

Local Sequence Alignment & Heuristic Local Aligners

Lectures 18 – Nov 28, 2011 CSE 527 Computational Biology, Fall 2011

Instructor: Su-In Lee TA: Christopher Miles

Monday & Wednesday 12:00-1:20

Johnson Hall (JHN) 022

1

Review: Probabilistic Interpretation

X: TCCAGGTG-GAT

Y: TGCAAGTGCG-T

Chance or true homology?

Sharing a common ancestor

Review: Likelihood Ratio

X: TCCAGGTG-GAT

1 11 111 1 1

Y: TGCAAGTGCG-T

Pr(Data | Homology)
Pr(Data | Chance)

3

Review: Log Likelihood Ratio Score

- The most commonly used alignment score of aligning two sequences is the log likelihood ratio of the alignment under two models
 - Common ancestry
 - By chance

$$Score = \log \left(\prod_{i} \frac{\Pr(x_{i} y_{i})}{\Pr(x_{i}) \Pr(y_{i})} \right) =$$

$$= \sum_{i} \log \left(\frac{\Pr(x_{i} y_{i})}{\Pr(x_{i}) \Pr(y_{i})} \right) = \sum_{i} s(x_{i}, y_{i})$$

Outline: Scoring Alignments

- Scoring alignments
 - Probabilistic meaning
 - Scoring matrices
 - PAM: scoring based on evolutionary statistics
 - BLOSUM: tuning to evolutionary conservation
 - Gaps revisited
- Local vs global alignment
- Database search
 - FASTA
 - BLAST

5

Gap Initiation and Extension

Gap Initiation and Extension

CSCCDDCCCICC

TGCA--GTGCGA

Insertion / deletion (indel)

7

Scoring Indels: Naive Approach

- A fixed penalty d is given to every indel:
 - -d for 1 indel,
 - -2*d* for 2 consecutive indels
 - -3*d* for 3 consecutive indels, etc.

Can be too severe penalty for a series of 100 consecutive indels!

Affine Gap Penalties

In nature, a series of k indels often come as a single event rather than a series of k single nucleotide events:

Scoring the Gaps More Accurately

Current model:

Gap of length n incurs penalty $n \times d$

- However, gaps usually occur in bunches
- Convex gap penalty function:

 $\gamma(n)$: for all n, $\gamma(n+1) - \gamma(n) \le \gamma(n) - \gamma(n-1)$

Accounting for Gaps

- Gaps- contiguous sequence of spaces in one of the rows
- Score for a gap of length x is:

$$-(d + ex)$$

where d > 0 is the penalty for introducing a gap:

gap opening penalty

d will be large relative to e:

gap extension penalty

because you do not want to add too much of a penalty for extending the gap.

13

Affine Gap Penalties

- Gap penalties:
 - -d e when there is 2 indel
 - -d 2e when there are 3 indels
 - -d 3e when there are 4 indels, etc.
 - -d-(n-1)e when there are n indels
- Somehow reduced penalties (as compared to naïve scoring) are given to runs of horizontal and vertical arrows in the V matrix

Needleman-Wunsch With Affine Gaps

• $\gamma(n) = d + (n-1) \times e$ |
gap
gap
open
extend

- To compute optimal alignment,
- At position i,j, need to "remember" best score if gap is open best score if gap is not open
- F(i, j): score of alignment x₁...x_i to y₁...y_i if x_i aligns to y_i
- G(i, j): score <u>if</u> x_i or y_i aligns to a gap

15

Needleman-Wunsch With Affine Gaps

Initialization: $F(i, 0) = d + (i - 1) \times e$ $F(0, j) = d + (j - 1) \times e$

Iteration:

 $F(i, j) = max \begin{cases} F(i-1, j-1) + s(x_i, y_j) \\ \\ G(i-1, j-1) + s(x_i, y_j) \end{cases}$

 $G(i, j) = max \begin{cases} F(i-1, j) - d \\ F(i, j-1) - d \end{cases}$ G(i, j-1) - e G(i-1, j) - e

Termination: same

Outline: Scoring Alignments

- Scoring alignments
 - Probabilistic meaning
 - Scoring matrices
 - PAM: scoring based on evolutionary statistics
 - BLOSUM: tuning to evolutionary conservation
 - Gaps revisited
- Local vs global alignment
- Database search
 - FASTA
 - BLAST

17

Local vs. Global Alignment

- The Global Alignment Problem tries to find the highest scoring alignment between input sequences S (of length n) and T (of length m)
 S[1-n] and T[1-m].
- The Local Alignment Problem tries to find the highest scoring alignment between the substrings S[i-i'] and T[j-j'], where i,j>0, i'<n+1 and j'<m+1.</p>
 - In the "V matrix" (alignment scores of substrings) with negatively-scored arrows, Local Alignment may score higher than Global Alignment

Local vs. Global Alignment (cont'd)

Global alignment

 Local alignment: better alignment to find conserved segment

19

Local Alignments: Why?

- Genes are shuffled between genomes
 - Two genes in different species may be similar over short conserved regions and dissimilar over remaining regions.
- Portions of proteins (domains) are often conserved

Compute a "mini" Global Alignment to get Local

21

Local Alignment: Example

- Local run time O(n⁴):
 - In the grid of size n x n, there are ~n² vertices (i,j) that may serve as a source.
 - For each such vertex computing alignments from (i,j) to (i',j') takes O(n²) time.
- This can be remedied by giving free rides.

Local Alignment: Free Rides

The dashed arrows represent the free rides from (0,0) to every other entry in the V matrix.

