
1

Lectures 18 – Nov 28, 2011
CSE 527 Computational Biology, Fall 2011

Instructor: Su-In Lee
TA: Christopher Miles

Monday & Wednesday 12:00-1:20
Johnson Hall (JHN) 022

Local Sequence Alignment
& Heuristic Local Aligners

1

Review: Probabilistic Interpretation

TCCAGGTG-GAT

| || ||| | |

TGCAAGTGCG-T

Chance or true homology?
Sharing a common
ancestor

2

X:

Y:

2

Review: Likelihood Ratio

TCCAGGTG-GAT

| || ||| | |

TGCAAGTGCG-T

Pr(Data|Homology)
Pr(Data|Chance)

3

X:

Y:

Review: Log Likelihood Ratio Score

 
   

 
     























i
ii

i ii

ii

i ii

ii

yxs
yx

yx

yx

yx
Score

,
PrPr

Pr
log

PrPr

Pr
log

 The most commonly used alignment score of aligning two
sequences is the log likelihood ratio of the alignment under
two models
 Common ancestry
 By chance

4

3

Outline: Scoring Alignments
 Scoring alignments

 Probabilistic meaning
 Scoring matrices

 PAM: scoring based on evolutionary statistics
 BLOSUM: tuning to evolutionary conservation

 Gaps revisited

 Local vs global alignment

 Database search
 FASTA
 BLAST 5

Gap Initiation and Extension

TCCACCGTG-GA

| || ||| ||

TGCA--GTGCGA
6

4

Gap Initiation and Extension

TCCACCGTG-GA

CSCCDDCCCICC

TGCA--GTGCGA
7

Insertion / deletion (indel)

Scoring Indels: Naive Approach
 A fixed penalty d is given to every indel:

 -d for 1 indel,
 -2d for 2 consecutive indels
 -3d for 3 consecutive indels, etc.

Can be too severe penalty for a series of 100
consecutive indels!

8

5

Affine Gap Penalties
 In nature, a series of k indels often come as a

single event rather than a series of k single
nucleotide events:

Normal scoring would
give the same score
for both alignments

This is more
likely.

This is less
likely.

9

Gap Initiation and Extension

TCCACCGTG-GA

CSCCDDCCCICC

TGCA--GTGCGA
10

Insertion / deletion (indel)

Init Init

Extend

6

Scoring the Gaps More Accurately
 Current model:

Gap of length n
incurs penalty nd

 However, gaps usually occur in bunches

 Convex gap penalty function:
(n):
for all n, (n + 1) - (n)  (n) - (n – 1)

11

(n)

(n)

V(i-1, j-1) + s(xi, yj)
maxk=0…i-1 V(k,j) – (i-k)
maxk=0…j-1 V(i,k) – (j-k)

General Gap Dynamic Programming
Initialization: same

Iteration:

V(i, j) = max

Termination: same

Running Time: O(N2M) (assume N>M)
Space: O(NM)

12

V(i-1,j-1)

V(i,j)

V(i-1,j)

V(i,j-1)S[i] . .

T[j]
:

V(i,j-2)

V(i-2,j)

(n)

V(i-1,j) + s(xi,-)
V(i,j-1) + s(-,yj)
Previously…

7

Accounting for Gaps
 Gaps- contiguous sequence of spaces in one of the

rows

 Score for a gap of length x is:
-(d + ex)

where d >0 is the penalty for introducing a gap:
gap opening penalty

d will be large relative to e:
gap extension penalty

because you do not want to add too much of a
penalty for extending the gap.

13

Affine Gap Penalties
 Gap penalties:

 -d - e when there is 2 indel
 -d - 2e when there are 3 indels
 -d - 3e when there are 4 indels, etc.
 -d – (n-1)·e when there are n indels

 Somehow reduced penalties (as compared to
naïve scoring) are given to runs of horizontal and
vertical arrows in the V matrix

14

8

Needleman-Wunsch With Affine Gaps
 (n) = d + (n – 1)e

| |
gap gap
open extend

 To compute optimal alignment,

 At position i,j, need to “remember” best score if gap is open
best score if gap is not open

 F(i, j): score of alignment x1…xi to y1…yj if xi aligns to yj
 G(i, j): score if xi or yj aligns to a gap

15

d
e

(n)

