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Lectures 3 – Oct 5, 2011
CSE 527 Computational Biology, Fall 2011

Instructor: Su-In Lee
TA: Christopher Miles

Monday & Wednesday  12:00-1:20
Johnson Hall (JHN) 022

Maximum Likelihood Estimation 
& Expectation Maximization
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Review

 Model selection: argmaxx P(model x is true | Data)
 How to compute P(model x is true | Data)?

 Compute P( Data | model x is true )
 Use Bayes rule 2
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Computing P(Data | model II is true)
 P(A,B,C | model II is true)= ?

 P(A)P(B|A)P(C|A)
 P(A=high)P(B=low|A=high)

P(C=low|A=high)

3

A

B C

Model II

Sample i

Gene A

Gene B

Gene C

Sample 1 Sample N…

4

Outline
 Probabilistic models in biology

 Model selection problem

 Mathematical foundations

 Bayesian networks

 Learning from data
 Maximum likelihood estimation
 Maximum a posteriori (MAP)
 Expectation and maximization
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Parameter Estimation
 Assumptions

 Fixed network structure
 Fully observed instances of the network variables: D={d[1],…,d[M]}
 Maximum likelihood estimation (MLE)!

“Parameters” of the 
Bayesian network

For example, 
{i0,d1,g1,l0,s0}

from Koller & Friedman
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The Thumbtack example
 Parameter learning for a single variable.

 Variable
 X: an outcome of a thumbtack toss
 Val(X) = {head, tail}

 Data
 A set of thumbtack tosses: x[1],…x[M]

X
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Maximum likelihood estimation
 Say that P(x=head) = Θ, P(x=tail) = 1-Θ

 P(HHTTHHH…<Mh heads, Mt tails>; Θ) = 

 Definition: The likelihood function
 L(Θ : D) = P(D; Θ)

 Maximum likelihood estimation (MLE)
 Given data D=HHTTHHH…<Mh heads, Mt tails>, find Θ

that maximizes the likelihood function L(Θ : D).
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Likelihood function
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MLE for the Thumbtack problem
 Given data D=HHTTHHH…<Mh heads, Mt tails>, 

 MLE solution Θ* = Mh / (Mh+Mt ).

 Proof:

Continuous Space
 Assuming sample x1, x2,…, xn is from a 

parametric distribution f (x|Θ) , estimate Θ.

 Say that the n samples are from a normal 
distribution with mean μ and variance σ2.
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Probability density function



6

Continuous Space (cont.)
 Let Θ1=μ, Θ2= σ2
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Any Drawback?
 Is it biased?

 Is it?  Yes. As an extreme, when n = 1,     =0.
 The MLE     systematically underestimates θ2 .
Why?  A bit harder to see, but think about n = 2. Then 
θ1 is exactly between the two sample points, the position 
that exactly minimizes the expression for    .  Any other 
choices for (θ1, θ2) make the likelihood of the observed 
data slightly lower. But it’s actually pretty unlikely that 
two sample points would be chosen exactly equidistant, 
and on opposite sides of the mean, so the MLE     
systematically underestimates θ2 .
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Maximum A Posteriori
 Incorporating priors. How?

 MLE vs MAP estimation
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MLE for General Problems
 Learning problem setting

 A set of random variables X from unknown distribution P*
 Training data D = M instances of X: {d[1],…,d[M]}

 A parametric model P(X; Θ) (a ‘legal’ distribution)

 Define the likelihood function:
 L(Θ : D) = 

 Maximum likelihood estimation
 Choose parameters Θ* that satisfy:
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MLE for Bayesian Networks

 Likelihood decomposition:

 The local likelihood function for Xi is:

x2

x3

x1

x4

Structure G

Given D: x[1],…x[m]…,x[M], estimate θ. 

(x1[m],x2[m],x3[m],x4[m])

Θx1, Θx2 , Θx3|x1,x2 , Θx4|x1,x3
(more generally Θxi|pai)

PG = P(x1,x2,x3,x4) 

Parameters θ

= P(x1) P(x2) P(x3|x1,x2) P(x4|x1,x3)

More generally? )|x(PP i
i

iG pa
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Bayesian Network with Table CPDs

MtMh
Mh

θ


ˆ

Difficulty

Grade
X

Intelligence

D: {H…x[m]…T} D: {(i1,d1,g1)…(i[m],d[m],g[m])…}

The Thumbtack example
The Student example

Data

Likelihood function

Parameters  

MLE solution

Joint distribution

vs

θI, θD, θG|I,D

P(X) P(I,D,G) = 

L(θ:D) = P(D;θ)

θ

θMh(1-θ)Mt
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Maximum Likelihood Estimation Review

 Find parameter estimates which make observed 
data most likely

 General approach, as long as tractable likelihood 
function exists

 Can use all available information
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 Instruction for making the proteins
 Instruction for when and where to make them

 What turns genes on (producing a protein) and off?

 When is a gene turned on or off?

 Where (in which cells) is a gene turned on?

 How many copies of the gene product are produced?

“Coding” Regions

“Regulatory” Regions (Regulons)

Example – Gene Expression

 Regulatory regions contain “binding sites” (6-20 bp).
 “Binding sites” attract a special class of proteins, known as 

“transcription factors”.
 Bound transcription factors can initiate transcription (making RNA).
 Proteins that inhibit transcription can also be bound to their 

binding sites.
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Regulation of Genes

GeneRegulatory Element
(binding sites)

RNA polymerase
(Protein)

Transcription Factor
(Protein)

DNA

source: M. Tompa, U. of Washington

AC..TCG..A
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Regulation of Genes

Gene

Transcription Factor
(Protein)

Regulatory Element

DNA

source: M. Tompa, U. of Washington

RNA polymerase
(Protein)

AC..TCG..A
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Regulation of Genes

Gene

RNA 
polymerase

Transcription Factor
(Protein)

Regulatory Element

DNA

source: M. Tompa, U. of Washington

AC..TCG..A
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Regulation of Genes

RNA 
polymeraseTranscription Factor

Regulatory Element

DNA

New proteinsource: M. Tompa, U. of Washington

AC..TCG..A
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The Gene regulation example
 What determines the expression level of a gene?
 What are observed and hidden variables?

 e.G, e.TF’s: observed; Process.G: hidden variables  want to infer!

e.G

Process.G

e.TF1 e.TF2 e.TFN...e.TF3 e.TF4

= p1= p2= p3

Expression level 
of a gene

Biological process the 
gene is involved in

Expression level 
of TF1
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Not All Data Are Perfect
 Most MLE problems are simple to solve with 

complete data.

 Available data are “incomplete” in some way.
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Outline
 Learning from data

 Maximum likelihood estimation (MLE)
 Maximum a posteriori (MAP)
 Expectation-maximization (EM) algorithm
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Continuous Space Revisited...
 Assuming sample x1, x2,…, xn is from a mixture of

parametric distributions,

x

x1 x2 … xm xm+1 … xn X
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A Real Example
 CpG content of human gene promoters

“A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two
distinct classes of promoters” Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417

GC frequency
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