# Lecture 5: Bayesian Estimation & Hypothesis Testing

May 15, 2012 GENOME 560, Spring 2012

Su-In Lee, CSE & GS suinlee@uw.edu

# **Homework Assignment**

- Exercises designed to help you get familiar with statistical concepts and practices
- The more you struggle now, the more you will learn and the better for your research career
  - You can learn statistics only by doing statistics!
- I would encourage to work with other students on the homework problems
  - However, each student has to write his or her own solution

#### Goals

- Parameter estimation
  - Maximum likelihood estimation
  - Bayesian inference



- Hypothesis testing
  - Overview of key elements of hypothesis testing
  - Review of common one and two sample tests
  - The t statistic
- R instruction
  - Maximum Likelihood Estimation (MLE)

## Joint Probability Distribution

- Consider two RVs X and Y
  - X represents a genotype of a certain locus: {AA, CC, AC}
  - Y indicates whether to have T2D or not: {normal, disease}
- Individuals are instantiations (or realization) of RVs X and Y
- Joint probability P(X, Y)
  - It actually refers to the following 6 probabilities:
    - P(X=AA, Y=normal), P(X=CC, Y=normal), P(X=AC, Y=normal)
    - P(X=AA, Y=disease), P(X=CC, Y=disease), P(X=AC, Y=disease)

#### Interpretation of P(X=AA, Y=normal)

Frequency of observing individuals with X=AA and Y=normal

#### Joint Probability Distribution

- Consider two RVs X and Y
  - X represents a genotype of a certain locus: {AA, CC, AC}
  - Y indicates whether to have T2D or not: {normal, disease}
- Conditional probability P(X | Y)
  - It actually refers to the following 6 probabilities:
    - P(X=AA|Y=normal), P(X=CC|Y=normal), P(X=AC|Y=normal)
    - P(X=AA|Y=disease), P(X=CC|Y=disease), P(X=AC|Y=disease)

#### Interpretation of P(X=AA|Y=normal)

 Frequency of observing individuals with X=AA within the pool of individuals having Y=normal

$$P(X = AA \mid Y = normal) = \frac{P(X = AA, Y = normal)}{P(Y = normal)}$$

# Bayes' Rule

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

- **Discrete**  $P(B) = \sum_{i=1}^{n} P(B \mid A = a_i) P(A = a_i)$ =  $\sum_{i=1}^{n} P(B, A = a_i) = P(B)$
- Continuous  $P(B) = \int P(B \mid A)P(A)dA$

# **Bayesian Estimation**

• In order to make probability statements about  $\theta$  given some observed data, D, we make use of Bayes' rule

$$P(\theta \mid D) = \frac{P(\theta)P(D \mid \theta)}{P(D)} = \frac{P(\theta)P(D \mid \theta)}{\int P(\theta)P(D \mid \theta)d\theta}$$
 Not a function of  $\theta$ !

$$P(\theta \mid D) \propto P(\theta) P(D \mid \theta)$$

**Posterior** ∝ **Prior** × **Likelihood** 

- The prior is the probability of the parameter and represents what was thought before observing the data
- The likelihood is the probability of the data given the parameter and represents the data now available
- The posterior represents what is thought given both prior information and the data just observed

#### **Bayesian Estimation**

- Find  $\theta$  such that the <u>posterior P( $\theta \mid D$ )</u> is maximized
- MLE: Find θ that maximizes log P(D | θ)
- **BE:** Find  $\theta$  that maximizes log  $P(D|\theta) + \log P(\theta)$

$$P(\theta \mid D) \propto P(\theta) P(D \mid \theta)$$

**Posterior** ∝ **Prior** × **Likelihood** 

- The prior is the probability of the parameter and represents what was thought before observing the data
- The likelihood is the probability of the data given the parameter and represents the data now available
- The posterior represents what is thought given both prior information and the data just observed

# Simple Example

- Say that we want to estimate the recombination fraction (θ) between locus A and B from 5 heterozygous (AaBb) people. We examined 30 gametes for each and observed 4,3,5,6 and 7 recombinants gametes in the five parents. What is the MLE of the recombination fraction  $\theta$ ?
- Let's simplify and ask what the recombination fraction ( $\theta$ ) is for subject # 3, who had 5 observed recombinant gametes.

