
Skull Retrieval for Craniosynostosis Using
Sparse Logistic Regression Models

Shulin Yang1, Linda Shapiro1, Michael Cunningham2, Matthew Speltz2,
Craig Birgfeld2, Indriyati Atmosukarto3, and Su-In Lee1

1 Computer Science and Engineering, University of Washington, Seattle, WA
{yang,shaprio,suinlee}@cs.washington.edu

2 Seattle Children’s Research Institute, Seattle, WA
{michael.cunningham,matt.speltz,craig.birgfeld}@seattlechildrens.org

3 Advanced Digital Sciences Center, Singapore
indria@adsc.com.sg

Abstract. Craniosynostosis is the premature fusion of the bones of the
calvaria resulting in abnormal skull shapes that can be associated with
increased intracranial pressure. While craniosynostoses of multiple dif-
ferent types can be easily diagnosed, quantifying the severity of the ab-
normality is much more subjective and not a standard part of clinical
practice. For this purpose we have developed a severity-based retrieval
system that uses a logistic regression approach to quantify the severity of
the abnormality of each of three types of craniosynostoses. We compare
several different sparse feature selection techniques: L1 regularized logis-
tic regression, fused lasso, and clustering lasso (cLasso). We evaluate our
methodology in three ways: 1) for classification of normal vs. abnormal
skulls, 2) for comparing pre-operative to post-operative skulls, and 3) for
retrieving skulls in order of abnormality severity as compared with the
ordering of a craniofacial expert.

Keywords: craniosynostosis, cranial image (CI), L1 penalized logistic regres-
sion, fused lasso, clustering lasso (cLasso), sparse logistic regression model.

1 Introduction and Motivation

This work is focused on retrieval of CT images for patients with craniosynostosis,
a common congenital condition in which one or more of the fibrous sutures in an
infant’s calvaria fuse prematurely, resulting in restricted skull and brain growth.
Because the brain cannot expand perpendicular to the fused suture, it redirects
growth in the direction of the open sutures, resulting in abnormal head shape and
in some cases, facial features. Craniosynostosis results in head deformity that can
be severe if it is not corrected surgically. This condition may result in increased
intracranial pressure on the brain and is correlated with developmental delays,
although the cause of such delays is not currently known [11]. It is estimated
that the fusion of any one or more sutures occurs in approximately 1 in 2, 000
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live births [7]. In clinical practice, craniosynostosis is diagnosed by a physician
on the basis of head shape and confirmatory CT scan.

Automatic analysis of CT scans, including a measure of shape deformation,
would be of great help to both doctors and medical researchers. In our previous
work, we built a system that automatically generates a shape representation
called the cranial image (CI) [4] from the CT image of a patient’s skull. The
cranial images are used as shape features to distinguish between skulls of pa-
tients with different types of craniosynostosis. We also proposed using logistic
regression and three variations of the logistic regression model for classifying dif-
ferent types of craniosynostosis: L1 regularized logistic regression [2], the fused
lasso [9] and the clustering lasso (cLasso) [1], which is a variation of L1 logistic
regression. These models avoid overfitting of the regression model, and they also
could select subsets of features from the cranial image that represent skull re-
gions associated with the distinctive shape differences related to different suture
fusions (e.g., sagittal vs metopic suture fusion).

It is important to note that clinicians do not need to rely on a quantitative
model to make the diagnosis of craniosynostosis. However, there is a lack of
criteria to quantify the severity of the abnormality for research purposes. For
example, when estimating the relative effects of different surgical methods on
cranial shape (i.e., pre-, post-surgery change), quantitative measurement is es-
sential. For this reason, we have developed a system to retrieve CT images based
on quantification of the severity of the abnormality of the 3D skull shape. Given
an enlarged data set containing pre-operative and post-operative CT scans of
subjects with three classes of craniosynostosis (coronal, metopic and sagittal)
plus a set of scans from similar-age control subjects, we conducted a set of ex-
periments in classification, quantification and retrieval using the three logistic
regression methods proposed in [1]. Different sparse logistic regression models
are compared in terms of misclassification on whether a skull has craniosynosto-
sis or not. Then we show our retrieval results using the best model for our data -
cLasso. Abnormality of the skulls of the same patient before a surgery and after
a surgery is compared using the quantification criteria as well.

The rest of the paper is organized as follows. Section 2 summarizes the re-
lated literature, Section 3 gives an overview of the framework of our approach for
abnormality quantification, Section 4 describes the details on how logistic regres-
sion models are used for quantification, and Section 5 shows the experimental
results of our work.

