

Inferring Transcriptional Regulatory Networks from High-throughput Data

Lectures 9 – Oct 26, 2011 CSE 527 Computational Biology, Fall 2011

Instructor: Su-In Lee TA: Christopher Miles

Monday & Wednesday 12:00-1:20

Johnson Hall (JHN) 022

1

Outline

- Microarray gene expression data
 - Measuring the RNA level of genes
- Clustering approaches
- Beyond clustering
- Algorithms for learning regulatory networks
 - Application of probabilistic models
 - Structure learning of Bayesian networks
 - Module networks
- Evaluation of the method

Beyond Clustering

- Cluster: set of genes with similar expression profiles
- Regulatory module: set of genes with shared regulatory mechanism
- Goal:
 - Automatic method for identifying candidate modules and their regulatory mechanism

Regulatory network

- Bayesian network representation
 - Xi: expression level of gene i
 - Val(Xi): continuous
- Interpretation
 - Conditional independence
 - Causal relationships
- Joint distribution
 - $P(\mathbf{X}) = \frac{\pi}{c} P(\mathbf{X}_{c} | P_{\mathbf{A}} | \mathbf{X}_{c})$

Conditional probability distribution (CPD)?

CPD for Discrete Expression Level After discretizing the expression levels to high/low, Parameters – probability values in every entry X_1 Table CPD Activator *X2* Repressor X5=high X5=low X3=high, X4=high 0.3 0.7 *X3 X4* 0.05 X3=high, X4=low 0.95 X3=low, X4=high 0.1 0.9 X3=low, X4=low 0.2 0.8 *X5 X6* parameters How about continuous-valued expression level? 15 Tree CPD; Linear Gaussian CPD

Continuous-valued expression II • Linear Gaussian CPD • Parameters – weights $w_1,...,w_N$ associated with the parents (regulators) Linear Gaussian CPD parameters X3 X4 X4 X5 X4 X4 X5 X4 X4 X5 X4 X4 X5 X5 X6 X6

Scoring Functions

- Let S: structure, Θ_S : parameters for S, D: data
- Likelihood score

$$p(D|S,\theta_s) \leq \delta_s = \log_{\theta_s} p(D|S,\theta_s)$$

- How to overcome overfitting?
 - Reduce the complexity of the model
 - Bayesian score: P(Structure | Data)
 P(S(D) \(\times \partial D(D) \)
 P

Structure S

- Simplify the structure
 - Module networks

- Assume linear Gaussian CPD
- MLE: solve maximize_w (Σw_ix_i E_{Targe}

ge

Regulatory network

Candidate regulators (features) Yeast: 350 genes Mouse: 700 genes

 $P(\mathbf{E}_{Targets}|\mathbf{x}:\mathbf{w}) = N(\Sigma w_i x_i, \epsilon^2)$

Problem: This objective learns too many regulators

L₁ Regularization

- "Select" a subset of regulators
 - Combinatorial search?
 - Effective feature selection algorithm: L₁ regularization (LASSO)
 [Tibshirani, J. Royal. Statist. Soc B. 1996]
 - minimize_w $(\Sigma w_i x_i E_{Targets})^2 + \Sigma C |w_i|$: convex optimization! ⇒ Induces sparsity in the solution w (Many w_i's set to zero)

Candidate regulators (features)

Yeast: 350 genes Mouse: 700 genes

 $P(\mathbf{E}_{Targets}|\mathbf{x}:\mathbf{w}) = N(\Sigma w_i x_i, \varepsilon^2)$

23

Modularity of Regulatory Networks

- Genes tend to be co-regulated with others by the same factors.
- Biologically more relevant
- More compact representation
 - Smaller number of parameters
 - Reduced search space for structure learning
- Candidate regulators
 - A fixed set of genes that can be parents of other modules.

Same module ⇒
Share the CPD

Learning

- Structure learning
 - Find the structure that maximizes Bayesian score log P(S|D) (or via regularization)
- Expectation Maximization (EM) algorithm
 - M-step: Given a partition of the genes into modules, learn the best regulation program (tree CPD) for each module.
 - E-step: Given the inferred regulatory programs, we reassign genes into modules such that the associated regulation program best predicts each gene's behavior.

29

Learning Regulatory Network

- Iterative procedure
 - Cluster genes into modules (E-step)
 - Learn a regulatory program for each module (tree model) (M-step)

