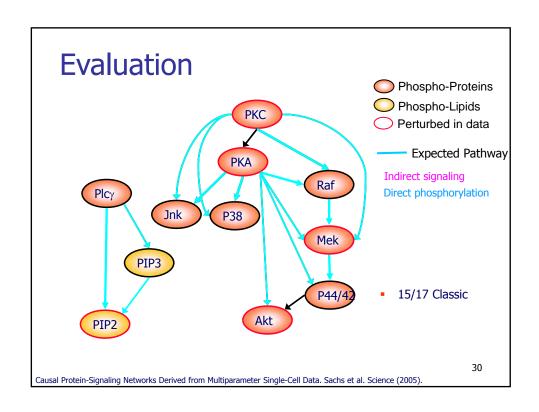
Is this a mistake?

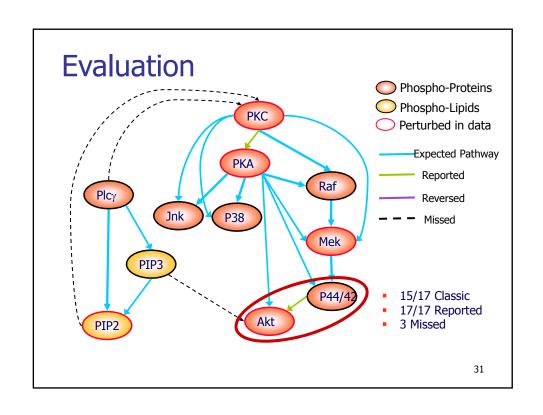


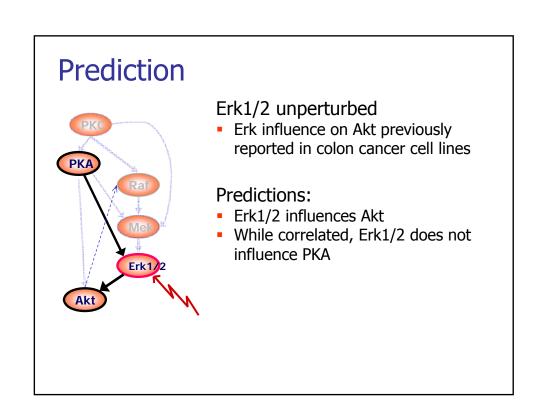
The real picture



- Phoso-protein specific
- More than one pathway of influence



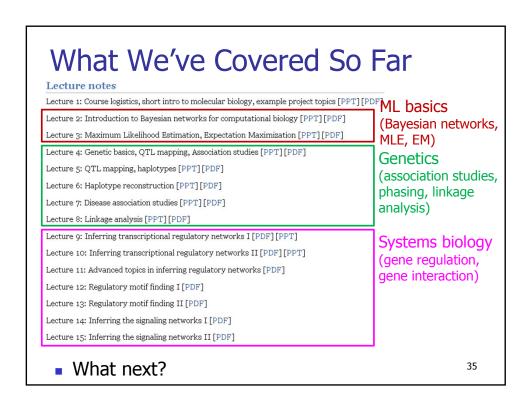




Validation SiRNA on Erk1/Erk2 Select transfected cells Measure Akt and PKA — control, stimulated — Erk1 siRNA, stimulated — Erk1 siRNA, stimulated — P=9.4e-5 P=0.28 P=0.28 APC-A: p-akt-647 APC-A P-Akt P-PKA

Conclusions

- Many limitations
 - Interventions
 - Flow cytometry (4-12 proteins, no time series data)
 - Bayesian networks (no feedback loops)
- Advantages
 - In vivo measurement
 - No a priori knowledge
 - Enablers of accurate inference
 - Network intervention
 - Sufficient numbers of single cells



Sequence Analysis (5 lectures)

- Sequencing techniques
- Sequence alignment
- Comparative genomics