## Specifying the Posterior Density

$$P(\theta \mid D) = P(\theta \mid n = 30, r = 5) = \frac{P(\theta)P(r = 5 \mid \theta, n = 30)}{\int_{0.5}^{0.5} P(r = 5 \mid \theta, n = 30)P(\theta)d\theta}$$

- Prior
- $P(\theta) = \text{uniform}[0,0.5] = 0.5$

■ **Likelihood** 
$$P(r = 5 | \theta, n = 30) = {30 \choose 5} \theta^5 (1 - \theta) \theta^{30-5}$$

• Normalizing constant 
$$\int_{0}^{0.5} P(r=5 \mid \theta, n=30) P(\theta) d\theta$$

$$=0.5 \cdot {\binom{30}{5}} \int_{0}^{0.5} \theta^{5} (1-\theta)^{25} d\theta \approx 6531$$

# **Specifying The Posterior Density**

$$P(\theta \mid D) = P(\theta \mid n = 30, r = 5) = \frac{P(\theta)P(r = 5 \mid \theta, n = 30)}{\int_{0.5}^{0} P(r = 5 \mid \theta, n = 30)P(\theta)d\theta}$$

$$= \frac{0.5 \cdot \binom{30}{5} \theta^5 (1-\theta)^{25}}{6531}$$



Goals

- Parameter estimation
  - Maximum likelihood estimation
  - Bayesian inference
- Hypothesis testing



- Overview of key elements of hypothesis testing
- Common one and two sample tests
- R session
  - Generating random numbers
  - T-test

#### **Hypothesis Testing**

- Formally examine two opposing conjectures (hypotheses), H<sub>0</sub> and H<sub>A</sub>
- These two hypotheses are mutually exclusive and exhaustive so that one is true to the exclusion of the other
- We accumulate evidence collect and analyze sample information – for the purpose of determining which of the two hypotheses is true and which of the two hypotheses is false

14

#### Example

- Consider a genome-wide association study (GWAS) for T2D and you measure the blood glucose level of the case/control groups
- The null hypothesis, H<sub>0</sub>:
  - There is no difference between the case/control groups in the mean blood glucose levels
  - $H_0$ :  $\mu_1 \mu_2 = 0$
- The alternative hypothesis, H<sub>A</sub>:
  - The mean blood glucose levels in the case/control groups are "different"
  - $H_A$ :  $μ_1 μ_2 ≠ 0$

15

# The Null and Alternative Hypothesis

- The null hypothesis, H<sub>0</sub>:
  - States the assumption (numerical to be tested)
  - Begin with the assumption that the null hypothesis is TRUE
  - Always contains the "=" sign
- The alternative hypothesis, H<sub>A</sub>:
  - Is the opposite of the null hypothesis
  - Challenges the status quo
  - Never contains just the "=" sign
  - Is generally the hypothesis that is believed to be true by the researcher

One and Two Sided Tests

- Hypothesis tests can be one or two sided (tailed)
- One tailed tests are directional:

$$H_0: \mu_1 - \mu_2 \le 0$$

$$H_A$$
:  $\mu_1 - \mu_2 > 0$ 

Two tailed tests are not directional:

$$H_0$$
:  $\mu_1 - \mu_2 = 0$ 

$$H_A$$
:  $\mu_1 - \mu_2 \neq 0$ 

#### **P-values**

- Calculate a test statistic in the sample data that is relevant to the hypothesis being tested
  - e.g. In our GWAS example, the test statistic can be determined based on  $\mu_1$ ,  $\mu_2$  and  $\sigma_1$ ,  $\sigma_2$  computed from the GWAS data
- After calculating a test statistic we convert this to a P-value by comparing its value to distribution of test statistic's under the null hypothesis
- Measure of how likely the test statistic value is under the null hypothesis

