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Lectures 15 – Nov 16, 2011
CSE 527 Computational Biology, Fall 2011

Instructor: Su-In Lee
TA: Christopher Miles

Monday & Wednesday  12:00-1:20
Johnson Hall (JHN) 022

Inferring Protein-Signaling 
Networks II
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Closing the Loop
 Thank you for your participation to the survey!

 Things that helped you
 A very diverse set of topics
 Well-organized
 “Who is with me?”
 Quality of the slides

 Things that did not help you
 Lack of depth

 Intended to be achieved through problem sets and projects

 HW problems
 Needs to improve clarity 2
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Outline
 Inferring the protein-signaling network

 Computational problem
 Structure score
 Structure search

 Interventional modeling
 Evaluation of results
 Conclusion

 Key learning points
 Structure learning of Bayesian network
 Intervention modeling
 Evaluation of the inferred biological network
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Inferring Signaling Networks
 Signaling networks are full of post-translational 

regulatory mechanisms (e.g. phosphorylation)

4

= Measured 
proteins
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Computational Problem
 Given data D

 Goals
 Infer the causal interaction network 

 Structure learning of Bayesian network
 General machine learning problem
 Applicable to different areas in network biology
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Structure Search
 Score-based learning algorithm

 Given a set of all possible structures and the scoring function, 
we aim to select the highest scoring network structure.

 Greedy hill-climbing search
 Make one edge change which maximizes the graph score

 Importance of score decomposition
6
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Score Decomposition
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Current G

X1

X3 X4

X5 X6

X2

Add an edgeX1

X3 X4

X5 X6

X2

Next G’

Compare G and G’ in terms 
of the structure score

 Greedy hill-climbing search 
 Make one edge change which maximizes the graph score

 If score decomposability holds,
 Score of G = S1(X1, PaX1)+S2(X2, PaX2)+...+S6(X6, PaX6),

where Si (Xi, PaXi) is a “FamScore” for node Xi
 When G→G’, we only need to re-compute S4(X4, PaX4)

 How about commonly used structure scores?

Maximum Likelihood
 Find G that maximizes:

P( Data=D | Graph=G, ΘMLE )

8

Nijk = # times Xi=k and 
Parents(Xi)=j in the Data

θijk = P( Xi=k | Parents(Xi)=j )

K=#discrete levels of X

Θijk
ML = Nijk / ∑k Nijk

ΘC10 ΘC11

ΘC20 ΘC21

ΘC30 ΘC31

ΘC40 ΘC41

D = Data  G=Graph  
θ = CPT values for each node X
θijk = P( Xi=k | Parents(Xi)=j )
Nijk = # times Xi=k and 

Parents(Xi)=j in the Data

D = [(0,0,0), (0,0,1),        
(1,1,1), (1,0,0), 
(1,1,1), (1,0,1),

:
(1,0,0), (1,0,1)]

[# of (0,0,0)] / [# of (0,0,*)]
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Structure Score
 Bayesian score

P( Data=D | Graph=G )
= ∫ P(D|G,θ)  P(θ|G)  dθ
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Dirichlet prior ~ Dir(α)Multinomial

D = Data  G=Graph  
θ = CPT values for each node X
θijk = P( Xi=k | Parents(Xi)=j )
Nijk = # times Xi=k and 

Parents(Xi)=j in the Data

Nijk = # times Xi=k and 
Parents(Xi)=j in the Data

θijk = P( Xi=k | Parents(Xi)=j )

K=#discrete levels of X

Θij = Simplex  {∑kθijk = 1}

Dirichlet 
normalizer

D. Heckerman. A Tutorial on Learning with Bayesian Networks.  1999, 1997, 1995.
G. Cooper E. Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning, 9, 309-347. 1992.

P( D, θ | G )

P(    1,…,    K) ~

Structure Score

10

D = Data  G=Graph  
θ = CPT values for each node X
θijk = P( Xi=k | Parents(Xi)=j )
Nijk = # times Xi=k and 

Parents(Xi)=j in the Data

G. Cooper E. Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning, 9, 309-347. 1992.
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Structure Score

11

D = Data  G=Graph  
θ = CPT values for each node X
θijk = P( Xi=k | Parents(Xi)=j )
Nijk = # times Xi=k and 

Parents(Xi)=j in the Data

Decomposability!

