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Lectures 6 – Oct 12, 2011
CSE 527 Computational Biology, Fall 2011

Instructor: Su-In Lee
TA: Christopher Miles

Monday & Wednesday  12:00-1:20
Johnson Hall (JHN) 022

Haplotype Reconstruction
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Course Announcements
 Project proposal

 Due this Friday
 1 paragraph describing what you’d like to work on for 

the class project.

 Special office hours
 Today 3-5pm: discussing project topics
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Haplotype
 A combination of alleles present in a chromosome
 Each haplotype has a frequency, which is the proportion 

of chromosomes of that type in the population
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 Consider N binary SNPs in a genomic region
 There are 2N possible haplotypes

 But in fact, far fewer are seen in human population

More on haplotype
 What determines haplotype frequencies?

 Recombination rate (r) between neighboring alleles
 Depends on the population
 r is different for different regions in genome

 Linkage disequilibrium (LD)
 Non-random association of alleles at two or more loci, 

not necessarily on the same chromosome.

 Why do we care about haplotypes or LD?
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Useful roles for haplotypes
 Linkage disequilibrium studies

 Summarize genetic variation
 Learn about population history

 Selecting markers to genotype
 Identify haplotype tag SNPs
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Exploiting LD – tag SNPs
 In a typical short chromosome segment, there are 

only a few distinct haplotypes
 Carefully selected SNPs can determine status of 

other SNPs
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Association studies and LD
 Why is LD important for gene mapping (eg QTL 

mapping)?

 If all polymorphisms were independent at the 
population level, association studies would have 
to examine every one of them…

 Linkage disequilibrium makes tightly linked 
variants strongly correlated producing cost 
savings for association studies

7

Useful roles for haplotypes
 Linkage disequilibrium studies

 Summarize genetic variation
 Learn about population history

 Selecting markers to genotype
 Identify haplotype tag SNPs

 Candidate gene association studies
 Help interpret single marker associations
 Map capture effect of ungenotyped alleles
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The problems…
 Haplotypes are hard to measure directly

 X-chromosome in males
 Sperm typing
 Hybrid cell lines
 Other molecular techniques

 Often, statistical reconstruction required
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Typical genotype data

 Two alleles for each individual
 Chromosome origin for each allele 

is unknown

 Multiple haplotype pairs can fit 
observed genotype
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Use information on relatives?
 Family information can help determine phase at 

many markers

 Still, many ambiguities might not be resolved
 Problem more serious with larger numbers of markers

 Can you propose examples?

Example – inferring haplotypes
 Genotype: AT//AA//CG

 Maternal genotype: TA//AA//CC
 Paternal genotype: TT//AA//CG
 Then the haplotype is AAC/TAG

 Genotype: AT//AA//CG
 Maternal genotype: AT//AA//CG
 Paternal genotype: AT//AA//CG
 Cannot determine unique haplotype

 Problem
 Determine Haplotypes without parental genotypes 12
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What if there are no relatives?
 Rely on linkage disequilibrium

 Assume that population consists of small number 
of distinct haplotypes
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Haplotype reconstruction
 Also called, phasing, haplotype inference or 

haplotyping

 Data
 Genotypes on N markers from M individuals

 Goals
 Frequency estimation of all possible haplotypes
 Haplotype reconstruction for individuals
 How many out of all possible haplotypes are plausible in a 

population?
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Clark’s Haplotyping Algorithm
 Clark (1990) Mol Biol Evol 7:111-122

 One of the first haplotyping algorithms
 Computationally efficient
 Very fast and widely used in 1990’s
 More accurate methods are now available
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Clark’s Haplotyping Algorithm
 Find unambiguous individuals

 What kinds of genotypes will these have?
 Initialize a list of known haplotypes

 Unambiguous individuals
 Homozygous at every locus (e.g. TT//AA//CC)

Haplotypes: TAC
 Heterozygous at just one locus (e.g. TT//AA//CG)

Haplotypes: TAC or TAG
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Unambiguous vs ambiguous
 Haplotypes for 2 SNPs (alleles: A/a, B/b)
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Clark’s Haplotyping Algorithm
 Find unambiguous individuals

