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Homework Assignment

= Exercises designed to help you get familiar with
statistical concepts and practices

= The more you struggle now, the more you will learn
and the better for your research career
= You can learn statistics only by doing statistics!

= | would encourage to work with other students on the
homework problems

= However, each student has to write his or her own solution

Goals

m Parameter estimation
= Maximum likelihood estimation
= Bayesian inference <::I

= Hypothesis testing
= Overview of key elements of hypothesis testing
= Review of common one and two sample tests
= The t statistic

= Rinstruction
= Maximum Likelihood Estimation (MLE)

Joint Probability Distribution

m Consider two RVs X and Y
= Xrepresents a genotype of a certain locus: {AA, CC, AC}
= Y indicates whether to have T2D or not: {normal, disease}

= Individuals are instantiations (or realization) of RVs X
andY

= Joint probability P(X, Y)
= It actually refers to the following 6 probabilities:
= P(X=AA, Y=normal), P(X=CC, Y=normal), P(X=AC, Y=normal)
= P(X=AA, Y=disease), P(X=CC, Y=disease), P(X=AC, Y=disease)

Interpretation of P(X=AA, Y=normal)
= Frequency of observing individuals with X=AA and Y=normal




Joint Probability Distribution

m Consider two RVs Xand Y

= X represents a genotype of a certain locus: {AA, CC, AC}
= Y indicates whether to have T2D or not: {normal, disease}

= Conditional probability P(X | Y)
= It actually refers to the following 6 probabilities:
= P(X=AA|Y=normal), P(X=CC|Y=normal), P(X=AC|Y=normal)
= P(X=AA|Y=disease), P(X=CC|Y=disease), P(X=AC|Y=disease)

Interpretation of P(X=AA|Y=normal)

= Frequency of observing individuals with X=AA within the pool
of individuals having Y=normal

P(X = AA|Y =normal) = P(X = AAY = normal)
P(Y = normal)

Bayes’ Rule

P(A|B) :7P(BF|>?E);(A)
= Discrete P(B):Zn:P(B|A:ai)P(A:ai)

:Zn:P(B,A:ai) = P(B)

= Continuous P(B):IP(B|A)P(A)dA

Bayesian Estimation
= In order to make probability statements about & given
some observed data, D, we make use of Bayes’ rule

p|D)=FOPPO10) __POPDIY)
P(D) JP(Q)P(D | 0)d9 <—— Not a function of 8!

P(0| D) < P(@)P(D|6)

Posterior oC Prior x Likelihood

= The prior is the probability of the parameter and represents what
was thought before observing the data

= The likelihood is the probability of the data given the parameter
and represents the data now available

= The posterior represents what is thought given both prior
information and the data just observed

Bayesian Estimation

» Find @ such that the posterior P(8]D) is maximized
= MLE: Find © that maximizes log P(D|6)
= BE: Find 0 that maximizes log P(D|0) + log P(0)

P(6| D)< P(@)P(D|6)

Posterior oC Prior x Likelihood

= The prior is the probability of the parameter and represents what
was thought before observing the data

= The likelihood is the probability of the data given the parameter
and represents the data now available

= The posterior represents what is thought given both prior
information and the data just observed




Simple Example

= Say that we want to estimate the recombination fraction
(@) between locus A and B from 5 heterozygous (AaBb)
people. We examined 30 gametes for each and observed
4,3,5,6 and 7 recombinants gametes in the five parents.
What is the MLE of the recombination fraction 8?

m Let’s simplify and ask what the recombination fraction (&)
is for subject # 3, who had 5 observed recombinant
gametes.

10

Specifying the Posterior Density

P(@)P(r=5]6,n=30)

P(0|D)=P(@|n=30,r =5) =
Jp(r=5|0,n=30)P(9)d'9

= Prior P(6) = uniform|[0,0.5]= 0.5
- 30 .
= Likelihood P(r—5|9,n—30)—( 5}95(1—9)930 °

05
= Normalizing constant jp(r=5|9,n:30)P(9)d9
0

30\
:0.5.[ : Jj65(179)25d9 ~ 6531
0

Specifying The Posterior Density

P(O)P(r =5|0,n = 30)

P(0|D)=P(0|n=30,r =5) = 5
[P(r=5]0,n=30)P(0)d0

30 5 25
o.s( ; Ja (1-0)

6531

P(@|n=30,r =5)

Goals

m Parameter estimation
= Maximum likelihood estimation
= Bayesian inference

= Hypothesis testing <]
= Overview of key elements of hypothesis testing
= Common one and two sample tests

= R session
= Generating random numbers
= T-test




Hypothesis Testing

= Formally examine two opposing conjectures
(hypotheses), Hyand H,

= These two hypotheses are mutually exclusive and
exhaustive so that one is true to the exclusion of the
other

= We accumulate evidence — collect and analyze sample
information — for the purpose of determining which of
the two hypotheses is true and which of the two
hypotheses is false
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Example

= Consider a genome-wide association study (GWAS)
for T2D and you measure the blood glucose level of
the case/control groups

= The null hypothesis, H,:

= There is no difference between the case/control groups in
the mean blood glucose levels

= Hy:py-p,=0

= The alternative hypothesis, H,:

= The mean blood glucose levels in the case/control groups
are “different”

= Hypy -, #20

The Null and Alternative Hypothesis

= The null hypothesis, Hy:
= States the assumption (numerical to be tested)
= Begin with the assumption that the null hypothesis is TRUE

u_n

= Always contains the “=" sign

= The alternative hypothesis, H,:
= Is the opposite of the null hypothesis
= Challenges the status quo