+ log P(G)

Bayesian Score
 P( Data=D | Graph=G )

= ∫ P(D|G,θ)  P(θ|G)  dθ
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Θijk
BS = (Nijk + αijk) / ∑k (Nijk + αijk)

ΘC10 ΘC11

ΘC20 ΘC21

ΘC30 ΘC31

ΘC40 ΘC41

“Imaginary” counts

D = Data  G=Graph  
θ = CPT values for each node X
θijk = P( Xi=k | Parents(Xi)=j )
Nijk = # times Xi=k and 

Parents(Xi)=j in the Data

[# of (0,0,0)+ αC10] / [# of (0,0,*) + αC10+ αC11]
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Structure Learning Algorithm
 Greedy hill-climbing search

 Make one edge change which maximizes the graph score

 Repeat to make one edge changes until the score no 
longer increases (find local maxima) 13

Current G

X1

X3 X4

X5 X6

X2

Add an edge
Remove an edge
Reverse an edge

X1

X3 X4

X5 X6

X2

Next G’

Update S4(X4, PaX4) when G → G’

Update S3(X3, PaX3) when G → G’
Update S3(X3, PaX3) when G → G’

Model Averaging
 Generate N graphs using bootstrapped data

 Confidence(feature f) = # graphs with feature f  / # graphs

 Select a confidence threshold

14

Protein A

Protein C Protein D

Protein E Protein F
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Causal Networks
 Bayes net is NOT a causal net

 Does structure learning of the Bayesian network 
reveal causal relationships?
 Not necessarily…

Pe'er D. Bayesian Network Analysis of Signaling Networks: A Primer. Science STKE.  April 2005.

(A E)
(B D | A,E)
(C A,D,E | B)
(D B,C,E | A) 
(E A,D)

B

Conditional Independence
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Causal Networks

Y

X

Y

X Simple example

 Given D={<0,0>,<0,1>,<0,0>,…,<1,1>}, we can compute the 
Bayesian scores of both graphs → very similar! (e.g. -6.46, -6.78)

 Data D’ containing “intervention” samples can improve the 
accurate inference of causal relationships
 D’ = { (0,0), (0,1), [do(X=1),1], (0,0), [do(X=0),0], [do(X=0),0], 

(1,1), …, (1,1) }
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Observation vs Intervention Data
 Training data D’

 In each intervention condition, add a chemical known to 
inhibit/ activate a certain protein

 How do we treat the data from intervention conditions? 17
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Intervention Modeling
 Let’s say that the “real” network is:

 Observational / interventional data would be like:
 D’={ (0,0), (1,1), (0,0), (0,0), (1,1), (0,1), (1,1), (1,0), (0,0)…
[do(X=0),0], [do(X=1),1], [do(X=0),0], [do(X=0),0], [do(X=1),1],…
[1, do(Y=0)], [1, do(Y=1)], [0,do(Y=0)], [0,do(Y=1)], [0,do(Y=1)],… }

 How should the scores be computed in each case?
 Let’s consider ML score

18

Y

X

Y

X

Y

X

G1 G2
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Intervention Modeling
 D’={ (0,0), (1,1), (0,0), (0,0), (1,1), (0,1), (1,1), (1,0), (0,0)…

[do(X=0),0], [do(X=1),1], [do(X=0),0], [do(X=0),0], [do(X=1),1],…
[1, do(Y=0)], [1, do(Y=1)], [0,do(Y=0)], [0,do(Y=1)], [0,do(Y=1)],…}

 When computing the structure score, the training samples in D are 
assumed to come from the same underlying network.  However, 
do(X=0/1) means that X is forced to have value 0/1 and does not 
depend on it’s parents.
 We should treat the “intervention” samples differently account when 

computing the score.

 When estimating MLE for Y’s CPD, ignore the samples with [do(Y=0/1)]

Y

X

G1

Y

X

G1[do(Y=0/1)]
Y

X

G1[do(X=0/1)]
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Intervention Modeling
 D’={ (0,0), (1,1), (0,0), (0,0), (1,1), (0,1), (1,1), (1,0), (0,0)…

[do(X=0),0], [do(X=1),1], [do(X=0),0], [do(X=0),0], [do(X=1),1],…
[1, do(Y=0)], [1, do(Y=1)], [0,do(Y=0)], [0,do(Y=1)], [0,do(Y=1)],…}

 ML scores of G1 & G2 :
 Which of G1 and G2 is likely to have a higher score?

