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Closing the Loop

= Thank you for your participation to the survey!

= Things that helped you
= A very diverse set of topics
= Well-organized
= "Who is with me?”
= Quality of the slides

= Things that did not help you

= Lack of depth
= Intended to be achieved through problem sets and projects

= HW problems
= Needs to improve clarity




Outline

= Inferring the protein-signaling network

=« Computational problem
= Structure score
» Structure search

= Interventional modeling
= Evaluation of results
= Conclusion

= Key learning points
= Structure learning of Bayesian network
= Intervention modeling
= Evaluation of the inferred biological network

Inferring Signaling Networks

= Signaling networks are full of post-translational
regulatory mechanisms (e.g. phosphorylation)
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Computational Problem
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= Goals
= Infer the causal interaction network

= Structure learning of Bayesian network
= General machine learning problem s
= Applicable to different areas in network biology

Structure Search

= Score-based learning algorithm

= Given a set of all possible structures and the scoring function,
we aim to select the highest scoring network structure.

= Greedy hill-climbing search
= Make one edge change which maximizes the graph score
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»4 » *Constrained to non-cyclic
@ @ @ @ modifications

= Importance of score decomposition




Score Decomposition

= Greedy hill-climbing search
= Make one edge change which maximizes the graph score

Current G Next G’
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@ @ Compare G and G’ in term
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» If score decomposability holds,
s Score of G = S;(X;, PaX;)+S,(X,, PaX,)+...+5¢(Xs, PaXg),
where S, (X;, PaX)) is a "FamScore” for node X;
= When GG/, we only need to re-compute S,(X,, PaX,)

= How about commonly used structure scores? 7
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0 = CPT values for each node X
) o B = P( Xi=k | Parents(Xi)=j )
= Find G that maximizes: Ny = # times Xi=k and

Parents(Xi)=j in the Data
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Stru Ctu re SCO re g == CDF?'It'ava?uZeSr?oF;heach node X

. B = P( Xi=k | Parents(Xi)=j )
= Bayesian score Ny = # times Xi=k and

Parents(Xi)=j in the Data
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D. Heckerman. A Tutorial on Learning with Bayesian Networks. 1999, 1997, 1995. 9

G. Cooper E. Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning, 9, 309-347. 1992.

Stru Ctu re SCO re g == CDI?'It'ava(I;uzeSrfaoﬁheach node X

B = P( Xi=k | Parents(Xi)=j )
N; = # times Xi=k and
Parents(Xi)=j in the Data
Dirichlet normalizer
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G. Cooper E. Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning, 9, 309-347. 1992.




D = Data G=Graph
Stru Ctu re SCO re 0 = CPT values for each node X
B = P( Xi=k | Parents(Xi)=j )
Ny = # times Xi=k and
Parents(Xi)=j in the Data
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Decomposability!
Score(G|D) =1logP(D|G) +logP(G)
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Structure Learning Algorithm

= Greedy hill-climbing search
= Make one edge change which maximizes the graph score

Current G Next G’

A G
T e
ST OGS G

Add an edge Update S,(X,, PaX,) when G - G’
Remove an edge Update S;(X5, PaX;) when G - G’
Reverse an edge Update S;(X, PaX;) when G > G’

= Repeat to make one ed?e changes until the score no

longer increases (find local maxima) -

Model Averaging

= Generate N graphs using bootstrapped data

Protein A

E

ein B
Protein D

Protein B

= Confidence(feature f) = # graphs with feature f / # graphs

= Select a confidence threshold
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Causal Networks
= Bayes net is NOT a causal net

Conditional Independence

@R & -
(BLD|AE)
B @ (C L ADE | B)
(D LB,C,E | A)

@ (E LA,D)

= Does structure learning of the Bayesian network
reveal causal relationships?
= Not necessarily...

