‘ Haplotype Reconstruction

Lectures 6 — Oct 12, 2011
CSE 527 Computational Biology, Fall 2011

Instructor: Su-In Lee
TA: Christopher Miles

Monday & Wednesday 12:00-1:20
Johnson Hall (JHN) 022

Course Announcements

= Project proposal
= Due this Friday

= 1 paragraph describing what you'd like to work on for
the class project.

= Special office hours
= Today 3-5pm: discussing project topics




Haplotype

= A combination of alleles present in a chromosome

= Each haplotype has a frequency, which is the proportion
of chromosomes of that type in the population
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= Consider N binary SNPs in a genomic region

= There are 2N possible haplotypes
= But in fact, far fewer are seen in human population

More on haplotype

= What determines haplotype frequencies?
= Recombination rate (r) between neighboring alleles
= Depends on the population
= ris different for different regions in genome

= Linkage disequilibrium (LD)

= Non-random association of alleles at two or more loci,
not necessarily on the same chromosome.

= Why do we care about haplotypes or LD?




Useful roles for haplotypes

= Linkage disequilibrium studies
= Summarize genetic variation
= Learn about population history

= Selecting markers to genotype
= ldentify haplotype tag SNPs

Exploiting LD — tag SNPs

= In a typic Haplotype here are
Only a fe‘ C 3/8 healthy
= Carefully o wre aeextus Of
other SNI
chromosome:
S;S, 55, S .. Sy
Haplotype 1 | T T [ [ [ [ [ [T [ [ | 3o
Haploype2 | T[T[ [ [ | [ [ [T] [ [ | 20%
Haplotype 3 |T|T| | | | | | Ill | | | 20%
Haploype 4 | T[T [ [ | [ [ [T] [ [ ] 20%
Haplotype s | TIT[ [ | [ [ [ IT] [ [ | 1o%

|:||:| Different alleles of each SNP




Association studies and LD

= Why is LD important for gene mapping (eg QTL
mapping)?

= If all polymorphisms were independent at the
population level, association studies would have
to examine every one of them...

= Linkage disequilibrium makes tightly linked
variants strongly correlated producing cost
savings for association studies

Useful roles for haplotypes

= Linkage disequilibrium studies
= Summarize genetic variation
= Learn about population history

= Selecting markers to genotype
= ldentify haplotype tag SNPs

= Candidate gene association studies
= Help interpret single marker associations
= Map capture effect of ungenotyped alleles




The problems...

= Haplotypes are hard to measure directly
= X-chromosome in males
= Sperm typing
= Hybrid cell lines
= Other molecular techniques

= Often, statistical reconstruction required

Typical genotype data

= Two alleles for each individual Observation

is unknown

= Chromosome origin for each allele

Marker1
Marker2
Marker3

Possible States

= Multiple haplotype pairs can fit
observed genotype
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Use information on relatives?

= Family information can help determine phase at
many markers

= Still, many ambiguities might not be resolved
= Problem more serious with larger numbers of markers

= Can you propose examples?
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Example — mferrln

= Genotype: (gT// /CG;

[
= Maternal genotype: TA//AA//CC” e%

= Paternal genotype: TT//AA//CG— VY - @@
= Then the haplotype is AAC/TAG

= Genotype: AT//AA//CG
= Maternal genotype: AT//AA//CG —7
= Paternal genotype: AT//AA//CG —7
= Cannot determine unique haplotype

= Problem

= Determine Haplotypes without parental genotypes *2




What if there are no relatives?