 What kinds of genotypes will these have?
 Initialize a list of known haplotypes

 Resolve ambiguous individuals
 If possible, use two haplotypes from list
 Otherwise, use one known haplotype and augment list

 If unphased individuals remain
 Assign phase randomly to one individual
 Augment haplotype list and continue from previous step
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Parsimonious Phasing - Example
 Notation (more compact representation)

 0/1: homozygous at each locus (00,11)
 h: heterozygous at each locus (01)

1 0 1 0 0 h

h 0 1 h 0 0

0 h h 1 h 0

1 0 1 0 0 0
1 0 1 0 0 1

1 0 1 0 0 0
0 0 1 1 0 0

0 0 1 1 0 0
0 1 0 1 1 0
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Notes …
 Clark’s Algorithm is extremely fast

 Problems
 No homozygotes or single SNP heterozygotes in the 

sample
 Many unresolved haplotypes at the end
 Error in haplotype inference if a crossover of two 

actual haplotypes is identical to another true haplotype
 Frequency of these problems depend on average 

heterozygosity of the SNPs, no of loci, recombination 
rate, sample size
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The EM Haplotyping Algorithm
 Excoffier and Slatkin (1995) Mol Biol Evol 12:921-927

 Why EM for haplotyping?
 EM is a method for MLE with hidden variables.

 What are the hidden variables, parameters?
 Hidden variables: haplotype state of each individual
 Parameters: haplotype frequencies

Haplotype state (hidden variable) 
z=0               z=1

Individual n

Haplotype frequencies
(parameters) 
pAb, paB, pAB, pab

Assume that we know haplotype 
frequencies

 Probability of first outcome:
 2PAbPaB =

 Probability of second outcome:
 2PABPab =

For example, if
PAB = 0.3
Pab = 0.3
PAb = 0.3
PaB = 0.1
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Conditional probabilities are …

 Conditional probability of first outcome:
 2PAbPaB / (2PAbPaB + 2PABPab) =

 Conditional probability of second outcome:
 2PABPab / (2PAbPaB + 2PABPab) = 

For example, if
PAB = 0.3
Pab = 0.3
PAb = 0.3
PaB = 0.1

Assume that we know the 
haplotype state of each individual
 Computing haplotype frequencies is straightforward
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Individual 1

Individual 2

Individual 3

Individual 4

pAB =?
Pab =?
pAb =?
paB =? 
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Parameters
(haplotype frequencies)

Guess

Phasing by EM
 EM: Method for maximum-likelihood parameter 

inference with hidden variables

Hidden variables
(haplotype states of individuals)

Find expected values

Parameters
(haplotype frequencies)

Maximize Likelihood

M

E

Estimating haplotype
frequencies

Inferring haplotype 
state of each individual
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EM Algorithm For Haplotyping
 1. “Guesstimate” haplotype frequencies

 2. Use current frequency estimates to replace 
ambiguous genotypes with fractional counts of 
phased genotypes

 3. Estimate frequency of each haplotype by 
counting

 4. Repeat steps 2 and 3 until frequencies are 
stable
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Phasing by EM
Data:

1 0 h h 1

h 0 0 1 h

1 h h 1 1 

1 0 0 0 1
1 0 1 1 1
1 0 0 1 1
1 0 1 0 1

0 0 0 1 0
1 0 0 1 1
0 0 0 1 1
1 0 0 1 0

1 0 0 1 1
1 1 1 1 1
1 0 1 1 1
1 1 0 1 1

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼
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Phasing by EM

Frequencies
0 0 0 1 0 1/12
0 0 0 1 1 1/12
1 0 0 0 1 1/12
1 0 0 1 0 1/12
1 0 0 1 1 3/12
1 0 1 0 1 1/12
1 0 1 1 1 2/12
1 1 0 1 1 1/12
1 1 1 1 1 1/12

Data:

1 0 h h 1

h 0 0 1 h

1 h h 1 1 

1 0 0 0 1
1 0 1 1 1
1 0 0 1 1
1 0 1 0 1

0 0 0 1 0
1 0 0 1 1
0 0 0 1 1
1 0 0 1 0

1 0 0 1 1
1 1 1 1 1
1 0 1 1 1
1 1 0 1 1

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼
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Phasing by EM