Needleman-Wunsch With Affine Gaps
Initialization: F(i, 0) = d + (i – 1)e

F(0, j) = d + (j – 1)e

Iteration:
F(i – 1, j – 1) + s(xi, yj)

F(i, j) = max
G(i – 1, j – 1) + s(xi, yj)

F(i – 1, j) – d
F(i, j – 1) – d

G(i, j) = max
G(i, j – 1) – e
G(i – 1, j) – e

Termination: same

16

9

Outline: Scoring Alignments
 Scoring alignments

 Probabilistic meaning
 Scoring matrices

 PAM: scoring based on evolutionary statistics
 BLOSUM: tuning to evolutionary conservation

 Gaps revisited

 Local vs global alignment

 Database search
 FASTA
 BLAST 17

Local vs. Global Alignment
 The Global Alignment Problem tries to find the

highest scoring alignment between input
sequences S (of length n) and T (of length m)
– S[1-n] and T[1-m].

 The Local Alignment Problem tries to find the
highest scoring alignment between the
substrings S[i-i’] and T[j-j’], where i,j>0,
i’<n+1 and j’<m+1.
 In the “V matrix” (alignment scores of substrings)

with negatively-scored arrows, Local Alignment may
score higher than Global Alignment

18

10

Local vs. Global Alignment (cont’d)

 Global alignment

 Local alignment: better alignment to find
conserved segment

--T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
| || | || | | | ||| || | | | | |||| |

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

tccCAGTTATGTCAGgggacacgagcatgcagagac
||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc

19

Local Alignments: Why?
 Genes are shuffled between genomes

 Two genes in different species may be similar over short
conserved regions and dissimilar over remaining regions.

 Portions of proteins (domains) are often conserved

20

11

Local Alignment: Example

Global alignment

Local alignment

Compute a “mini”
Global Alignment to
get Local

21

Local Alignment: Example

22

 Local run time O(n4):
 In the grid of size n x n,

there are ~n2 vertices (i,j)
that may serve as a
source.

 For each such vertex
computing alignments
from (i,j) to (i’,j’) takes
O(n2) time.

 This can be remedied by
giving free rides.

12

Local Alignment: Free Rides

Vertex (0,0)

The dashed arrows represent the free rides from
(0,0) to every other entry in the V matrix.

Yeah, a free ride!

23

The Local Alignment Problem
 Goal: Find the best local alignment between two

sequences
 Input : Sequences S, T and scoring matrix σ
 Output : Alignment of sequences S and T whose

alignment score is maximum among all possible
alignment of all possible substrings

24

13

The Smith-Waterman Algorithm
Idea: Ignore badly aligning regions

Modifications to Needleman-Wunsch:

Initialization: V(0, j) = V(i, 0) = 0

0
Iteration: V(i, j) = max V(i – 1, j) – d

V(i, j – 1) – d
V(i – 1, j – 1) + s(xi, yj)

25

Power of ZERO: there is only this change from the original
recurrence of a Global Alignment - since there is only one
“free ride” arrow entering into every vertex

The Smith-Waterman Algorithm
Termination:

1. If we want the best local alignment…

VOPT = maxi,j V(i, j)

2. If we want all local alignments scoring > t

For all i, j find V(i, j) > t, and trace back

26

14

Outline: Scoring Alignments
 Scoring alignments

 Probabilistic meaning
 Scoring matrices

 PAM: scoring based on evolutionary statistics
 BLOSUM: tuning to evolutionary conservation

 Gaps revisited

 Local vs global alignment

 Database search
 FASTA
 BLAST 27

Database Search

The problems:
 Dynamic programming: prohibitively complex
 Exact matching: prohibitively mismatch-sensitive

q=TACGAAT..
ATAAGAATATACGAATCCACGAT..
TCGATACGTTAGCAATACTAG…
CGAAATATAGGTTAGCAATAC..
ACGACATCGAAGAATAAATAT..
……………..

