Lecture 5: Bayesian Estimation & Hypothesis Testing

May 15, 2012 GENOME 560, Spring 2012

Su-In Lee, CSE & GS suinlee@uw.edu

Homework Assignment

- Exercises designed to help you get familiar with statistical concepts and practices
- The more you struggle now, the more you will learn and the better for your research career
 - You can learn statistics only by doing statistics!
- I would encourage to work with other students on the homework problems
 - However, each student has to write his or her own solution

Goals

- Parameter estimation
 - Maximum likelihood estimation
 - Bayesian inference

- Hypothesis testing
 - Overview of key elements of hypothesis testing
 - Review of common one and two sample tests
 - The t statistic
- R instruction
 - Maximum Likelihood Estimation (MLE)

Joint Probability Distribution

- Consider two RVs X and Y
 - X represents a genotype of a certain locus: {AA, CC, AC}
 - Y indicates whether to have T2D or not: {normal, disease}
- Individuals are instantiations (or realization) of RVs X and Y
- Joint probability P(X, Y)
 - It actually refers to the following 6 probabilities:
 - P(X=AA, Y=normal), P(X=CC, Y=normal), P(X=AC, Y=normal)
 - P(X=AA, Y=disease), P(X=CC, Y=disease), P(X=AC, Y=disease)

Interpretation of P(X=AA, Y=normal)

Frequency of observing individuals with X=AA and Y=normal

Joint Probability Distribution

- Consider two RVs X and Y
 - X represents a genotype of a certain locus: {AA, CC, AC}
 - Y indicates whether to have T2D or not: {normal, disease}
- Conditional probability P(X | Y)
 - It actually refers to the following 6 probabilities:
 - P(X=AA|Y=normal), P(X=CC|Y=normal), P(X=AC|Y=normal)
 - P(X=AA|Y=disease), P(X=CC|Y=disease), P(X=AC|Y=disease)

Interpretation of P(X=AA|Y=normal)

 Frequency of observing individuals with X=AA within the pool of individuals having Y=normal

$$P(X = AA \mid Y = normal) = \frac{P(X = AA, Y = normal)}{P(Y = normal)}$$

Bayes' Rule

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

- **Discrete** $P(B) = \sum_{i=1}^{n} P(B \mid A = a_i) P(A = a_i)$ = $\sum_{i=1}^{n} P(B, A = a_i) = P(B)$
- Continuous $P(B) = \int P(B \mid A)P(A)dA$

Bayesian Estimation

• In order to make probability statements about θ given some observed data, D, we make use of Bayes' rule

$$P(\theta \mid D) = \frac{P(\theta)P(D \mid \theta)}{P(D)} = \frac{P(\theta)P(D \mid \theta)}{\int P(\theta)P(D \mid \theta)d\theta}$$
 Not a function of θ !

$$P(\theta \mid D) \propto P(\theta) P(D \mid \theta)$$

Posterior ∝ **Prior** × **Likelihood**

- The prior is the probability of the parameter and represents what was thought before observing the data
- The likelihood is the probability of the data given the parameter and represents the data now available
- The posterior represents what is thought given both prior information and the data just observed

Bayesian Estimation

- Find θ such that the <u>posterior P($\theta \mid D$)</u> is maximized
- MLE: Find θ that maximizes log P(D | θ)
- **BE:** Find θ that maximizes log $P(D|\theta) + \log P(\theta)$

$$P(\theta \mid D) \propto P(\theta) P(D \mid \theta)$$

Posterior ∝ **Prior** × **Likelihood**

- The prior is the probability of the parameter and represents what was thought before observing the data
- The likelihood is the probability of the data given the parameter and represents the data now available
- The posterior represents what is thought given both prior information and the data just observed

Simple Example

- Say that we want to estimate the recombination fraction (θ) between locus A and B from 5 heterozygous (AaBb) people. We examined 30 gametes for each and observed 4,3,5,6 and 7 recombinants gametes in the five parents. What is the MLE of the recombination fraction θ ?
- Let's simplify and ask what the recombination fraction (θ) is for subject # 3, who had 5 observed recombinant gametes.

