Statistical Genetics – Part I

Lecture 3: Haplotype reconstruction

Su-In Lee, CSE & GS, UW
suinlee@uw.edu

Outline

- Basic concepts
 - Allele, allele frequencies, genotype frequencies
 - Haplotype, haplotype frequency
 - Recombination rate
 - Linkage disequilibrium

- Haplotype reconstruction
 - Parsimony-based approach
 - EM-based approach

- Next topic
 - Disease association studies
Alleles

- Alternative forms of a particular sequence

- Each allele has a frequency, which is the proportion of chromosomes of that type in the population

```
C, G and -- are alleles

...ACTCGGTGGCCTTAAATCGGC...CCTACCTCGGTGGCCTTAAATCGGC... 
...ACTCGGTGGCCTTAAATCGGC...CGGACTCGGTGGCCTTAAATCGGC... 
...ACCCGGAAGCCCTTAATCGGC...AGCACCCTAATCGGC... 
...ACCCGGAAGCCCTTAATCGGC...--GGACCCTAATCGGC... 
...ACCCGGAAGCCCTTAATCGGC...GACCCTAATCGGC... 
...ACCCGGAAGCCCTTAATCGGC...CACCCTAATCGGC... 
```

single nucleotide polymorphism (SNP) allele frequencies for C, G, --

Allele Frequency Notations

- For two alleles
 - Usually labeled p and $q = 1 - p$
 - e.g. p = frequency of C, q = frequency of G

- For more than 2 alleles
 - Usually labeled p_A, p_B, p_C ...
 - ... subscripts A, B and C indicate allele names
Genotype

- The pair of alleles carried by an individual
 - If there are \(n \) alternative alleles ...
 - ... there will be \(n(n+1)/2 \) possible genotypes
 - In most cases, there are 3 possible genotypes

- **Homozygotes**
 - The two alleles are in the same state
 - (e.g. CC, GG, AA)

- **Heterozygotes**
 - The two alleles are different
 - (e.g. CG, AC)

Genotype Frequencies

- Since alleles occur in pairs, these are a useful descriptor of genetic data.

- However, in any non-trivial study we might have a lot of frequencies to estimate.

- \(p_{AA}, p_{AB}, p_{AC}, \ldots, p_{BB}, p_{BC}, \ldots, p_{CC}, \ldots \)
The Simple Part

- Genotype frequencies lead to allele frequencies.

- For example, for two alleles:
 - \(p_1 = p_{11} + \frac{1}{2} p_{12} \)
 - \(p_2 = p_{22} + \frac{1}{2} p_{12} \)

- However, the reverse is also possible!
 - We just need an additional assumption

Hardy-Weinberg Equilibrium (HWE)

- Relationship described in 1908
 - Hardy, British mathematician
 - Weinberg, German physician

- Shows \(n \) allele frequencies determine \(n(n+1)/2 \) genotype frequencies
 - Large populations

- Random union of the two gametes produced by two individuals
Random Mating: Mating Type Frequencies

- Denoting the genotype frequency of A_iA_j by p_{ij}, and the allele frequency A_i by p_i ($i, j \in \{1, 2\}$),
 - $p_i = p_{1i} + \frac{1}{2} p_{12}$; $p_j = p_{2j} + \frac{1}{2} p_{12}$

<table>
<thead>
<tr>
<th>Mating</th>
<th>Frequency</th>
<th>A_1A_1</th>
<th>A_1A_2</th>
<th>A_2A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_1A_1^*A_1A_1$</td>
<td>p_{11}^2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$A_1A_1^*A_1A_2$</td>
<td>$2p_{11}p_{12}$</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>$A_1A_1^*A_2A_2$</td>
<td>$2p_{11}p_{22}$</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$A_1A_2^*A_1A_2$</td>
<td>p_{12}^2</td>
<td>0.25</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>$A_1A_2^*A_2A_2$</td>
<td>$2p_{12}p_{22}$</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>$A_2A_2^*A_2A_2$</td>
<td>p_{22}^2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Mendelian Segregation: Offspring Genotype Frequencies