15
Pe'er D. Bayesian Network Analysis of Signaling Networks: A Primer. Science STKE. April 2005.

Causal Networks

= Simple example i i

= Given D={<0,0>,<0,1>,<0,0>,...,<1,1>}, we can compute the
Bayesian scores of both graphs - very similar! (e.g. -6.46, -6.78)
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= Data D’ containing “intervention” samples can improve the
accurate inference of causal relationships
= D’ ={(0,0), (0,1), [do(X=1),1], (0,0), [do(X=0),0], [do(X=0),0],
(1,1), .., (1,1)}




Observation vs Intervention Data

Cells

= Training data D’

Proteins

500 J \1000 . 1500 I 2000 )

No intervention Intervention conditions

= In each intervention condition, add a chemical known to
inhibit/ activate a certain protein

= How do we treat the data from intervention conditions?

Intervention Modeling

= Let's say that the “real” network is:

= Observational / interventional data would be like:
= D'={(0,0), (1,1), (0,0), (0,0), (1,1), (0,1), (1,1), (1,0), (0,0)...
[do(X=0),0], [do(X=1),1], [do(X=0),0], [do(X=0),0], [do(X=1),1],...
[1, do(Y=0)], [1, do(Y=1)], [0,do(Y=0)], [0,do(Y=1)], [0,do(Y=1)],... }

= How should the scores be computed in each case?
= Let's consider ML score




Intervention Modeling

= D'={(0,0), (1,1), (0,0), (0,0), (1,1), (0,1), (1,1), (1,0), (0,0)...
[do(X=0),0], [do(X=1),1], [do(X=0),0], [do(X=0),0], [do(X=1),1],...
[1, do(Y=0)], [1, do(Y=1)], [0,do(Y=0)], [0,do(Y=1)], [0,do(Y=1)],...}

=  When computing the structure score, the training samples in D are
assumed to come from the same underlying network. However,
do(X=0/1) means that X is forced to have value 0/1 and does not
depend on it's parents.

= We should treat the “intervention” samples differently account when
computing the score.

i
O
G, G,[do(Y=0/1)] G, [do(X=0/1)]

= When estimating MLE for Y’s CPD, ignore the samples with [do(Y=0/1)]
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Intervention Modeling

= D’={(0,0), (1,1), (0,0), (0,0), (1,1), (0,1), (1,1), (1,0), (0,0)...
[do(X=0),0], [do(X=1),1], [do(X=0),0], [do(X=0),0], [do(X=1),1],...
[1, do(Y=0)], [1, do(Y=1)], [0,do(Y=0)], [0,do(Y=1)], [0,do(Y=1)],...}

= ML scores of G; & G, :
= Which of G; and G, is likely to have a higher score?

= Dependency between X and Y
can be modeled by G, better.
= Intervention samples help!

00
00

i D,'={ (0,0, (1,1), (0,0), (0,0), (1,1), (0,1), (1,1), (1,0), (0,0)...

[do(X=0),0], [do(X=1),1], [do(X=0),0], [do(X=0),0], [do(X=1),1],...
G, G[do(Y=0/1)] G,[do(X=0/1)]

D;'={(0,0), (1,1), (0,0), (0,0), (1,1), (0,1), (1,1), (1,0), (0,0)...

[1, do(Y=0)], [1, do(Y=1)], [0,do(Y=0)], [0,do(Y=1)], [0,do(Y=1)],...

-

G, G, [do(Y=0/1)] G,[do(X=0/1)]

0-0
00

20




Intervention Modeling

= Compute the score with intervention data*
= Modified FamScore S,
= Ignore counts for the intervened node

Current G Cells

PKA
@ 500 0000 1500, 2000
gresesssnenn " Y Y Y

~ ?ﬁ'}{?{g’_’_; No intervention Inhibit X3 Activate X6
@ do(x3=0) do(X6=1)

Intervention conditions
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*G. Cooper E. Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning, 9, 309-347. 1992.

Overview

Conditions (multi well format) } [Multiparameter Flow Cytometry ]

—

perturbation a

perturbation b

Datasets
of cells

» condition ‘a’
» condition ‘b’
econdition...'n”

Influence :
diagram of Bayesian
measured Netwo!'k
variables Analysis
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Source: Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).