Specifying the Posterior Density

$$P(\theta \mid D) = P(\theta \mid n = 30, r = 5) = \frac{P(\theta)P(r = 5 \mid \theta, n = 30)}{\int_{0.5}^{0.5} P(r = 5 \mid \theta, n = 30)P(\theta)d\theta}$$

- Prior
- $P(\theta) = \text{uniform}[0,0.5] = 0.5$

■ **Likelihood**
$$P(r = 5 | \theta, n = 30) = {30 \choose 5} \theta^5 (1 - \theta) \theta^{30-5}$$

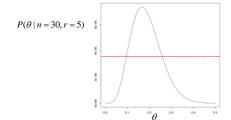
• Normalizing constant
$$\int_{0}^{0.5} P(r=5 \mid \theta, n=30) P(\theta) d\theta$$

$$=0.5 \cdot {\binom{30}{5}} \int_{0}^{0.5} \theta^{5} (1-\theta)^{25} d\theta \approx 6531$$

Specifying The Posterior Density

$$P(\theta \mid D) = P(\theta \mid n = 30, r = 5) = \frac{P(\theta)P(r = 5 \mid \theta, n = 30)}{\int_{0.5}^{0} P(r = 5 \mid \theta, n = 30)P(\theta)d\theta}$$

$$= \frac{0.5 \cdot \binom{30}{5} \theta^5 (1-\theta)^{25}}{6531}$$



Goals

- Parameter estimation
 - Maximum likelihood estimation
 - Bayesian inference
- Hypothesis testing

- Overview of key elements of hypothesis testing
- Common one and two sample tests
- R session
 - Generating random numbers
 - T-test

Hypothesis Testing

- Formally examine two opposing conjectures (hypotheses), H₀ and H_A
- These two hypotheses are mutually exclusive and exhaustive so that one is true to the exclusion of the other
- We accumulate evidence collect and analyze sample information – for the purpose of determining which of the two hypotheses is true and which of the two hypotheses is false

14

Example

- Consider a genome-wide association study (GWAS) for T2D and you measure the blood glucose level of the case/control groups
- The null hypothesis, H₀:
 - There is no difference between the case/control groups in the mean blood glucose levels
 - H_0 : $\mu_1 \mu_2 = 0$
- The alternative hypothesis, H_A:
 - The mean blood glucose levels in the case/control groups are "different"
 - H_A : $μ_1 μ_2 ≠ 0$

15

The Null and Alternative Hypothesis

- The null hypothesis, H₀:
 - States the assumption (numerical to be tested)
 - Begin with the assumption that the null hypothesis is TRUE
 - Always contains the "=" sign
- The alternative hypothesis, H_A:
 - Is the opposite of the null hypothesis
 - Challenges the status quo
 - Never contains just the "=" sign
 - Is generally the hypothesis that is believed to be true by the researcher

One and Two Sided Tests

- Hypothesis tests can be one or two sided (tailed)
- One tailed tests are directional:

$$H_0: \mu_1 - \mu_2 \le 0$$

$$H_A$$
: $\mu_1 - \mu_2 > 0$

Two tailed tests are not directional:

$$H_0$$
: $\mu_1 - \mu_2 = 0$

$$H_A$$
: $\mu_1 - \mu_2 \neq 0$

P-values

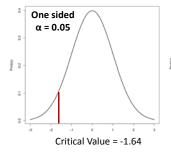
- Calculate a test statistic in the sample data that is relevant to the hypothesis being tested
 - e.g. In our GWAS example, the test statistic can be determined based on μ_1 , μ_2 and σ_1 , σ_2 computed from the GWAS data
- After calculating a test statistic we convert this to a P-value by comparing its value to distribution of test statistic's under the null hypothesis
- Measure of how likely the test statistic value is under the null hypothesis

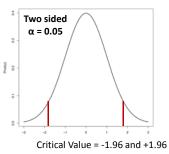
P-value $\leq \alpha \rightarrow$ Reject H₀ at level α P-value $> \alpha \rightarrow$ Do not reject H₀ at level α

18

When To Reject H₀

- Level of significance, α: Specified before an experiment to define rejection region
- Rejection region: set of all test statistic values for which H₀ will be rejected





Some Notation

• In general, critical values for an $\boldsymbol{\alpha}$ level test denoted as:

One sided test: X_{α} Two sided test: $X_{\alpha/2}$

where \boldsymbol{X} depends on the distribution of the test statistic

• For example, if $X \sim N(0,1)$:

One sided test: z_{α} (i.e., $z_{0.05} = 1.64$)

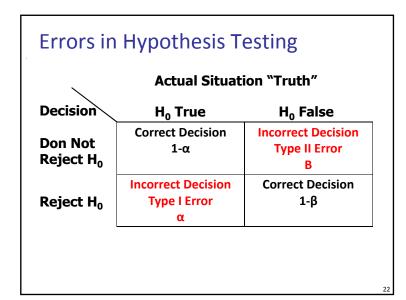
Two sided test: $z_{\alpha/2}$ (i.e., $z_{0.05/2} = z_{0.05/2} = +-1.96$)

Actual Situation "Truth"