???

acACGAATaTACGAATccACGA-T..
_tACGAAT-TACGAAT-tACGAaT__

28

15

State of Biological Databases
Sequenced Genomes:

Human 3109 Yeast 1.2107

Mouse 2.7109  12 different strains
Rat 2.6109 Neurospora 4107

14 more fungi within next year
Fugu fish 3.3108

Tetraodon 3108 ~250 bacteria/viruses

Mosquito 2.8108

Drosophila 1.2108

Worm 1.0108

2 sea squirts  1.6108

Current rate of sequencing:
Rice 1.0109 4 big labs  3 109 bp /year/lab
Arabidopsis 1.2108 10s small labs

29

State of Biological Databases
 Number of genes

Vertebrate: ~30,000
Insects: ~14,000
Worm: ~17,000
Fungi: ~6,000-10,000

Small organisms: 100s-1,000s

 Each known or predicted gene has an associated
protein sequence

 >1,000,000 known / predicted protein sequences
30

16

Some Useful Applications of Alignments

The entire genomic database

Our new
gene

104

1010 - 1011

31

 Given a newly discovered gene,
 Does it occur in other species?
 How fast does it evolve?

 Assume we try Smith-Waterman:

Some Useful Applications of Alignments

The entire genomic database

Our newly
sequenced
mammal

3109

32

 Given a newly sequenced organism,
 Which subregions align with other organisms?

 Potential genes
 Other biological characteristics

 Assume we try Smith-Waterman:

1010 - 1011

17

Reconsider DP Geometry
 Diagonal matching segments: Basis for alignment
 Alignment: Connecting matching diagonals

 With mismatched diagonals or horizontal/vertical gaps

 Score: Additive contributions of diagonals and connectors
 Connectors may reduce the score
 Focus: high score diagonals, positive score connectors

33

Dot Matrix Heuristics
Rule 1:

Find high-scoring diagonals
 Search small diagonal segments
 Extend to max diagonal matches
 Connect diagonals to max score

Rule 2:
Focus on meaningful
alignments
 Filter out low-scoring diagonals

* *
* *

*
*

* * *
*

* * *
* *

* * *
* * *

* * *
* *

* *
* * *

*
* *

* *

*

34

18

FASTA
 Key idea (Pearson & Lipman 88):

 Find short diagonals by
indexing the DB

 Extend these to high
scoring diagonals

 Use DP to connect them

 A 4 steps process

35

Step (a):
Find diagonal matches by indexing

 Key idea: k-mers index of of the DB

 Preprocess:
 Scan database to index words of size k (k-mers) [k=1..5] (

 Query:
 Scan query to index k-mers
 Compare hashes to find all

diagonal matches of length k
 Merge short diagonals into

maximal diagonal matches

36

19

Find Diagonal Matches by Indexing
Example:

Database d: TATCGATCGA
Position:1 2 3 4 5 6 7 8 9 10

Query q: GATCG

Position: 1 2 3 4 5
T
A
T
C
G
A
T
C
G
A

GATCG

TAT
ATC
TCG
CGA
GAT

1
2,6
3,7
4,8
5

dKtup=3

1. Extract index

2
3

1

q

0,-4
0,-4

-4

Offset=q-d

2. Find matches 3. Merge diagonal matches

FASTA Steps (b-d):
Optimize score
1. Filter low-score diagonals

2. Extend diagonals to max
score; keep high-scoring
segments

3. Use DP in a narrow band
around the high scoring
segments

38

20

BLAST:
Basic Local Alignment Search Tool
 Altschul & Karlin [1990]; a family of algorithms

 BLAST, WU-BLAST, BlastZ, MegaBLAST, BLAT

 Idea: find matches with significant score statistics
 Find maximal segment pairs (MSP):

segments with significant score

39

BLAST Algorithm

 Step 1: index DB for words of size W (W-mers);
index query sequence for W-mers with

score >Threshold
 W= 3 for protein, 11 for nucleotides

 Step 2: search for matches with high score
(HSP=high scoring pairs)

 Step 3: extend hits to maximal score segments
 Step 4: report matches with score above S

40

21

BLAST Step 1-3:
Finding Short High-Scoring Pairs (HSP)

From A. Baxevanis: “Nucleotide and Protein Sequence Analysis via Kellis & Indyk, MIT, “BLAST & Database Search, Lecture 2”

Create an index of W-mers for database & query
 For proteins W=3  a dictionary of 203=8000 words

Match W-mers that score above a threshold T
 FASTA searches for exact matches of k-mers
 BLAST searches for high scoring pairs (HSP)
 Key idea:

exploit fast part
of the search
to max the score
rather than push
maximization for
later, slower, phases

41

Blast Steps 3-4: Extending Short HSPs
 The short HSPs are extended to increase the

score

 Report above threshold HSPs and their scores

Max score extension

Score

42

