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Lectures 17 – Nov 23, 2011
CSE 527 Computational Biology, Fall 2011

Instructor: Su-In Lee
TA: Christopher Miles

Monday & Wednesday  12:00-1:20
Johnson Hall (JHN) 022

Sequencing Alignment II
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Needleman-Wunsch Algorithm

V(i,j)   max 

V(i-1,j-1) (S[i],T[j])
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Opt align of
S1…Si-1 & T1…Tj-1

Value = V(i-1, j-1)

Opt align of
S1…Si-1 & T1…Tj

Value = V(i-1, j)

Opt align of
S1…Si & T1…Tj-1

Value = V(i, j-1)

 Key idea: build up an optimal alignment using previous 
solutions for optimal alignments of smaller subsequences.

 Optimal align of S[1], …, S[i] vs T[1], …, T[j]:
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Align by Dynamic Programming
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j 0 1 2 3 4 5

i c a d b d     T

0 0 -1 -2 -3 -4 -5

1 a -1 -1 1 0 -1 -2

2 c -2 1 0 0 -1 -2

3 b -3 0 0 -1 2 1

4 c -4 -1 -1 -1 1 1

5 d -5 -2 -2 1 0 3

6 b -6 -3 -3 0 3 2
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Scoring Rules/Matrices
 How should σ be defined?

 σ(A,G), σ(A,-), σ(A,-), etc?

 Why are they important? 
 The choice of a scoring rule can strongly influence the 

outcome of sequence analysis

 What do they mean?
 Scoring matrices implicitly represent a particular theory of 

evolution
 Elements of the matrices specify the similarity of one 

residue to another

4Refers to an amino acid
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Outline: Scoring Alignments
 Probabilistic meaning

 Scoring matrices
 PAM: scoring based on evolutionary statistics
 BLOSUM: tuning to evolutionary conservation

 Gaps revisited

 Probabilistic meaning

 Scoring matrices
 PAM: scoring based on evolutionary statistics
 BLOSUM: tuning to evolutionary conservation

 Gaps revisited
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Probabilistic Interpretation

TCCAGGTG-GAT

| || ||| | |

TGCAAGTGCG-T

Chance or true homology?
Sharing a common 
ancestor

6

X:

Y:
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Likelihood Ratio

TCCAGGTG-GAT

| || ||| | |

TGCAAGTGCG-T

Pr(Data|Homology)
Pr(Data|Chance)
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X:

Y:

Pr( Data | Chance )
Given an alignment between TCCAGG and TGCAAG,

T C C A G G

|   | |   |

T G C A A G 

Pr(    )Pr(    )Pr(    )Pr(   )Pr(    )Pr(    )

Pr(    )Pr(    )Pr(    )Pr(   )Pr(    )Pr(    )

8
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Pr( Data | Homology )
Given an alignment between TCCAGG and TGCAAG,

T C C A G G

|   | |   |

T G C A A G 

Pr Pr Pr Pr Pr Pr
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Likelihood Ratio

T C C A G G

T G C A A G

Pr(Data|homology)
Pr( Data | Chance )
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10
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Score: Log Likelihood Ratio
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 The most commonly used alignment score of aligning two 
sequences is the log likelihood ratio of the alignment under 
two models
 Common ancestry
 By chance
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The S in a Scoring Matrix 
(as log likelihood ratio)
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Prob(xi aligned with yi at position i | common ancestry)

Prob(xi aligned with yi at position i | by change)
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How do we acquire the probabilities 
Pr(a), Pr(a,b)?
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Making a Scoring Matrix
 Scoring matrices S are created based on biological 

evidence. 
 Alignments can be thought of as two sequences that 

differ due to mutations.  
 Some of these mutations have little effect on the 

protein’s function, therefore some penalties will be less 
harsh than others.

TCCAGGTG-GAT

| || ||| | |

TGCAAGTGCG-T 13

Scoring Matrix: Example
 Notice that although R 

(arginine) and K (Lysine) 
are different amino 
acids, they have a 
positive score.