Rely on linkage disequilibrium

= Assume that population consists of small number

of distinct haplotypes
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Haplotype reconstruction

Also called, phasing, haplotype inference or

hap/olj/p/ng Observation
G | Marker1
Marker2

Data [G][A]  Marker3

Genotypes on N markers from M individuals

Goals
Frequency estimation of all possible haplotypes
Haplotype reconstruction for individuals

How many out of all possible haplotypes are plausible in a
population?
14




Clark’s Haplotyping Algorithm

= Clark (1990) Mol Biol Evol 7:111-122

= One of the first haplotyping algorithms
= Computationally efficient
= Very fast and widely used in 1990’s
= More accurate methods are now available
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Clark’s Haplotyping Algorithm

= Find unambiguous individuals
= What kinds of genotypes will these have?
= Initialize a list of known haplotypes

= Unambiguous individuals
= Homozygous at every locus (e.g. TT//AA//CC)
Haplotypes: TAC
= Heterozygous at just one locus (e.g. TT//AA//CG)
Haplotypes: TAC or TAG
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Unambiguous vs ambiguous
= Haplotypes for 2 SNPs (alleles: A/a, B/b)

Al A A E
A E b |B b
a a a m F] A A
—> or
b| | B b el L&] b B
A a A
E B bl |o Ambigous Genotype

Multiple Underlying Genotypes Possible

Unambigous Genotypes
Underlying Haplotype is Known

Clark’s Haplotyping Algorithm

= Find unambiguous individuals
= What kinds of genotypes will these have?
= Initialize a /ist of known haplotypes

= Resolve ambiguous individuals
= If possible, use two haplotypes from list
= Otherwise, use one known haplotype and augment list

= If unphased individuals remain
= Assign phase randomly to one individual
= Augment haplotype list and continue from previous step
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Parsimonious Phasing - Example

= Notation (more compact representation)
= 0/1: homozygous at each locus (00,11)
= h: heterozygous at each locus (01)

101000
Lo b 101001
hO1hoo 101000
001100
Ohh1hoO 001100
010110
Notes ...

= Clark’s Algorithm is extremely fast

= Problems

= No homozygotes or single SNP heterozygotes in the

sample

= Many unresolved haplotypes at the end

= Error in haplotype inference if a crossover of two

actual haplotypes is identical to another true haplotype

= Frequency of these problems depend on average

heterozygosity of the SNPs, no of loci, recombination

rate, sample size
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The EM Haplotyping Algorithm

= Excoffier and Slatkin (1995) Mo/ Biol Evol 12:921-927

= Why EM for haplotyping?
= EM is a method for MLE with hidden variables.

= What are the hidden variables, parameters?
= Hidden variables: haplotype state of each individual
= Parameters: haplotype frequencies

Individual n Haplotype state (hidden variable)

z=0 z=1
Haplotype frequencies
A A
I_I I?I—p or (parameters)
M IEI B Pab» Pags Pass Pap

Assume that we know haplotype
frequencies
For example, if

or Pa =0.3

b B B ab
o] Le] Py, = 0.3
P,s=0.1

= Probability of first outcome:
u 2PAbPaB =

= Probability of second outcome:
u 2PABPab =




Conditional probabilities are ...

For example, if

or P.,.=0.3

b B B ab
I_I I_I Py, = 0.3
P,s=0.1

= Conditional probability of first outcome:
» 2PyPag/ (2PpPag + 2PpgPyp) =

= Conditional probability of second outcome:
» 2PpgPay / (2Pp,Pag + 2PpgPyp) =

Assume that we know the
haplotype state of each individual

= Computing haplotype frequencies is straightforward

A1 I=1 A] [] E
Individual 1 — o
1Rl Lol 1]l | Le
e——
A1 A Al [~
Individual 2 Lo] u—— Pag =7
bl |B bl |B _
[b] |8 P, =?
al |a a] [a] =2
Individual 3 I | Pab _,
Lo] Lo b [b] Pas =
[A1 =1 A [=]
Individual 4 — br E E
le] Le] 6] |&] 2




Phasing by EM

EM: Method for maximume-likelihood parameter
inference with hidden variables

Inferring haplotype
state of each individual

T

Parameters Hidden variables
(haplotype frequencies) (haplotype states of individuals)
Maximize Likelihood Find expected values