= Never contains just the “=" sign

= Is generally the hypothesis that is believed to be true by the
researcher
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One and Two Sided Tests

= Hypothesis tests can be one or two sided (tailed)

= One tailed tests are directional:
Ho g -1, <0
Ha by -1, >0

= Two tailed tests are not directional:
Ho: My -1, =0
Hyo gy -, 20




P-values

= Calculate a test statistic in the sample data that is
relevant to the hypothesis being tested

= e.g. In our GWAS example, the test statistic can be determined
based on y,, 4, and o,, 0, computed from the GWAS data

= After calculating a test statistic we convert this to a P-
value by comparing its value to distribution of test
statistic’s under the null hypothesis

= Measure of how likely the test statistic value is under the
null hypothesis

P-value < a > Reject H, at level a
P-value > a - Do not reject H, at level a
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When To Reject H,

= Level of significance, a: Specified before an experiment to
define rejection region

= Rejection region: set of all test statistic values for which
H, will be rejected

Onesided /7 " Two sided x_./ \\
a=0.05 / a=0.05 / \
/ ' /o
/ \ / \
! "\I 5 . ! i
/ \ ' / \
Y / \
A / \
/,f \ /( ]
Critical Value =-1.64 Critical Value =-1.96 and +1.96
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Some Notation

= In general, critical values for an a level test denoted as:
One sided test: X,
Two sided test: X,

where X depends on the distribution of the test statistic

= For example, if X ~ N(0,1):
Onesided test: z, (i.e., Z5y5=1.64)

a

Two sided test: z,,, (i.e., Zy s/, = Zo 05/, = +-1.96)
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Errors in Hypothesis Testing

Actual Situation “Truth”

Decision H, True H, False

Don Not
Reject H,

Reject H,
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Errors in Hypothesis Testing

Actual Situation “Truth”

Decision Ho True H, False
Correct Decision Incorrect Decision
Do!‘ Not 1-a Type Il Error
Reject H, B
Incorrect Decision Correct Decision
Reject H, Type | Error 1B
a

Type | and Il Errors

Actual Situation “"Truth”

Decision Ho True H, False
Correct Decision Incorrect Decision
DOP Not 1-a Type Il Error
Reject H, B
Incorrect Decision Correct Decision
Reject H, Type | Error 1B
a

a = P(Type | Error) B = P(Type Il Error)

Power=1-8
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Parametric and Non-Parametric Tests

= Parametric Tests: Relies on theoretical distributions
of the test statistic under the null hypothesis and
assumptions about the distribution of the sample
data (i.e., normality)

= Non-Parametric Tests: Referred to as “Distribution
Free” as they do not assume that data are drawn from
any particular distribution

Whirlwind Tour of One and Two Sample Tests

Type of Data
Goal Gaussian Non-Gaussian Binomial
Compare one
group to a One sample - . .
hypothetical t-test Wilcoxon test ~ Binomial test
value

Compare two
paired groups

Paired t-test

Wilcoxon test

McNemar’s test

Compare two

Wilcoxon-

Chi-square or

Two sample

unpaired groups t-test

Mann-Whitney  Fisher’s exact
test test
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Normality

= Use Gaussian (normal) distribution to explain a sample of
n data points

X, Xy e X,

= The best estimate of the true mean p is the average of the
samples (called the sample mean)

X + X, +e X,
n

X =

= How noisy the estimate will be?
= Can we make an interval estimate?
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A Normal Distribution

= Say that the (unknown) standard deviation of the true
distribution is o

= The variance of the sample mean (average of a sample of n
points) is 62/n

The true mean (expectation)

How often \  True distribution

The measurement
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The distribution of the sample mean
of n points

Distribution of sample mean
N (y, 0%/n)

The true mean (expectation)

How often True distribution

2.5% point J '—97.5% point

The measurement 28

A Particular Sample

Distribution of sample mean
N (y, o%/n)

~ The true mean (expectation)

How often True distribution

A sample of 17 points

. 1)
2.5% pointJ t97.5% point
Mean of sample
The measurement
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Confidence Interval

= So, that solves it, right?
= No! We don’t know u which is what we want to know!

= But, we can say that, 95% of the time, the sample
mean X that we calculate is below that upper limit,
and above that lower limit.
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Let’s Get Ready to Slide the True
Stuff Left

Distribution of sample mean
N (p, 0%/n)

~ The true mean (expectation)
True distribution

\

How often

A sample of n7 points

I
I
I
4

1)
t975% point
Mean of sample
The measurement

2.5% point J
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Not Any Lower Than This ...

Distribution of sample mean
N (p, 0%/n)

_ The true mean (expectation)

How often True distribution

A sample

2.5% point-' i-97.5% point

Mean of sample

The measurement
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Not Any Higher Than This ...

Distribution of sample mean
N (y, o%/n)

How often True distribution

A sample

2.5% b:ointj | L97.5% point
Confidehce Interval Mean of sample
The measurement

_ The true mean (expectation)
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The t Statistic

= The number of (estimated) standard deviations of the
sample mean that it deviates from its expected value u

Distribution of sample mean
N (p, o%/n)

"~ True distribution

A sample

2.5% pointJ t97.5% point
Confidence Interval Mean of sample
The measurement

_ The true mean (expectation)
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The t Statistic

= The number of (estimated) standard deviations of the
sample mean that it deviates from its expected value u

t= XK
§/n

m where § is the estimated standard deviation, from a
sample of n values, and X is the average of the sample

= This does not have a normal distribution but it is closer
to normal the bigger n is. The quantity (n-1) is called
the degrees of freedom of the t value
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