P-value  $\leq \alpha \rightarrow$  Reject H<sub>0</sub> at level  $\alpha$ P-value  $> \alpha \rightarrow$  Do not reject H<sub>0</sub> at level  $\alpha$ 

18

# When To Reject H<sub>0</sub>

- Level of significance, α: Specified before an experiment to define rejection region
- Rejection region: set of all test statistic values for which H<sub>0</sub> will be rejected





#### **Some Notation**

• In general, critical values for an  $\boldsymbol{\alpha}$  level test denoted as:

One sided test:  $X_{\alpha}$ Two sided test:  $X_{\alpha/2}$ 

where  $\boldsymbol{X}$  depends on the distribution of the test statistic

• For example, if  $X \sim N(0,1)$ :

One sided test:  $z_{\alpha}$  (i.e.,  $z_{0.05} = 1.64$ )

Two sided test:  $z_{\alpha/2}$  (i.e.,  $z_{0.05/2} = z_{0.05/2} = +-1.96$ )

Actual Situation "Truth"

Decision H<sub>0</sub> True H<sub>0</sub> False

Don Not Reject H<sub>0</sub>

Reject H<sub>0</sub>



| Type I ar                        | nd II Errors                            |                                    |  |  |
|----------------------------------|-----------------------------------------|------------------------------------|--|--|
|                                  | Actual Situation "Truth"                |                                    |  |  |
| Decision                         | H <sub>0</sub> True                     | H <sub>0</sub> False               |  |  |
| Don Not<br>Reject H <sub>o</sub> | Correct Decision<br>1-α                 | Incorrect Decision Type II Error B |  |  |
| Reject H₀                        | Incorrect Decision<br>Type I Error<br>α | Correct Decision<br>1-β            |  |  |
| α = P                            | P(Type I Error) β =<br>Power = 1        |                                    |  |  |

#### Parametric and Non-Parametric Tests

- Parametric Tests: Relies on theoretical distributions of the test statistic under the null hypothesis and assumptions about the distribution of the sample data (i.e., normality)
- Non-Parametric Tests: Referred to as "Distribution Free" as they do not assume that data are drawn from any particular distribution

| Type of Data                              |                      |                                   |                                         |  |
|-------------------------------------------|----------------------|-----------------------------------|-----------------------------------------|--|
| Goal                                      | Gaussian             | Non-Gaussian                      | Binomial                                |  |
| Compare one group to a hypothetical value | One sample<br>t-test | Wilcoxon test                     | Binomial test                           |  |
| Compare two paired groups                 | Paired t-test        | Wilcoxon test                     | McNemar's test                          |  |
| Compare two<br>unpaired groups            | Two sample<br>t-test | Wilcoxon-<br>Mann-Whitney<br>test | Chi-square or<br>Fisher's exact<br>test |  |

# Normality

 Use Gaussian (normal) distribution to explain a sample of n data points

$$X_1, X_2, ..., X_n$$

• The best estimate of the true mean  $\mu$  is the average of the samples (called the *sample mean*)

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

- How noisy the estimate will be?
- Can we make an interval estimate?

۱,







#### **Confidence Interval**

- So, that solves it, right?
- No! We don't know  $\mu$  which is what we want to know!
- But, we can say that, 95% of the time, the sample mean  $\bar{x}$  that we calculate is below that upper limit, and above that lower limit.

Let's Get Ready to Slide the True Stuff Left

Distribution of sample mean  $N (\mu, \sigma^2/n)$ The true mean (expectation) True distribution

A sample of n points

Mean of sample

The measurement





#### The t Statistic

• The number of (estimated) standard deviations of the sample mean that it deviates from its expected value  $\mu$ 



#### The t Statistic

• The number of (estimated) standard deviations of the sample mean that it deviates from its expected value  $\mu$ 

$$t = \frac{\overline{x} - \mu}{\hat{s} / \sqrt{n}}$$

- where  $\hat{s}$  is the estimated standard deviation, from a sample of n values, and  $\bar{x}$  is the average of the sample
- This does not have a normal distribution but it is closer to normal the bigger *n* is. The quantity (*n*-1) is called the degrees of freedom of the *t* value