?‘ Disease Association Studies

Lectures 7 — Oct 19, 2011
CSE 527 Computational Biology, Fall 2011

Instructor: Su-In Lee
TA: Christopher Miles

Monday & Wednesday 12:00-1:20
Johnson Hall (JHN) 022

Last Class

= Haplotype reconstruction
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Single nucleotide polymorphism (SNP) [snip] = a variation at a single site in DNA




Outline

= Application to disease association analysis
= Single marker based association tests
= Haplotype-based approach

= Indirect association — predicting unobserved SNPs
= Selection of tag SNPs

= Genetic linkage analysis
= Pedigree-based gene mapping
= Elston-Stewart algorithm
= Association vs linkage

A single marker association test

= Data

= Genotype data from case/control individuals
= €.g. case: patients, control: healthy individuals

= Goals

= Compare frequencies of particular alleles, or
genotypes, in set of cases and controls

= Typically, relies on standard contingency table tests
= Chi-square goodness-of-fit test
= Likelihood ratio test
= Fisher’s exact test




Construct contingency table

= Organize genotype counts in a simple table
= Rows: one row for cases, another for controls
= Columns: one of each genotype (or allele)
= Individual cells: count of observations

0/0 0/1 1/1
i=1 Case 0111 01,2 01‘3 0, .=0y1+0, ,+0; 3
(affected)
i=2 Control 0211 02,2 02‘3 0,5, .=0,1%0,,+0, 3
(unaffected)
0.1=01,%0,; 0.,=0,,+0,, 0O.5=0;3+0,5
= Notation

= Let O denote the observed counts in each cell

= Let EIJ denote the expected counts in each cell
« E=0,.0.,/0. . 5

Goodness of fit tests (1/2)

= Null hypothesis

= There is no statistical dependency between the genotypes and the
phenotype (case/control)

= P-value

= Probability of obtaining a test statistic at least as extreme as the one
that was actually observed

Degrees of freedom &

0.8 —k=1

—k=2

= Chi-square test '_ -

k=5

= If counts are large, compare statistic to ch| squared dlstrlbutlon
= p = 0.05 threshold is 5.99 for 2 df (degrees of freedom, e.g. genotype test)
= p = 0.05 threshold is 3.84 for 1 df (e.g. allele test)

= If counts are small, exact or permutation tests are better




Goodness of fit tests (2/2)

= Likelihood ratio test

= The test statistics (usually denoted D) is twice the
difference in the log-likelihoods:

D——2In likelihood for null model
B likelihood for alternative model
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= How about we do this for haplotypes?
= When does it out-perform the single marker association test?

Haplotype association tests

= Calculate haplotype frequencies in each group

Find most likely haplotype for each group

Fill in contingency table to compare haplotypes in
the two groups (case, control)

Not recommended!




Case genotypes & haplotypes

b

= The phase reconstruction in the five ambiguous individuals will be
driven by the haplotypes observed in individual 1 ...

= Inferred case haplotypes

1180

1 2 3 4 5 6

= This kind of phenomenon will occur with nearly all population

based haplotyping methods! °

Control genotypes & haplotypes

= Observed control genotypes
4 5 6
= Note these are identical, except for the single homozygous

individual ...

= Inferred case haplotypes

i

1 2 3 4 5 6

= Oops... The difference in a single genotype in the original data has
been greatly amplified by estimating haplotypes...




Haplotype association tests

= Never impute haplotypes in two groups separately

= Alternatively,

= Consider both samples jointly
« Schaid et al (2002) Am J Hum Genet 70:425-34
» Zaytkin et al (2002) Hum Hered. 53:79-91

= Use maximum likelihood

L= P(H
Mz

i H~G
individuals |

Possible haplotype
pairs, conditional on
genotype

Haplotype pair frequency
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Likelihood-based test

= Calculate 3 likelihoods
= Maximum likelihood for combined samples, L,
= Maximum likelihood for control sample, Lg
= Maximum likelihood for case sample, L

D= 2In( LELC ] ~ X

A

= df (degrees of freedom) corresponds to number of non-zero
haplotype frequencies in large samples
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Significance in small samples

= In reality sample sizes, it is hard to estimate the
number of dfaccurately

= Instead, use a permutation approach to calculate
empirical significance levels

= How?
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Outline

= Application to disease association analysis
= Single marker based association tests
= Haplotype-based approach
= Indirect association — predicting unobserved SNPs
= Selection of tag SNPs

= Genetic linkage analysis
= Pedigree-based gene mapping
= Elston-Stewart algorithm
= Association vs linkage
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In a typical GWAS, disease-causing SNPs @
have “proxies” that get high LOD scores mduaodtaufpostabdbdbg

Indirect association:
between proxy genotype
and phenotype

r2 : ranges between 0 and 1
1 when the two markers provide identical information
0 when they are in perfect linkage equilibrium

Pre-requisite for association studies

Genetic markers

b

¢

= How can we know which SNP pairs?
= Very dense genotype data
= Learn correlation between SNPs — haplotype structures

= Goal: dense genome-wide association scan




Goal:
Resource to enable genome-wide association studies
Data: G GeNOMeEWide Map: 3.8M SNPS m——
2 4= Benchmark: “all” 17k SNPs/5Mb (ENCODE) =p-
g :
c
()
()]
c
®
£
>
c
o
(9N
< v

International
Ha & -

= Are genomewide association studies doable?
or

= Do SNPs have enough proxies?
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How many proxies will my causal SNP have?

100%
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Imperfect proxies w2y

Disease cases

Healthy controls

OO OO0O0HH




How many proxies will my causal SNP have?

100%

. ° 3-5% of SNPs can cover
o
Z  80% - the genome
c
o
E 60% 1120
8 6-10
] 40% +— - B — |m35
g m2
T 20% .
i

(o) _

OA) Practical proxies (r2>0.5) Good proxies (r2>0.8) Perfect proxies (r&1)
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Computational challenges

Development of
genotyping arrays
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Optimizing SNP-set efficiency

m Select “tag” SNPs that maximize the number of
other SNPs whose alleles are revealed by them

l high r2 l high r2

Markers tested:

Markers captured: M

&
=
&

s How? 23

Computational challenges

Development of
ag SNP selection) genOtyping arrays

Iinternational

Analysis

(predicting unobserved SNPs)
24




Analysis questions “

= Can we quantify the coverage of common
sequence variations measured by genome-wide
SNP genotyping arrays?

= SNP genotyping arrays

= Arrays covering 100K/500K/1M SNPs from Affymetrix
or lllumina sl:
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Association tests with fixed markers

Tests of association:

SNPs captured: |Z|
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Arrays cover many common alleles
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Arrays cover many common alleles
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Analysis questions n

= Can we quantify the coverage of common
sequence variations measured by genome-wide
SNP genotyping arrays?

= Can we do better?
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Association with haplotypes

Tests of association: l l

SNPs captured: M M M M
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Association with haplotypes

Tests of association: l l

SNPs captured: M
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Increasing coverage (r°=0.8) by
specified haplotypes

100%
. o single markers
Panel: European S 80% 2-rr?arker haplotype |-
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Which platform to use?
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Summary

= Association analysis is a powerful strategy for
common disease research

= HapMap and genomewide technologies enable
whole-genome association scans
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