~m

Estimating haplotype
frequencies 25

EM Algorithm For Haplotyping

1. “Guesstimate” haplotype frequencies

2. Use current frequency estimates to replace
ambiguous genotypes with fractional counts of
phased genotypes

3. Estimate frequency of each haplotype by
counting

4. Repeat steps 2 and 3 until frequencies are
stable
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Phasing by EM

Data:

10hh1l

hOoO1h

1hhll

10001
10111

10011
10101

00010
10011

00011
10010

10011
11111

10111
11011

Ya
Ya
Ya
Ya

Ya
Ya
Ya
Ya

Ya
Ya
Ya
Ya
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Phasing by EM

Data:

10hh1l

hO0O1h

1hh1l1

10001
10111

10011
10101

00010
10011

00011
10010

10011
11111

10111
11011

Ya
Ya
Ya
Ya

Ya
Ya
Ya
Ya

Ya
Ya
Ya
Ya

Frequencies

00010
00011
10001
10010
10011
10101
10111
11011
11111

1/12
1/12
1/12
1/12
3/12
1/12
2/12
1/12
1/12
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Phasing by EM

Data:

10hh1

hOoO1h

1hhll

10001
10111

10011
10101

00010
10011

00011
10010

10011
11111

10111
11011

Ya
Ya
Ya
Ya

Ya
Ya
Ya
Ya

Ya
Ya
Ya
Ya

Haplotypes

0.4
0.6

0.75
0.25

0.6
0.4

Frequencies

00010 1/12
00011 1/22
10001 1/12
10010 1/12
10011 3/12
10101 1/12
10111 2/12
11011 1/12
11111 112

1
Expectation
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Phasing by EM

Data:

10hh1l

hO0O1h

1hh1l1

10001
10111

10011
10101

00010
10011

00011
10010

10011
11111

10111
11011

Ya
Ya
Ya
Ya

Ya
Ya
Ya
Ya

Ya
Ya
Ya
Ya

Haplotypes

0.4
0.6

0.75
0.25

0.6
0.4

Maximization

Frequencies
00010 .125
00011 .042
10001 .067
10010 .042
10011 .325
10101 1
10111 .067
11011 .067
11111 1
1

Expectation
30




Phasing by EM

Data: 1000 1 | |Haplotypes Frequencies
10111 |% 00010 1/6
L0hhY 0011w 1 00011 0
10101 |4 10004 9
10010 O
00010 |* 10011 1/2
hoO1h 10011 |% 1 10101 1/6
00011 |% 0 10111 O
10010 |v 11011 O
T0011lv 11111 1/6
1hh11 11111 | 1 L
10111 ),| [0
11011,
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Computational Cost (for SNPs)

= Consider sets of /m unphased genotypes

= Markers 1..m .
For example, if m=10

s If markers are bi-allelic

= 27 possible haplotypes = 1024
= 271 (27 + 1) possible haplotype pairs = 524,800
= 37 distinct observed genotypes = 59,049

= 21 reconstructions for 77 heterozygous loci = 512

= For example, if m = 10
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EM Algorithm For Haplotyping

= Cost grows rapidly with number of markers

= Typically appropriate for < 25 SNPs
= Fewer microsatellites

= More accurate than Clark’s method

= Fully or partially phased individuals contribute
most of the information
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Enhancements to EM

= List only haplotypes present in sample

» Gradually expand subset of markers under
consideration, eliminating haplotypes with low
estimated frequency from consideration at each
stage

= SNPHAP, Clayton (2001)
= HAPLOTYPER, Qin et al (2002)
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Divide-And-Conquer Approximation

= Number of potential haplotypes increases
exponentially

= Number of observed haplotypes does not

= Approximation
= Successively divide marker set
= Locally phase each segment through EM
= Prune haplotype list as segments are ligated
= Merge by phasing vectors of haplotype pairs

X %

= Computation order: ~ m log m
=« Exact EM is order ~ 2™ 35
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