Decision H₀ True H₀ False

Don Not Reject H₀

Reject H₀



Type I ar	nd II Errors			
	Actual Situation "Truth"			
Decision	H ₀ True	H ₀ False		
Don Not Reject H _o	Correct Decision 1-α	Incorrect Decision Type II Error B		
Reject H₀	Incorrect Decision Type I Error α	Correct Decision 1-β		
α = P	P(Type I Error) β = Power = 1			

Parametric and Non-Parametric Tests

- Parametric Tests: Relies on theoretical distributions of the test statistic under the null hypothesis and assumptions about the distribution of the sample data (i.e., normality)
- Non-Parametric Tests: Referred to as "Distribution Free" as they do not assume that data are drawn from any particular distribution

Type of Data				
Goal	Gaussian	Non-Gaussian	Binomial	
Compare one group to a hypothetical value	One sample t-test	Wilcoxon test	Binomial test	
Compare two paired groups	Paired t-test	Wilcoxon test	McNemar's test	
Compare two unpaired groups	Two sample t-test	Wilcoxon- Mann-Whitney test	Chi-square or Fisher's exact test	

Normality

 Use Gaussian (normal) distribution to explain a sample of n data points

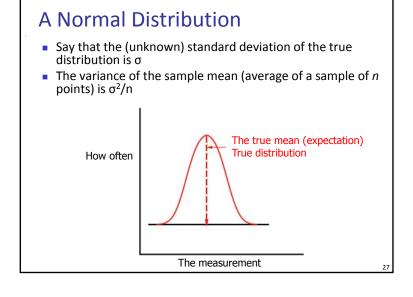
$$X_1, X_2, ..., X_n$$

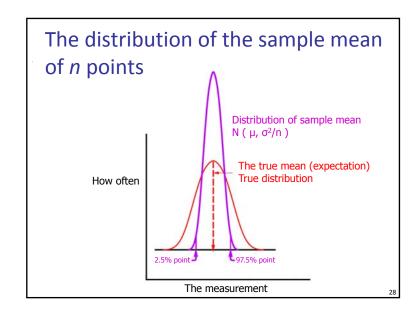
• The best estimate of the true mean μ is the average of the samples (called the *sample mean*)

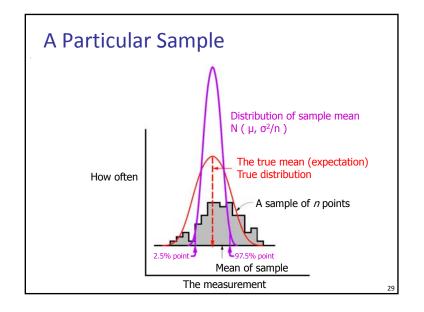
$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

- How noisy the estimate will be?
- Can we make an interval estimate?

۱,







Confidence Interval

- So, that solves it, right?
- No! We don't know μ which is what we want to know!
- But, we can say that, 95% of the time, the sample mean \bar{x} that we calculate is below that upper limit, and above that lower limit.

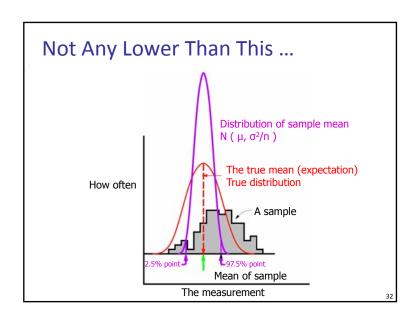
Let's Get Ready to Slide the True Stuff Left

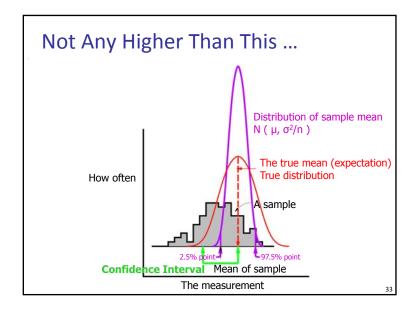
Distribution of sample mean $N (\mu, \sigma^2/n)$ The true mean (expectation) True distribution

A sample of n points

Mean of sample

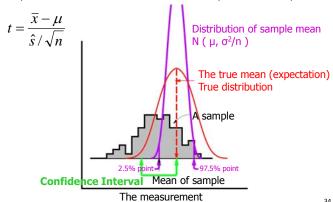
The measurement





The t Statistic

• The number of (estimated) standard deviations of the sample mean that it deviates from its expected value μ



The t Statistic

• The number of (estimated) standard deviations of the sample mean that it deviates from its expected value μ

$$t = \frac{\overline{x} - \mu}{\hat{s} / \sqrt{n}}$$

- where \hat{s} is the estimated standard deviation, from a sample of n values, and \bar{x} is the average of the sample
- This does not have a normal distribution but it is closer to normal the bigger *n* is. The quantity (*n*-1) is called the degrees of freedom of the *t* value