 Why?  They are both 
positively charged amino 
acids → will not greatly 
change function of 
protein.

A R N K

A 5 -2 -1 -1

R - 7 -1 3

N - - 7 0

K - - - 6

14



8

Conservation
 Amino acid changes that tend to preserve the 

physical/ chemical properties of the original residue
 Polar to polar

 aspartate (D)  glutamate (E)
 Nonpolar to nonpolar

 alanine (A)  valine (V)
 Similarly behaving residues

 leucine (L) to isoleucine (I)

 More prone to mutate in the evolutionary process.

15

Edit Operations Over Time

TCCAGGTG-GAT

| || ||| | |

TGCAAGTGCG-T
16
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Edit Operations Over Time

TCCAGGTG-GAT

| || ||| | |

TGCAAGTGCG-T
17

Edit Operations Over Time

TCCAGGTG-GAT

| || ||| | |

TGCAAGTGCG-T

We need a probabilistic model for the 
evolutionary changes of the sequence

18
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Most Widely Used Scoring Matrices
 Amino acid substitution matrices

 PAM
 BLOSUM

 DNA substitution matrices
 Warning: when the sequences of interest code for 

protein, it is almost always better to compare the protein 
translations than to compare the DNA sequences directly.

 DNA is less conserved than protein sequences
 After only a small amount of evolutionary change, the DNA 

sequences, when compared using simple nucleotide substitution 
scores, contain less information with which to deduce homology 
than do the encoded protein sequences 

 Less effective to compare coding regions at nucleotide 
level

19

PAM
 Point Accepted Mutation*
 1 PAM = PAM1 = 1% average change of all amino 

acid positions
 After 100 PAMs of evolution, not every residue will 

have changed
 some residues may have mutated several 

times
 some residues may have returned to their 

original state
 some residues may not changed at all

20* Dayhoff, M. O.; Schwartz, R. M.; Orcutt, B. C. (1978). "A model of evolutionary change in proteins". Atlas of Protein 
Sequence and Structure 5 (3): 345–352.
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PAM Matrices: Training Data
 Take aligned set of closely related proteins

 71 groups of proteins that were at least 85% similar

 Each group of sequences were organized into a 
phylogenetic tree
 Creates a model of the order in which substitutions 

occurred

 Count the number of changes of each amino acid 
into every other amino acid
 Each substitution is considered to be an “accepted 

mutation” - an amino acid change “accepted” by 
natural selection

21

PAM: Point Accepted Mutation
 Aij: number of times amino acid j mutates to amino 

acid i.
 A mutation could go in both directions, therefore the tally of 

mutation i-j enters both Aij and Aji entries, while the tally of 
conservation i-i enters Aii entry twice.

22

i

j

Aij
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Mutability of Residue j
 mj is the probability that amino acid j will change in a 

given evolutionary interval. 
 It depends on how similar the sequences used to tally Aij are

23

i

j

Aij

 Relative mutability of amino acids 
N (Asn) 134 H (His) 66 S (Ser) 120 R (Arg) 65
D (Asp) 106 K (Lys) 56 E (Glu) 102 P (Pro) 56
A (Ala) 100 G (Gly) 49 T (Thr) 97 Y (Tyr) 41
I (Ile) 96 F (Phe) 41 M (Met) 94 L (Leu) 40
Q (Gln) 93 C (Cys) 20 V (Val) 74 W (Trp) 18

Total Mutation Rate
 Pj: probability of occurrence of 

amino acid j

 Total mutation rate of all amino acids 

 Normalize total mutation rate to 1%
 λ is a scaling constant to make sure that the total mutation is 1%

 This defines an evolutionary period: the period in which 
the 1% of all sequences are mutated 24

mj is the probability that amino acid j will 
change in a given evolutionary interval. 