Signaling Networks — Example

= Classic signaling network and points of intervention
= Human T cell (white blood cell)

{1} w &)

= Measured
proteins
e P ot = Intervention conditions
52&% ¥4 l = Stimuli: _
4. PMA = anti-CD3, anti-CD28, ICAM-2

3: PEAMP MAPKKK

Inhibitors i
6.G06976
7. AKT inh MEK4/7
8. Psitect 1
9.U0126

10. LY294002 i)

= Inhibitors to:

« Akt, PKC, PIP3, Mek
= Activators of:

= PKC, PKA
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Source: Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).

Inferred Network

O Phospho-Proteins

O Phospho-Lipids
(O Perturbed in data

24
Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).




Evaluation I

O Phospho-Proteins

O Phospho-Lipids
(O Perturbed in data

PIP2

Direct phosphorylation

25

Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).

Features of Approach
= Direct phosphorylation:

Difficult to detect using other forms of high-throughput data:
- Protein-protein interaction data
- Microarrays

26
Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).




Evaluation II

O Phospho-Proteins

@ O Phospho-Lipids
(O Perturbed in data

G
G
! |

PIP2 &Y  Indirect signaling
Direct phosphorylation

Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).
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Features of Approach

= Indirect signaling

1 7

Indirect connections can be found even when the
intermediate molecule(s) are not measured

= Explaining away

Unnecessary edges do NOT appear

28




Indirect signaling - Complex example

» Is this a mistake?

@D

= The real picture

= Phoso-protein specific
= More than one pathway of influence

29

Evaluation

O Phospho-Proteins

O Phospho-Lipids

(O Perturbed in data
Expected Pathway

Indirect signaling
Direct phosphorylation

0.0
ORY,

o
G )

Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).

P44/4) = 15/17 Classic
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O Phospho-Proteins
O Phospho-Lipids
(O Perturbed in data
———Expected Pathway
Reported
———= Reversed

= = = Missed

= 15/17 Classic
= 17/17 Reported
= 3 Missed
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Prediction

po— Erk1/2 unperturbed
- = Erk influence on Akt previously
reported in colon cancer cell lines

Predictions:

= Erk1/2 influences Akt

= While correlated, Erk1/2 does not
influence PKA




Validation

= SiRNA on Erk1/Erk2
= Select transfected cells
= Measure Akt and PKA

control, stimulated
— Erkl siRNA, stimulated

v T v T v T v T T T T T T T
10° 10t 102 10° 10* 10° 10t 102 10° 10*

APC-A: p-akt-647 APC-A PE-A: p-pka-546 PE-A 33
P-Akt P-PKA
Conclusions

= Many limitations
= Interventions
= Flow cytometry (4-12 proteins, no time series data)
= Bayesian networks (no feedback loops)

= Advantages
= In vivo measurement
= No a priori knowledge

= Enablers of accurate inference
=« Network intervention
« Sufficient numbers of single cells
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What We've Covered So Far

Lecture notes

Lecture 1: Course logistics, short intro to molecular biclogy, example project topics [PPT] [PDF M L b a SI cS

Lecture 2: Introduction to Bayesian networks for computational biology [PPT] [PDF]

Lecture 3: Maximum Likelihood Estimation, Expectation Maximization [PPT] [PDF]

Lecture ¢: Genetic basics, QTL mapping, Association studies [PPT] [PDF]
Lecture 5: QTL mapping, haplotypes [PPT] [PDF]

Lecture 6: Haplotype reconstruction [PPT] [PDF]

Lecture 7: Disease association studies [PPT] [PDF]

Lecture 8: Linkage analysis [PPT] [FDF]

Lecture 9: Inferring transcriptional regulatory networks I [PDF][PPT]
Lecture 10: Inferring transcriptional regulatory networks II [PDF] [PPT]
Lecture 11: Advanced topics in inferring regulatory networks [PDF]
Lecture 12: Regulatory motif finding I [PDF]

Lecture 13: Regulatory motif finding II [PDF]

Lecture 14: Inferring the signaling networks I [PDF]

Lecture 15: Inferring the signaling networks II [PDF]

= What next?

(Bayesian networks,
MLE, EM)
Genetics
(association studies,
phasing, linkage
analysis)

Systems biology

(gene regulation,
gene interaction)
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Sequence Analysis (5 lectures)

= Sequencing techniques
= Sequence alignment
= Comparative genomics
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