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‘ High-throughput Data
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Outline

Microarray gene expression data

= Measuring the RNA level of genes

Clustering approaches

Beyond clustering

Algorithms for learning regulatory networks
= Application of probabilistic models

= Structure learning of Bayesian networks

= Module networks

Evaluation of the method
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Microarray gene expression data
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Analyzing micrarray data

Supervised learning problems
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= Gene signatures can provide valuable
diagnostic tool for clinical purposes

= Can also help the molecular
characterization of cellular processes
underlying disease states

* Bhattacharjee et al. Classification of human lung carcinomas by mRNA expression

| orofiling reveals distingt ma

PNAS (2001)

Un-supervised learning

o T

Learn the
underlying model!

Gene clustering can reveal cellular
processes and their response to different
conditions

Sample clustering can reveal
phenotypically distinct populations, with
clinical implications

*van't Veer et al. Gene expression profiling predicts clinical outcome of
breast cancer, Nature (2002)




Why care about clustering?
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Gene 1 = Discover functional relation

= Similar expression =
functionally related
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= Assign function to
unknown genes
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= Find which gene controls
which other genes

1. Euclidean distance
2. (Pearson’s) correlation coefficient
3. Etc etc...
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K-means clustering
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K-means clustering

O = Overall optimization
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O. O = How many (k) ?
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O O = How to initiate ?

Qo o y
Q O = Local minima
Q E1l

= Generally, heuristic methods have no established
means to determine the “correct” number of clusters
and to choose the “best” algorithm.
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Cly

Limitations:

= No explanation on what caused
expression of each gene

(No regulatory mechanism)

Co-regulated genes
cluster together
ICLN2
Iy ﬁ
EMET
Infer gene function
= Histones 11

Beyond Clustering

= Cluster: set of genes with similar expression
profiles

= Regulatory module: set of genes with shared
regulatory mechanism

» Goal:

= Automatic method for identifying candidate modules
and their regulatory mechanism
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Inferring regulatory networks

“Expression data”— measurement
of mRNA levels of all genes

Experimental
conditions

Q=2x104
(for human)

= Infer the regulatory network that
controls gene expression
= Causal relationships among e,

A and B regulate the expression of €
(A and B are regulators of C)

= Bayesian networks

Regulatory network

= Bayesian network representation
= Xi: expression level of gene i
= Val(Xi): continuous

= Interpretation
= Conditional independence
= Causal relationships

= Joint distribution
- P(x) =TPG!Iak)

Conditional probability
distribution (CPD)?




CPD for Discrete Expression Level

= After discretizing the expression levels to high/low,
= Parameters — probability values in every entry

Table CPD 0

Activator 0 Repressor
X5=high | X5=low N
X3=high, X4=high | 0.3 0.7 0 @

X3=high, X4=low | 0.95 0.05

X3=low, X4=high | 0.1 0.9

X3=low, X4=low 0.2 0.8

\ parameters @ @

= How about continuous-valued expression level?
= Tree CPD; Linear Gaussian CPD 15
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Context specificity of gene expression
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Continuous-valued expression I

= Tree conditional probability distributions (CPD)

= Parameters — mean (J) & variance (o2) of the normal
distribution in each context

= Represents combinatorial and context-specific regulation

Tree CPD

parameters
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Continuous-valued expression II

= Linear Gaussian CPD

= Parameters — weights w;,...,w, associated with the
parents (regulators)

Linear Gaussian CPD

/ parameters

P(X5|ParX5:w) = N(Zwx; , €2)

o

Learning

= Structure learning [Koller & Friedman]
= Constraint based approaches
= Score based approaches <:I
= Bayesian model averaging

Given a set of all possible network
structures and the scoring function
that measures how well the model fits the
observed data, we try to select the
highest scoring network structure.

= Scoring function @@

= Likelihood score ‘
= Bayesian score @ 4@




Scoring Functions

= Let S: structure, Og: parameters for S, D: data
= Likelihood score N
(D15,09€ Bs= s pLPIS.Os)

= How to overcome overfitting?
= Reduce the camplexity of the model
= Bayesian spc&)ei) P? )Structure|Data) Structure S
P(S‘lD)oc pLYIS):
. Regularization\ﬂ= PLD'S’ B P(GS[S)JQS
(D15.6¢) E(g-es

. Simpﬁ)ify the structure
= Module networks

= Assume linear Gaussian CPD

= MLE: solve maximize,, - (EW;X; - Eq,.q (

Regulatory network

Candidate regulators (features)
Yeast: 350 genes
Mouse: 700 genes

P(ETargetsl)(:W) = N(2wx;, €)

Problem: This objective learns too many regulators
22




L, Regularization

= “Select” a subset of regulators
= Combinatorial search?

» Effective feature selection algorithm: L, regularization (LASSO)
[Tibshirani, J. Royal. Statist. Soc B. 1996]

= minimize,, (EWX; - Epygers)*+ = € |Wi|: convex optimization!
= Induces sparsity in the solution w (Many w;'s set to zero)

Candidate regulators (features)
Yeast: 350 genes
Mouse: 700 genes

P(ETargetsl)(:W) = N(Ewx;, €2)
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Modularity of Regulatory Networks

= Genes tend to be co-regulated with others by the same
factors.

= Biologically more relevant

= More compact representation
= Smaller number of parameters

= Reduced search space for
structure learning

= Candidate regulators

= A fixed set of genes that can be
parents of other modules.

Same module = [
Share the CPD 24




The Module Networks Concept
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Structure Learning — Bayesian Score & Tree CPD

= Find the structure S that maximizes P(S|D) Data D
= P(Structure|Data) « P(D|S) P(S) L = G2
= maximizeg log P(D|S) + log P(S) X2
= P(DIS) = J P(DIS,05) P(85|S) dOs s
P(S): prior distribution on the structure genes
maximizeg log [ P(D|S,0s) P(65|S) dOg + log P(S)
- Structure S ?
ML score: maxg log P(D|S,©
= More proneeto ?)ve(rfi!cting) @

Structure Learning — Bayesian Score & Tree CPD

= Find the structure S that maximizes P(S|D) Data D
= P(Structure|Data) « P(D|S) P(S) experiments (arrays)

X1

= maximizeg log P(D|S) + log P(S) X2
= P(DIS) = J P(DIS,05) P(8|S) dOs s
P(S): prior distribution on the structure genes
maximizeg log [ P(D|S,0s) P(65|S) dOg + log P(S)
= Decomposability Structure S ?
« For a certain structure S, log P(D|S) @

= log J P(DIS,85) P(85|S) dOs J @8y 88y s | 7"~

module 1 score

POCLIGEIPOZ )G X4IX1,Orc) || P(On)P(Ore) POw) i @ i
P(X5,X6|X3,X4,0,3 0

]
=|log [ P(X1|©,,) P(8,,) dO, | e

module 2 scoreﬁlog [ P(X2,X3,X4|X1,0..,) P(©,.,) dO,, “
module 3 scoreﬁlog J' P(XS,X6|X3,X4,@m3) P(®m3) d®m3 @ @




Learning

= Structure learning

= Find the structure that maximizes Bayesian score
log P(S|D) (or via regularization)

= Expectation Maximization (EM) algorithm

= M-step: Given a partition of the genes into modules,
learn the best regulation program (tree CPD)
for each module.

= E-step: Given the inferred regulatory programs, we
reassign genes into modules such that the
associated regulation program best predicts each
gene’s behavior.
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Learning Regulatory Network g .=
= Iterative procedure Q\ y

= Cluster genes into modules (E-step)
= Learn a regulatory program for each module (tree model) (M-step)

Maximum increase in the ~