<table>
<thead>
<tr>
<th>Mating</th>
<th>Frequency</th>
<th>A_1A_1</th>
<th>A_1A_2</th>
<th>A_2A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_1A_1^*A_1A_1$</td>
<td>p_{11}^2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$A_1A_1^*A_1A_2$</td>
<td>$2p_{11}p_{12}$</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>$A_1A_1^*A_2A_2$</td>
<td>$2p_{11}p_{22}$</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$A_1A_2^*A_1A_2$</td>
<td>p_{12}^2</td>
<td>0.25</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>$A_1A_2^*A_2A_2$</td>
<td>$2p_{12}p_{22}$</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>$A_2A_2^*A_2A_2$</td>
<td>p_{22}^2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Mendelian Segregation: Offspring Genotype Frequencies

<table>
<thead>
<tr>
<th>Mating</th>
<th>Frequency</th>
<th>Offspring</th>
<th>A1A1</th>
<th>A1A2</th>
<th>A2A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1A1*A1A1</td>
<td>p11^2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A1A1*A1A2</td>
<td>2p11p12</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A1A1*A2A2</td>
<td>2p11p22</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A1A2*A1A2</td>
<td>p12^2</td>
<td>0.25</td>
<td>0.5</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>A1A2*A2A2</td>
<td>2p12p22</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>A2A2*A2A2</td>
<td>p22^2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{Offspring} = p_{11}^2 + 2p_{11}(0.5p_{12}) + (0.5p_{12})^2 \]
\[= (p_{11} + 0.5p_{12})^2 \]
\[= p_{11}^2 \]

Mendelian Segregation: Offspring Genotype Frequencies

<table>
<thead>
<tr>
<th>Mating</th>
<th>Frequency</th>
<th>Offspring</th>
<th>A1A1</th>
<th>A1A2</th>
<th>A2A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1A1*A1A1</td>
<td>p11^2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A1A1*A1A2</td>
<td>2p11p12</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A1A1*A2A2</td>
<td>2p11p22</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A1A2*A1A2</td>
<td>p12^2</td>
<td>0.25</td>
<td>0.5</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>A1A2*A2A2</td>
<td>2p12p22</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>A2A2*A2A2</td>
<td>p22^2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{Offspring} = p_{11}^2 \]
\[= 2p_{11}p_{22} \]
Mendelian Segregation: Offspring Genotype Frequencies

<table>
<thead>
<tr>
<th>Mating</th>
<th>Frequency</th>
<th>Offspring</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_1A_1^*A_1A_1$</td>
<td>p_{11}^2</td>
<td>1</td>
</tr>
<tr>
<td>$A_1A_1^*A_1A_2$</td>
<td>$2p_{11}p_{12}$</td>
<td>0.5</td>
</tr>
<tr>
<td>$A_1A_1^*A_2A_2$</td>
<td>$2p_{11}p_{22}$</td>
<td>0</td>
</tr>
<tr>
<td>$A_1A_2^*A_1A_2$</td>
<td>p_{12}^2</td>
<td>0.25</td>
</tr>
<tr>
<td>$A_1A_2^*A_2A_2$</td>
<td>$2p_{12}p_{22}$</td>
<td>0</td>
</tr>
<tr>
<td>$A_2A_2^*A_2A_2$</td>
<td>p_{22}^2</td>
<td>0</td>
</tr>
</tbody>
</table>

$= p_1^2 \quad = 2p_1p_2 \quad = p_2^2$

Frequency of A_1 in offspring $= p_1^2 + \frac{1}{2} 2p_1p_2 = p_1(p_1 + p_2) = p_1$

Conclusion: HWE

- Allele frequencies and genotype ratios in a randomly-breeding population *remain constant* from generation to generation.

- Genotype frequencies are function of allele frequencies.
 - Equilibrium reached in one generation
 - Independent of initial genotype frequencies
 - Random mating, etc. required
Review: Genetic Variation

- Single nucleotide polymorphism (SNP)
 - Each variant is called an allele; each allele has a frequency

- Hardy Weinberg equilibrium (HWE)
 - Relationship between allele frequency and genotype frequencies

- How about the relationship between alleles of neighboring SNPs?
 - We need to know about linkage (dis)equilibrium

Let’s consider the history of two neighboring alleles...
History of Two Neighboring Alleles

- Alleles that exist today arose through ancient mutation events...

Before mutation

```
A
```

After mutation

```
A
```

```
C Mutation
```

History of Two Neighboring Alleles

- One allele arose first, and then the other...