Y

X

G1

Y

X

G1[do(Y=0/1)]
Y

X

G1[do(X=0/1)]

Y

X

G2

Y

X

G2[do(Y=0/1)]
Y

X

G2[do(X=0/1)]

 D1’={ (0,0), (1,1), (0,0), (0,0), (1,1), (0,1), (1,1), (1,0), (0,0)…
[do(X=0),0], [do(X=1),1], [do(X=0),0], [do(X=0),0], [do(X=1),1],…
[1, do(Y=0)], [1, do(Y=1)], [0,do(Y=0)], [0,do(Y=1)], [0,do(Y=1)],…}

 D2’={ (0,0), (1,1), (0,0), (0,0), (1,1), (0,1), (1,1), (1,0), (0,0)…
[do(X=0),0], [do(X=1),1], [do(X=0),0], [do(X=0),0], [do(X=1),1],…
[1, do(Y=0)], [1, do(Y=1)], [0,do(Y=0)], [0,do(Y=1)], [0,do(Y=1)],…}

20

 Dependency between X and Y 
can be modeled by G1 better.
 Intervention samples help!
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Intervention Modeling
 Compute the score with intervention data*

 Modified FamScore Si

 Ignore counts for the intervened node

21
* G. Cooper E. Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning, 9, 309-347. 1992.
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do(X3=0)

Activate X6
do(X6=1)

activator
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Overview

Influence     
diagram of 
measured 
variables

Bayesian 
Network  
Analysis

Datasets  
of cells

• condition ‘a’
• condition ‘b’
•condition…‘n’

Multiparameter Flow Cytometry

perturbation a

perturbation n

perturbation b

Conditions (multi well format)

Source: Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).
22



12

Signaling Networks – Example
 Classic signaling network and points of intervention
 Human T cell (white blood cell)

23
Source: Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).

= Measured 
proteins

 Intervention conditions
 Stimuli:

 anti-CD3, anti-CD28, ICAM-2
 Inhibitors to:

 Akt, PKC, PIP3, Mek
 Activators of:

 PKC, PKA

PKC

Raf

P44/42

Mek

Plc

PKA

Akt

Jnk P38

PIP2

PIP3

Phospho-Proteins

Phospho-Lipids

Perturbed in data

Inferred Network

24
Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).
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PKC
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Phospho-Proteins

Phospho-Lipids

Perturbed in data

Evaluation I

Direct phosphorylation
25

Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).

Features of Approach
 Direct phosphorylation:

Mek 

Difficult to detect using other forms of high-throughput data:
- Protein-protein interaction data
- Microarrays

Erk 

Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).
26
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PKC
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Direct phosphorylation
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Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).

Indirect signaling

Features of Approach
 Indirect signaling

 Explaining away

Raf Mek Erk

PKC Jnk PKC Mapkkk Jnk

Not measured

Mapkk

Indirect connections can be found even when the 
intermediate molecule(s) are not measured

Unnecessary edges do NOT appear 28
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Indirect signaling - Complex example
 Is this a mistake?

 The real picture

 Phoso-protein specific
 More than one pathway of influence 

PKC Raf Mek

PKC Rafs259 Mek

Rafs497

Ras

29
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Phospho-Proteins

Phospho-Lipids

Perturbed in data

Evaluation

Direct phosphorylation

30
Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Sachs et al. Science (2005).

Indirect signaling

Expected Pathway

 15/17 Classic
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PKC
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Expected Pathway

Reported

Missed

 15/17 Classic
 17/17 Reported
 3 Missed

Reversed

Phospho-Proteins

Phospho-Lipids
Perturbed in data

Evaluation

31

Prediction
Erk1/2 unperturbed 
 Erk influence on Akt previously 

reported in colon cancer cell lines

Predictions:
 Erk1/2 influences Akt
 While correlated, Erk1/2 does not 

influence PKA

PKC

Raf

Erk1/2

Mek

PKA

Akt
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Validation

control, stimulated

Erk1 siRNA, stimulated

 SiRNA on Erk1/Erk2
 Select transfected cells
 Measure Akt and PKA

100 101 102 103 104

APC-A: p-akt-647 APC-A
100 101 102 103 104

PE-A: p-pka-546 PE-A

P-Akt P-PKA

P=9.4e-5 P=0.28

33

Conclusions
 Many limitations

 Interventions
 Flow cytometry (4-12 proteins, no time series data)

 Bayesian networks (no feedback loops)

 Advantages
 In vivo measurement
 No a priori knowledge
 Enablers of accurate inference

 Network intervention
 Sufficient numbers of single cells

34
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What We’ve Covered So Far

 What next? 35

ML basics
(Bayesian networks, 
MLE, EM)
Genetics
(association studies, 
phasing, linkage 
analysis)

Systems biology
(gene regulation, 
gene interaction)

Sequence Analysis (5 lectures)
 Sequencing techniques
 Sequence alignment
 Comparative genomics

36