i

j

Aij
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Normalized Mutation Probability Matrix
 Normalize mutation probability matrix such that the 

total mutation rate is 1%

25

AijA = M =[    ]Mij

PAM-1 matrix

Mutation Probability Matrix 
(transposed) M*10000

* Dayhoff, M. O.; Schwartz, R. M.; Orcutt, B. C. (1978). "A model of evolutionary change in proteins". Atlas of Protein 
Sequence and Structure 5 (3): 345–352.
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In Two PAM1 Periods
 M(1): PAM-1 mutation probability matrix
 M(2): PAM-2 mutation probability matrix

 Mutations that happen in twice the evolution period of 
that for a PAM1

 {A→R} = {A→A and A→R} or
{A→N and N→R} or
{A→D and D→R} or
… or
{A→V and V→R} or

27
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Entries in a PAM-2 Mut. Prob. Mat.
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[    ]PAA PAR PAN …
PRA PRR PRN …
PNA PNR PNN …

: [    ]PAA PAR PAN …
PRA PRR PRN …
PNA PNR PNN …

:

X

PAM-1 matrix PAM-1 matrix
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Entries in a PAM2 Mut. Prob. Mat.
 PAM-k Mutation Prob. Matrix
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PAM-k Log-Likelihood Matrix
 Log likelihood ratio score
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PAM  Score  Matrix*

Log likelihood ratio matrix for PAM-250
31* Dayhoff, M. O.; Schwartz, R. M.; Orcutt, B. C. (1978). "A model of evolutionary change in proteins". Atlas of Protein 

Sequence and Structure 5 (3): 345–352.

BLOSUM: Henikoff & Henikoff 92
 BLOSUM: Block Substitution Matrices
 Motivation: PAM use of matrix power can result in large errors
 Key idea: consider conserved patterns (blocks) of a large sample 

of proteins
 Classify protein families (over 500 families)
 Family has characteristic patterns (signatures) that are conserved
 The probabilities used in the matrix calculation are computed by looking at 

"blocks" of conserved sequences found in multiple protein alignments.

 P(a,b) = probability of (a,b) substitution; P(a) = probability of “a”

Bpi Bovine  npGivaRItqkgLdyacqqgvltlQkele
Bpi Human   npGvvvRIsqkgLdyasqqgtaalQkelk
Cept Human   eaGivcRItkpaLlvlnhetakviQtafq
Lbp Human   npGlvaRItdkgLqyaaqegllalQsell
Lbp Rabbit  npGlitRItdkgLeyaaregllalQrkll

32
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Scoring Matrices (e.g., BLOSUM)

 BLOSUMx=based on 
patterns that are x% similar

 The level of x% can provide 
different performance in 
identifying similarity

 BLOSUM62 provides good 
scoring (used as default)

34

Constructing BLOSUM r
 To avoid bias in favor of a certain protein, first eliminate

sequences that are more than r% identical

 The elimination is done by either 
 removing sequences from the block, or 
 finding a cluster of similar sequences and replacing it by a new 

sequence that represents the cluster. 

 BLOSUM r is the matrix built from blocks with no more 
the r% of similarity
 E.g., BLOSUM62 is the matrix built using sequences with no more 

than 62% similarity.
 Note:  BLOSUM 62 is the default matrix for protein BLAST
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Collecting substitution statistics
1. Count amino acids pairs in each column; 

e.g.,
 6 AA pairs, 4 AB pairs, 4 AC, 1 BC, 0 BB, 0 CC. 
 Total = 6+4+4+1=15

2. Normalize results to obtain probabilities 
(pX’s and pXY’s)

3. Compute log likelihood ratio score matrix 
from probabilities: 

s(X,Y) = log (pXY / (pX py))

35

A
A
B
A
C
A
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Comparison

 PAM is based on an evolutionary model using 
phylogenetic trees

 BLOSUM assumes no evolutionary model, but 
rather conserved “blocks” of proteins