Before mutation

```
A
```
```
C
```
```
G
```
```
G
```

After mutation

```
A
```
```
C
```
```
G
```
```
G
```
```
C Mutation
```

Haplotype: combination of alleles present in a chromosome
Recombination Can Create More Haplotypes

- No recombination (or 2n recombination events)
 - Without recombination:
 - A
 - C
 - G
 - C
 - With recombination:
 - A
 - C
 - G
 - C

- Recombination
 - Recombinant haplotype
Haplotype

- A combination of alleles present in a chromosome
- Each haplotype has a frequency, which is the proportion of chromosomes of that type in the population

- Consider N binary SNPs in a genomic region
- There are 2^N possible haplotypes
 - But in fact, far fewer are seen in human population

More On Haplotype

- What determines haplotype frequencies?
 - Recombination rate (r) between neighboring alleles
 - Depends on the population
 - r is different for different regions in genome

- Linkage disequilibrium (LD)
 - Non-random association of alleles at two or more loci, not necessarily on the same chromosome.

- Why do we care about haplotypes or LD?
Useful Roles For Haplotypes

- Linkage disequilibrium studies
 - Summarize genetic variation
 - Learn about population history

- Selecting markers to genotype
 - Identify haplotype tag SNPs

What is genotyping?

- Genome-wide sequencing is still too expensive
- There are sites that are known to vary across individuals (e.g. SNPs)
- “genotyping” means determining the alleles in each SNP for a certain individual.

Exploiting LD – Tag SNPs

- In a typical a few distinct SNPs
- Carefully selected SNPs

<table>
<thead>
<tr>
<th>Haplotype 1</th>
<th>Haplotype 2</th>
<th>Haplotype 3</th>
<th>Haplotype 4</th>
<th>Haplotype 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>T T</td>
<td>T T</td>
<td>T T</td>
<td>T T</td>
<td>T T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>30%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Different alleles of each SNP
Association Studies and LD

- Why is LD important for disease association studies?

- If all polymorphisms were independent at the population level, association studies would have to examine every one of them...

- Linkage disequilibrium makes tightly linked variants strongly correlated producing cost savings for genotyping in association studies

The Problems...

- Haplotypes are hard to measure directly
 - X-chromosome in males
 - Sperm typing
 - Hybrid cell lines
 - Other molecular techniques

- Often, statistical reconstruction required
Goal

- Haplotype reconstruction

![Haplotype reconstruction diagram with genetic markers and DNA sequences]

Typical Genotype Data

- Two alleles for each individual
 - Chromosome origin for each allele is unknown

- Multiple haplotype pairs can fit observed genotype
Use Information on Relatives?

- Family information can help determine phase at many markers

- Still, many ambiguities might not be resolved
 - Problem more serious with larger numbers of markers

- Can you propose examples?

Example – Inferring Haplotypes

- Genotype: AT//AA//CG
 - Maternal genotype: TA//AA//CC → TAC/AAC
 - Paternal genotype: TT//AA//CG → TAC/TAG
 - Then the haplotype is AAC/TAG

- Genotype: AT//AA//CG
 - Maternal genotype: AT//AA//CG
 - Paternal genotype: AT//AA//CG
 - Cannot determine unique haplotype

- Problem
 - Determine Haplotypes without parental genotypes
What If There Are No Relatives?

- Rely on linkage disequilibrium
- Assume that population consists of small number of distinct haplotypes

Haplotype Reconstruction

- Also called, *phasing, haplotype inference* or *haplotyping*

Data
- Genotypes on N markers from M individuals

Goals
- Frequency estimation of all possible haplotypes
- Haplotype reconstruction for individuals
- How many out of all possible haplotypes are plausible in a population?
Clark’s Haplotyping Algorithm

- One of the first haplotyping algorithms
 - Computationally efficient
 - Very fast and widely used in 1990’s
 - More accurate methods are now available

Clark’s Haplotyping Algorithm

- Find unambiguous individuals
 - What kinds of genotypes will these have?
 - Initialize a list of known haplotypes

 - Unambiguous individuals
 - Homozygous at every locus (e.g. TT//AA//CC)
 Haplotypes: TAC
 - Heterozygous at just one locus (e.g. TT//AA//CG)
 Haplotypes: TAC or TAG
Unambiguous vs. Ambiguous

- Haplotypes for 2 SNPs (alleles: A/a, B/b)

Clark’s Haplotyping Algorithm

- Find unambiguous individuals
 - What kinds of genotypes will these have?
 - Initialize a list of known haplotypes

- Resolve ambiguous individuals
 - If possible, use two haplotypes from list
 - Otherwise, use one known haplotype and augment list

- If unphased individuals remain
 - Assign phase randomly to one individual
 - Augment haplotype list and continue from previous step
Parsimonious Phasing - Example

- **Notation (more compact representation)**
 - 0/1: homozygous at each locus (00,11)
 - h: heterozygous at each locus (01)

\[
\begin{array}{c}
10100h \\
h01h00 \\
0h1h0 \\
\end{array}
\quad
\begin{array}{c}
10100 \\
101001 \\
101000 \\
001100 \\
010110 \\
\end{array}
\]

Notes ...

