
Metaprior documentation:

The basic call to the Lirnet algorithm looks like:
params_out = lirnet (ydata,assign, maxiters, nreguls, params_in)

--
Inputs:

1. ydata: struct

• e : expression data struct
o unrm - # genes x # arrays - unnormalized expression data
o nrm - normalized expression data (each gene will have 0 mean, unit

variance)
o locs - location of gene on chromosome
o reguls - # genes x 1 - indicator of whether each gene is a regulator

• g : genotype struct
o unnrm - # markers x # arrays, binary
o nrm - normalized
o locs - location on chromosome

• mf : metafeatures of genotype markers, struct
o sm - # markers x # metafeatures - for every marker, sum of

metafeature values over all snps corresponding to that marker
o average: - # markers x # metafeatures - for every marker, average of

metafeature values over all snps corresponding to that marker
o nrm: cell of length # markers.

 For each entry, metafeature values in matrix #snps-in-marker
x # metafeatures

o unrm: same as above but unnormalized
o mindex - cell array of length # markers, each cell contains an array

 entry 1 - marker index
 entry 2 - chromosome
 entry 3 - indices of SNPs corresponding to that marker

• mf_pair : pairwise (marker-module pairs) metafeatures of genotype markers,
cell array of length = # metafeatures.

o each cell contains nrm (normalized), and unrm (un-normalized) values
for one feature, so it is cell array of length # markers, each
containing

 matrix #snps-in-marker x # modules
• rf : metafeatures for regulators

o nrm - normalized metafeatures - #genes x #metafeatures
o unrm - unnormalized metafeature values - # genes x # metafeatures

• rf_pair : pairwise metafeatures for regulators, cell array of length = #
metafeatures.

o each cell contains nrm (normalized), and unrm (un-normalized) values
for one feature, so it is #genes x # modules

• *** note that for the above structures, only the "nrm" version of each piece
of data is used by the code, even when an un-normalized version of the data
exists

2. assign: array, #genes x 1, telling which module each gene is assigned to
3. maxiters : integer, the maximum number of iterations of the metaprior loop
4. ngreguls: array, the indices of genes which are not regulators
5. params: optional input. see output definition, has same structure as returned

params_out

Outputs:

params_out: struct

• mw - learned regression weight matrix for genotype markers (#modules x
#genotype markers)

• rw - learned regression weight matrix for regulators (#modules x #genes)
• mw0 - genotype marker weight matrix used in the first iteration
• rw0 - regulator weight matrix used in the first iteration
• mb - learned metaprior for genotype metafeatures (#metafeatures x 1)
• rb - learned metaprior for regulator metafeatures (#metafeatures x 1)
• mb_pair - learned metaprior for pairwise genotype metafeatures (# pairwise

metafeatures)
• rb_pair - learned metaprior for pairwise regulator metafeatures (# pairwise

metafeatures)
• ma - the weights on the genotype features calculated using the learned

metapriors mb and mb_pair - # markers x #modules
• ra - the weights on the regulator features calculated using the learned

metapriors rb and rb_pair - # genes x # modules
• mb1, mb0 - bounds on L1 weights for genotype markers
• rb1, rb0 - bounds on L1 weights for regulators