23

The Local Alignment Problem

- Goal: Find the best local alignment between two sequences
- Input : Sequences S, T and scoring matrix σ
- Output: Alignment of sequences S and T whose alignment score is maximum among all possible alignment of all possible substrings

The Smith-Waterman Algorithm

Idea: Ignore badly aligning regions

Modifications to Needleman-Wunsch:

Initialization: V(0, j) = V(i, 0) = 0

Iteration: V(i, j) =

 $V(i, j) = \max \begin{cases} 0 \\ V(i, j) - d \\ V(i, j-1) - d \end{cases}$

 $(V_{i-1, j-1}) + s(x_{i}, y_{j})$

Power of ZERO: there is only this change from the original recurrence of a Global Alignment - since there is only one "free ride" arrow entering into every vertex

25

The Smith-Waterman Algorithm

Termination:

1. If we want the best local alignment...

$$V_{OPT} = \max_{i,j} V(i, j)$$

2. If we want all local alignments scoring > t

For all i, j find V(i, j) > t, and trace back

Outline: Scoring Alignments

- Scoring alignments
 - Probabilistic meaning
 - Scoring matrices
 - PAM: scoring based on evolutionary statistics
 - BLOSUM: tuning to evolutionary conservation
 - Gaps revisited
- Local vs global alignment
- Database search
 - FASTA
 - BLAST

27

Database Search

The problems:

- Dynamic programming: prohibitively complex
- Exact matching: prohibitively mismatch-sensitive

ŏ

State of Biological Databases

Sequenced Genomes:

Human Mouse	3×10 ⁹ 2.7×10 ⁹	Yeast 1.2×10^7 × 12 different strains
Rat	2.6×10 ⁹	Neurospora 4×10^7 14 more fungi within next year
Fugu fish	3.3×10^{8}	
Tetraodon	3×10 ⁸	~250 bacteria/viruses
Mosquito	2.8×10 ⁸	
Drosophila	1.2×10^{8}	
Worm	1.0×10^{8}	
2 sea squirts ×	1.6×10^{8}	
•		Current rate of sequencing:
Rice	1.0×10^{9}	4 big labs \times 3 \times 10 ⁹ bp /year/lab
Arabidopsis	1.2×10^{8}	10s small labs

29

State of Biological Databases

Number of genes

Vertebrate: ~30,000 Insects: ~14,000 Worm: ~17,000

Fungi: ~6,000-10,000

Small organisms: 100s-1,000s

- Each known or predicted gene has an associated protein sequence
- >1,000,000 known / predicted protein sequences

Some Useful Applications of Alignments

- Given a newly discovered gene,
 - Does it occur in other species?
 - How fast does it evolve?
- Assume we try Smith-Waterman:

Some Useful Applications of Alignments

- Given a newly sequenced organism,
 - Which subregions align with other organisms?
 - Potential genes
 - Other biological characteristics
- Assume we try Smith-Waterman:

Reconsider DP Geometry

- Diagonal matching segments: Basis for alignment
- Alignment: Connecting matching diagonals
 - With mismatched diagonals or horizontal/vertical gaps

- Score: Additive contributions of diagonals and connectors
 - Connectors may reduce the score
 - Focus: high score diagonals, positive score connectors

33

Dot Matrix Heuristics

Rule 1:

Find high-scoring diagonals

- Search small diagonal segments
- Extend to max diagonal matches
- Connect diagonals to max score

Rule 2:

Focus on meaningful alignments

• Filter out low-scoring diagonals

FASTA

- Key idea (Pearson & Lipman 88):
 - Find short diagonals by indexing the DB
 - Extend these to high scoring diagonals
 - Use DP to connect them
- A 4 steps process

Step (a): Find diagonal matches by indexing

- Key idea: k-mers index of of the DB
- Preprocess:
 - Scan database to index words of size k (k-mers) [k=1..5] (
- Query:

 - Scan query to index k-mers
 Compare hashes to find all diagonal matches of length k
 Merge short diagonals into maximal diagonal matches

BLAST: Basic Local Alignment Search Tool

- Altschul & Karlin [1990]; a family of algorithms
 - BLAST, WU-BLAST, BlastZ, MegaBLAST, BLAT
- Idea: find matches with significant score statistics
 - Find maximal segment pairs (MSP): segments with significant score

39

BLAST Algorithm

- Step 1: index DB for words of size W (W-mers); index query sequence for W-mers with score >Threshold
 - W= 3 for protein, 11 for nucleotides
- Step 2: search for matches with high score (HSP=high scoring pairs)
- Step 3: extend hits to maximal score segments
- Step 4: report matches with score above S

BLAST Step 1-3: Finding Short High-Scoring Pairs (HSP)

- Create an index of W-mers for database & guery
 - For proteins W=3 ⇒ a dictionary of 20³=8000 words
- Match W-mers that score above a threshold T
 - FASTA searches for exact matches of k-mers
 - BLAST searches for high scoring pairs (HSP)
 - Key idea: $Query: \quad GSVEDTTGSQSLAALLNKCKTPQGQRLVNQWIKQPLMDKNRIEERLNLVEAFVEDAELRQTLQEDLOGGER (Construction of the property of the proper$ exploit fast part POG 18 PEG 15 of the search PRG 14 to max the score Neighborhood words -PKG 14 PNG 13 rather than push PDG maximization for later, slower, phases Neighborhood score threshold PQA 12 41

Blast Steps 3-4: Extending Short HSPs

The short HSPs are extended to increase the score

Report above threshold HSPs and their scores