- **Clark’s Algorithm is extremely fast**

- **Problems**
 - No homozygotes or single SNP heterozygotes in the sample
 - Many unresolved haplotypes at the end
 - Error in haplotype inference if a crossover of two actual haplotypes is identical to another true haplotype
 - Frequency of these problems depend on average heterozygosity of the SNPs, no of loci, recombination rate, sample size
The EM Haplotyping Algorithm

- Why EM for haplotyping?
 - EM is a method for MLE with hidden variables.

- What are the hidden variables, parameters?
 - **Hidden variables**: haplotype state of each individual
 - **Parameters**: haplotype frequencies

Assume That We Know Haplotype Frequencies

- **Probability of first outcome:**
 - \(2P_{A\bar{b}}P_{\bar{a}B} = 0.06\)

- **Probability of second outcome:**
 - \(2P_{A\bar{b}}P_{\bar{a}b} = 0.18\)
Conditional Probabilities Are ...

For example, if
\[P_{AB} = 0.3 \]
\[P_{ab} = 0.3 \]
\[P_{Ab} = 0.3 \]
\[P_{aB} = 0.1 \]

- Conditional probability of first outcome:
 \[\frac{2P_{AB}P_{ab}}{2P_{AB}P_{ab} + 2P_{Ab}P_{aB}} = 0.25 \]

- Conditional probability of second outcome:
 \[\frac{2P_{AB}P_{ab}}{2P_{AB}P_{ab} + 2P_{Ab}P_{aB}} = 0.75 \]

Assume That We Know The Haplotype State Of Each Individual

- Computing haplotype frequencies is straightforward

Individual 1

\[\frac{P_{AB}}{2P_{AB} + 2P_{Ab}} = ? \]
\[\frac{P_{ab}}{2P_{AB} + 2P_{Ab}} = ? \]

Individual 2

\[\frac{P_{AB}}{2P_{AB} + 2P_{Ab}} = ? \]
\[\frac{P_{ab}}{2P_{AB} + 2P_{Ab}} = ? \]

Individual 3

\[\frac{P_{AB}}{2P_{AB} + 2P_{Ab}} = ? \]
\[\frac{P_{ab}}{2P_{AB} + 2P_{Ab}} = ? \]

Individual 4

\[\frac{P_{AB}}{2P_{AB} + 2P_{Ab}} = ? \]
\[\frac{P_{ab}}{2P_{AB} + 2P_{Ab}} = ? \]
Phasing By EM

- EM: Method for maximum-likelihood parameter inference with hidden variables

 ![Diagram showing EM algorithm for phasing]

 - **Parameters** (haplotype frequencies)
 - Maximize Likelihood
 - **Hidden variables** (haplotype states of individuals)
 - Find expected values
 - **Estimating haplotype frequencies**

 EM Algorithm For Haplotyping

 1. “Guesstimate” haplotype frequencies
 2. Use current frequency estimates to replace ambiguous genotypes with fractional counts of phased genotypes
 3. Estimate frequency of each haplotype by counting
 4. Repeat steps 2 and 3 until frequencies are stable
Phasing by EM

Data:

\[
\begin{array}{c}
10h1h1 \\
h001h \\
h1h11 \\
\end{array}
\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & \frac{1}{4} \\
1 & 0 & 1 & 1 & 1 & \frac{1}{4} \\
1 & 0 & 0 & 1 & 1 & \frac{1}{4} \\
1 & 0 & 1 & 0 & 1 & \frac{1}{4} \\
0 & 0 & 0 & 1 & 0 & \frac{1}{4} \\
1 & 0 & 0 & 1 & 1 & \frac{1}{4} \\
0 & 0 & 0 & 1 & 1 & \frac{1}{4} \\
1 & 0 & 0 & 1 & 0 & \frac{1}{4} \\
1 & 0 & 0 & 1 & 1 & \frac{1}{4} \\
1 & 1 & 1 & 1 & 1 & \frac{1}{4} \\
1 & 0 & 1 & 1 & 1 & \frac{1}{4} \\
1 & 1 & 0 & 1 & 1 & \frac{1}{4} \\
\end{array}
\]

