Maximum Likelihood Estimation
‘& Expectation Maximization

Lectures 3 — Oct 5, 2011
CSE 527 Computational Biology, Fall 2011

Instructor: Su-In Lee
TA: Christopher Miles

Monday & Wednesday 12:00-1:20
Johnson Hall (JHN) 022 !
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= Model selection: argmax, P(model x is true | Data)

= How to compute P(model x is true | Data)?
= Compute P( Data | model x is true )
= Use Bayes rule 5




Computing P(Data | model II is true)

= P(A,B,C | model II is true)= ?
Model II =« P(A)P(B|A)P(C|A)

(A) . P(A=high)P(B=1o1|A=high)
P(C=1cv [A=high)
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Probabilistic models in biology
= Model selection problem

Mathematical foundations

Bayesian networks

Learning from data

= Maximum likelihood estimation <:|
= Maximum a posteriori (MAP)

= Expectation and maximization




Parameter Estimation
= Assumptions :

= Fixed network structure
= Fully observed instances of the network variables: D={d[1],...,d[M]}

= Maximum likelihood estimation (MLE)!R e, dugay
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from Koller & Friedman

The 7Thumbtack example

= Parameter learning for a single variable. Vool 36 b {

= Variable [9; -6

= X: an outcome of a thumbtack toss <—
« Val(X) = {head, tail}
M~ VT

= Data
= A set of thumbtack tosses: x[1],..x[M] &
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Maximum likelihood estimation
= Say thatw, P(x=tail) = 1-0

. P(HHTFHHH...<E4Lheads, M, tails>; ©) = gQ((-0)---
- g™ o
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= Maximum likelihood estimation (MLE) r

= Given data D=HHTTHHH...<M, heads, M, tails>, fin
that maximizes the(likelihood function L(© : D).
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MLE for the Thumbtack problem

= Given data D@ <.

« MLE solution ©% = M, / (M+M,).

= Proof: )1(0:D)= P(P:O) L) o)
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Continuous Space

= Assuming sample x;, X,..., X, is from a @
parametric distribution E\Q(,l;@)»' estimate O.

= Say that the n samples are from a normal
distribution with mean and varla%qg}
N v/
n4g)

Probablllg density function &
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Continuous Space (cont.)
= Let @ﬁllr \O}w

H o
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logL(6,,6,: X, %y, X)) = - b

n

10gL (6,6, %, XguX,) = LS 2

1

0
glog L(6,,6, 1%, %y res X,)
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Any Drawback? / lL .K

= Is it biased? @

A

» Isit? Yes. As an extreme, when n = 1, |g,=0.
= The MLE &, systematically underestimates

Why? A bit harder to see, but think abou Then
6, is exactly between the two sample points, the position
that exactly minimizes the expression for 6,. Any other
choices for (8,, 8,) make the likelihood of the observed
data slightly lower. But it’s actually pretty unlikely that
two sample points would be chosen exactly equidistant,
and on opposite sides of the mean, so the MLE ¢,
systematically underestimates 6,.
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Maximum A Posteriori

= Incorporating priors. How?
ME: pCDle) | Jog PLPL)

_pIg) pLd)
MAP Ec@lD)-%E)—‘ ‘/

s MLE vs MAP estimation
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MLE for General Problems

Learning problem setting % X&)

= A set of random variables X from unknown distributio @

= Training dat@= M instances of X: ..., d[M]}
HTNS(0,0, )

A parametric mode/ P(X'; O) (a ‘legal’ distribution)

Define the likelihood function:
= L(©:D)= pcD:0)

£= (b:0
= argrent PCD20)

Maximum likelihood estimation
= Choose parameters & that satisfy: ﬁlﬂﬂﬁw'm =0
) 0 5
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MLE for Bayesian Networks

Ne Pg=P = TP L YY)
P(x1) P(x2) P(x3 |Vx1,x2) P(x4|x1,x3)

More generally? Ps = [P(x; | pa))
arameters e< exll exZ ’ ex3|x1,x2! ex4|x1,x3
(X“:U,Y | (more generally ©,;;,.,)
GivenyD: x[1],... ﬁmestimate Q)/J
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L(9:D)= pCXLu-xpA| WWWXMM’“"@@

o’
i

= Likelihgod decon
| M {

<

Bayesian Network with Table CPDs

The Student example

The Thumbtack example

@ vs

Joint distribution P(X)
Parameters S By B0 Bgprn
Data D: {H..x[m]..T} D: {(it,d%,g%)...(i(m],d[m],g[m])...}
. . i MI:E' MI’LO Mp="'l
Likelihood function gh(1-B) Or Ozo Opsat -
L(8:D) = P(D;6)
W
" Mg T:i0
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MLE solution T 9&~A[I~L.D-&t M =2\ D=’
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Maximum Likelihood Estimation Review

= Find parameter estimates which make observed
data most likel ~

= General approach, as long as tractable likelihood
function exists s Q"ﬁ()wl@ )
oo

= Can use all available information «_
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Example — Gene Expression

= Instruction for making the proteins
= Instruction for when and where to make them

“Coding” Regions
A

“Regulator@i@lﬂ%ﬁ)"\
‘ .
Regulatory regions contain “binding sites” (6-20 bp).
"Binding sites” attract a special class of proteins, known as
“transcription factors”.
Bound transcription factors can initiate transcription (making RNA).

Proteins that inhibit transcription can also be bound to their
binding sites.




Regulation of Genes
Transcription Factor
@ / (Protein)
. _RNA polymerase
‘ (Protein)
DNA [ rc.1

Regulatory Element Gene
(binding sites)

source: M. Tompa, U. of Washington 19

Regulation of Genes

Transcription Factor
(Protein)

_—RNA polymerase

(Protein)
 ——
DNA

~ I

Regulatory Element Gene

source: M. Tompa, U. of Washington 20




Regulation of Genes
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source: M. Tompa, U. of Washington 21

Regulation of Genes
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The Gene regulation example

=  What determines the expression level of a gene?
= What are observed and hidden variables?
= e.G, e.TF's: observed; Process.G: hidden variables = want to infer!

Expression level
of TF,
Biological process the

gene is involved in I —

= Pp;

: Expression level
3 of a gene
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Not All Data Are Perfect

= Most MLE problems are simple to solve with
complete data.

= Available data are “incomplete” in some way.
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Outline

= Learning from data
= Maximum likelihood estimation (MLE)
= Maximum a posteriori (MAP)
= Expectation-maximization (EM) algorithm <:|

25

Continuous Space Revisited...

= Assuming sample Xy, X,,..., X, is from a mixture of
parametric distributions,

X1 Xz e Xy Xonet -+ Xp @




A Real Example

= CpG content of human gene promoters
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“A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two 27

distinct classes of promoters” Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417
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