Frequencies
0 0 0 1 0 1/12
0 0 0 1 1 1/12
1 0 0 0 1 1/12
1 0 0 1 0 1/12
1 0 0 1 1 3/12
1 0 1 0 1 1/12
1 0 1 1 1 2/12
1 1 0 1 1 1/12
1 1 1 1 1 1/12

Data:

1 0 h h 1

h 0 0 1 h

1 h h 1 1 

1 0 0 0 1
1 0 1 1 1
1 0 0 1 1
1 0 1 0 1

0 0 0 1 0
1 0 0 1 1
0 0 0 1 1
1 0 0 1 0

1 0 0 1 1
1 1 1 1 1
1 0 1 1 1
1 1 0 1 1

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

Haplotypes

0.4
0.6

0.75
0.25

0.6
0.4

Expectation
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Frequencies
0 0 0 1 0 1/12
0 0 0 1 1 1/12
1 0 0 0 1 1/12
1 0 0 1 0 1/12
1 0 0 1 1 3/12
1 0 1 0 1 1/12
1 0 1 1 1 2/12
1 1 0 1 1 1/12
1 1 1 1 1 1/12

Phasing by EM

Frequencies
0 0 0 1 0 .125
0 0 0 1 1 .042
1 0 0 0 1 .067
1 0 0 1 0 .042
1 0 0 1 1 .325
1 0 1 0 1 .1
1 0 1 1 1 .067
1 1 0 1 1 .067
1 1 1 1 1 .1

HaplotypesData:

1 0 h h 1

h 0 0 1 h

1 h h 1 1 

1 0 0 0 1
1 0 1 1 1
1 0 0 1 1
1 0 1 0 1

0 0 0 1 0
1 0 0 1 1
0 0 0 1 1
1 0 0 1 0

1 0 0 1 1
1 1 1 1 1
1 0 1 1 1
1 1 0 1 1

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

0.4
0.6

0.75
0.25

0.6
0.4

Expectation

Maximization
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Phasing by EM

Frequencies
0 0 0 1 0 1/6
0 0 0 1 1 0
1 0 0 0 1 0
1 0 0 1 0 0
1 0 0 1 1 1/2
1 0 1 0 1 1/6
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 1 1 1/6

HaplotypesData:

1 0 h h 1

h 0 0 1 h

1 h h 1 1 

1 0 0 0 1
1 0 1 1 1
1 0 0 1 1
1 0 1 0 1

0 0 0 1 0
1 0 0 1 1
0 0 0 1 1
1 0 0 1 0

1 0 0 1 1
1 1 1 1 1
1 0 1 1 1
1 1 0 1 1

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

0
1

1
0

1
0
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Computational Cost (for SNPs)
 Consider sets of m unphased genotypes

 Markers 1..m

 If markers are bi-allelic
 2m possible haplotypes
 2m-1 (2m + 1) possible haplotype pairs
 3m distinct observed genotypes
 2n-1 reconstructions for n heterozygous loci

 For example, if m = 10

For example, if m=10

= 1024
= 524,800
= 59,049
= 512
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EM Algorithm For Haplotyping
 Cost grows rapidly with number of markers

 Typically appropriate for < 25 SNPs
 Fewer microsatellites

 More accurate than Clark’s method

 Fully or partially phased individuals contribute 
most of the information

Enhancements to EM
 List only haplotypes present in sample

 Gradually expand subset of markers under 
consideration, eliminating haplotypes with low 
estimated frequency from consideration at each 
stage
 SNPHAP, Clayton (2001)
 HAPLOTYPER, Qin et al (2002)
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Divide-And-Conquer Approximation
 Number of potential haplotypes increases 

exponentially
 Number of observed haplotypes does not

 Approximation
 Successively divide marker set
 Locally phase each segment through EM
 Prune haplotype list as segments are ligated
 Merge by phasing vectors of haplotype pairs

 Computation order: ~ m log m
 Exact EM is order ~ 2m

1 0 0 1 0 1 0
0 0 0 1 1 0 1

0 1 0 1 1 0 0
1 1 1 0 0 1 1

1 0 0 0 0 0 0
0 1 1 1 1 1 0