Frequencies

\[
\begin{array}{cccc}
00010 & 1/12 \\
00011 & 1/12 \\
10001 & 1/12 \\
10010 & 1/12 \\
10011 & 3/12 \\
10101 & 1/12 \\
10111 & 2/12 \\
11011 & 1/12 \\
11111 & 1/12 \\
\end{array}
\]
Phasing by EM

Data:

\[
\begin{array}{c|c|c|c|c|c|c}
\text{Haplotypes} & 00010 & 00011 & 10001 & 10010 & 10011 & 10101 \\
\hline
1 0 h h 1 & 0.4 & 0.6 & 0.125 & 0.067 & 0.042 & 0.042 \\
\hline
h 0 0 1 h & 0.75 & 0.25 & 0.325 & 0.75 & 0.25 & 1 \\
\hline
1 h h 1 & 0.6 & 0.4 & 0.67 & 1 & 0.67 & 1 \\
\end{array}
\]

Phasing by EM

\[
\begin{array}{c|c|c|c|c|c|c}
\text{Frequencies} & 00010 & 00011 & 10001 & 10010 & 10011 & 10101 \\
\hline
0 0 0 1 0 & 1/12 & 1/12 & 1/12 & 1/12 & 3/12 & 1/12 \\
0 0 0 1 1 & 1/12 & 1/12 & 1/12 & 1/12 & 2/12 & 1/12 \\
1 0 0 1 0 & 1/12 & 1/12 & 1/12 & 1/12 & 1/12 & 1/12 \\
1 0 0 1 1 & 1/12 & 1/12 & 1/12 & 1/12 & 1/12 & 1/12 \\
1 0 1 0 1 & 1/12 & 1/12 & 1/12 & 1/12 & 1/12 & 1/12 \\
1 0 1 1 1 & 1/12 & 1/12 & 1/12 & 1/12 & 1/12 & 1/12 \\
1 1 0 1 1 & 1/12 & 1/12 & 1/12 & 1/12 & 1/12 & 1/12 \\
1 1 1 1 1 & 1/12 & 1/12 & 1/12 & 1/12 & 1/12 & 1/12 \\
\end{array}
\]
Phasing by EM

Data:

<table>
<thead>
<tr>
<th>Haplotypes</th>
<th>Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{4}$</td>
<td>1/6</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>1/2</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>1/6</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>1/6</td>
</tr>
</tbody>
</table>

Computational Cost (for SNPs)

- Consider sets of m unphased genotypes
 - Markers 1..m

- If markers are bi-allelic
 - 2^m possible haplotypes
 - $2^{m-1} (2^m + 1)$ possible haplotype pairs
 - 3^m distinct observed genotypes
 - 2^{n-1} reconstructions for n heterozygous loci

For example, if $m=10$

- $2^m = 1024$
- $2^{m-1} (2^m + 1) = 524,800$
- $3^m = 59,049$
- $2^{n-1} = 512$
EM Algorithm For Haplotyping

- Cost grows rapidly with number of markers

- Typically appropriate for < 25 SNPs
 - Fewer microsatellites

- More accurate than Clark’s method

- Fully or partially phased individuals contribute most of the information

Enhancements to EM

- List only haplotypes present in sample

- Gradually expand subset of markers under consideration, eliminating haplotypes with low estimated frequency from consideration at each stage
 - SNPHAP, Clayton (2001)
 - HAPLOTyper, Qin et al (2002)
Divide-And-Conquer Approximation

- Number of potential haplotypes increases exponentially
 - Number of observed haplotypes does not

- Approximation
 - Successively divide marker set
 - Locally phase each segment through EM
 - Prune haplotype list as segments are ligated
 - Merge by phasing vectors of haplotype pairs

- Computation order: $\sim m \log m$
 - Exact EM is order $\sim 2^m$

Next Topic:
DISEASE ASSOCIATION STUDIES
Why are we so different?

- Human genetic diversity

Different “phenotype”
- Appearance
- Disease susceptibility
- Drug responses

Different “genotype”
- Individual-specific DNA
- 3 billion-long string

Motivation

- Which sequence variation affects a trait?
 - Better understanding disease mechanisms
 - Personalized medicine

Sequence variations

Obese? 15%
Bold? 30%
Diabetes? 6.2%
Parkinson’s disease? 0.3%
Heart disease? 20.1%
Colon cancer? 6.5%
Detecting Genetic Basis for Disease

- Genome-wide association study ("GWAS")
 - P-value: The probability that we see that much correlation given that the SNP is not relevant to the disease

![Diagram showing genetic markers on 0.1-1M SNPs]

<table>
<thead>
<tr>
<th>Diabetes patients</th>
<th>Normal individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>...ACTCGGTAGGCATAAATTCGGCCCGGTCAGATTCCATACAGTTTGTACCATGG...</td>
<td>...ACTCGGTAGGCATAAATTCGGCCCGGTCAGATTCCATACAGTTTGTACCATGG...</td>
</tr>
<tr>
<td>...ACTCGGTGGGCATAAATTCGGCCCGGTCAGATTCCATCCAGTTTGTTCCATGG...</td>
<td>...ACTCGGTGGGCATAAATTCTGCCCGGTCAGATTCCATCCAGTTTGTTCCATGG...</td>
</tr>
<tr>
<td>...ACTCGTGACCCGAGAGTCAGTTCCATACAGTTTGTACCATGG...</td>
<td>...ACTCGTGACCCGAGAGTCAGTTCCATACAGTTTGTACCATGG...</td>
</tr>
<tr>
<td>P-value = 0.2</td>
<td>P-value = 1.0e-7</td>
</tr>
</tbody>
</table>

Outline

- Disease association studies
 - Single marker based association tests
 - Haplotype-based approach
 - Indirect association – predicting unobserved SNPs
 - Selection of tag SNPs
A single marker association test

- **Data**
 - Genotype data from case/control individuals
 - e.g. case: patients, control: healthy individuals

- **Goals**
 - Compare frequencies of particular alleles, or genotypes, in set of cases and controls
 - Typically, relies on standard contingency table tests
 - Chi-square goodness-of-fit test
 - Likelihood ratio test
 - Fisher’s exact test

Construct contingency table

- Organize genotype counts in a simple table
 - Rows: one row for cases, another for controls
 - Columns: one of each genotype (or allele)
 - Individual cells: count of observations

<table>
<thead>
<tr>
<th>i: case, control</th>
<th>j: 0/0, 0/1, 1/1</th>
<th>j=1</th>
<th>j=2</th>
<th>j=3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0/0</td>
<td>0/1</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>i=1 Case (affected)</td>
<td>0_{1,1}</td>
<td>0_{1,2}</td>
<td>0_{1,3}</td>
<td>(O_{1.1} = O_{0,1} + O_{1,1} + O_{1,3})</td>
</tr>
<tr>
<td>i=2 Control (unaffected)</td>
<td>0_{2,1}</td>
<td>0_{2,2}</td>
<td>0_{2,3}</td>
<td>(O_{2.1} = O_{2,1} + O_{2,2} + O_{2,3})</td>
</tr>
</tbody>
</table>

- **Notation**
 - Let \(O_{ij}\) denote the observed counts in each cell
 - Let \(E_{ij}\) denote the expected counts in each cell
 - \(E_{ij} = O_{i.} \cdot O_{.j} / O_{..}\)
Goodness of fit tests (1/2)

- Null hypothesis
 - There is no statistical dependency between the genotypes and the phenotype (case/control)

- P-value
 - Probability of obtaining a test statistic at least as extreme as the one that was actually observed

- Chi-square test
 \[\chi^2 = \sum_{i,j} \frac{(O_{i,j} - E_{i,j})^2}{E_{i,j}} \]
 - If counts are large, compare statistic to chi-squared distribution
 - \(p = 0.05 \) threshold is 5.99 for 2 df (degrees of freedom, e.g. genotype test)
 - \(p = 0.05 \) threshold is 3.84 for 1 df (e.g. allele test)
 - If counts are small, exact or permutation tests are better

Goodness of fit tests (2/2)

- Likelihood ratio test
 - The test statistics (usually denoted D) is twice the difference in the log-likelihoods:
 \[D = -2 \ln \left(\frac{\text{likelihood for null model}}{\text{likelihood for alternative model}} \right) \]
 \[D = -2 \ln \left(\prod_{i,j} \frac{E_{i,j}}{O_{i,j}} \right) = 2 \sum_{i,j} O_{i,j} \ln \frac{O_{i,j}}{E_{i,j}} \]

- How about we do this for haplotypes?
 - When does it out-perform the single marker association test?