2 Related literature

Calvarial (skull) abnormalities are frequently associated with severely impaired
central nervous system functions due to brain abnormalities, increased intra-
cranial pressure and abnormal build-up of cerebrospinal fluid. In [3], Shapiro
et al. introduced several different craniofacial descriptors that have been used
in studies of two craniofacial disorders: 22q11.2 deletion syndrome (a genetic
disorder) and deformational plagiocephaly/brachycephaly. They provided fea-
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ture extraction tools for the study of craniofacial anatomy from 3D mesh data
obtained from the 3dMD active stereo photogrammetry system. These tools
produce quantitative representations (descriptors) of the 3D data that can be
used to summarize the 3D shape as pertains to the condition being studied and
the question being asked. This work is different from the current study in that it
analyzed the shape of the midface and back of the head, while our work focuses
on the shape of the skull.

There are some previous studies on examining the specific skull shapes of pa-
tients. Previously, we proposed the cluster lasso [1], a logistic regression model,
for classification of three types of craniosynostoses: coronal, metopic and sagittal.
Lin et al. [4] developed symbolic shape descriptors to classify skull deformities
caused by metopic and sagittal synostoses. Ruiz-Correa et al. [5] used a set
of scaphocephaly severity indices (SSIs) for predicting and quantifying head-
and skull-shape deformity in children diagnosed with isolated sagittal synostosis
(ISS).

The study differs from previous work in that it focuses on the task of skull
retrieval, while our previous work focused on classifying different types of cran-
iosynostoses. Another difference is that the current work fits a regression model
based on abnormal shapes versus normal ones, while in our previous work we
were merely comparing different types of abnormal shape and could therefore
not quantify severity with respect to normal. Other efforts mentioned above
differ from our approach in that they were not fully automatic and therefore
required human interaction for selecting planes and landmarks from the skull
for the purpose of extracting shape features.

3 Skull Retrieval Pipeline

3.1 System Design

A system was built for skull retrieval according to shape abnormality severity.
With an input of 3D CT volume data of random pose, our system first extracts
the skull and performs pose normalization, so that it is symmetric with respect
to the right and left sides. Then, surface points are extracted that are evenly
spaced all over the skull. After that, a shape feature called the cranial image [4]
is calculated by computing pairwise distances of these points. Last, a method is
proposed to quantify skull abnormality severity using the shape feature.

3.2 Surface Points Extraction

The first step of this module is to locate a base plane on the skull based on
two important landmarks: the nasion and the opisthion. The base plane goes
through these two biological landmarks, and is perpendicular to the symmetry
plane that separates the right and left sides.

The nasion is the intersection of the frontal and two nasal bones of the
human skull [8]. Its manifestation on the visible surface of the face is a distinctly
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Fig. 1. Surface points extraction: the first three modules are the three steps for ex-
tracting surface points; the last image is the distance matrix generated from the surface
points.

depressed area directly between the eyes, just superior to the bridge of the nose.
The opisthion is the mid-point of the posterior margin of the foramen magnum
on the occipital bone [8]. The two points were chosen because of their locations
at the front and back of the head, and because they are stable during the human
growth process The nasion and opisthion are detected as follows. First, the plane
of symmetry of the left and right sides of the skull on which the landmarks are
expected to be is extracted. Then, the tip of the nose is located as the point with
the smallest horizontal value. The nasion is located as the point closest to the
tip of the nose, which is above it and which has a zero curvature in the vertical
direction. The opisthion is located as the point in the left part of the outline,
which has the closest distance to the nasion of all points below the nasion.

Our shape measure is based on the distances between points on the surface
of the skull, so the second step is to extract a set of planes from which surface
points are located. These planes are parallel to the base plane. The top plane of
the skull is a plane that has intersection with the skull and which is parallel to
the base plane but has the furthest distance to the base plane. Our system can
extract any plane that is parallel to the base plane and located between the base
plane and the top plane of the skull, based on the ratio of its distance to these
two planes. Multiple planes may be selected with equal distances among them.
In the rest of our experiments, 10 planes that are evenly distributed across the
whole skull were used to provide a rich 3D shape descriptor.

In the third step of this module, N points are evenly extracted along the
outlines of the planes from the previous step. N is chosen by the user, and
N = 100 in our experiments.

3.3 Cranial Image Generation

Our shape feature is a N ×N pairwise distance matrix among the surface points
from the previous step. The number at position (i, j) of the matrix represents
the distance between point number i and point number j (the last module of in
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Fig. 1). The matrix is symmetric. Such a shape feature is a rich representation
of the skull shape, and its dimension is usually very high (over 104).

3.4 Abnormality Quantification

The task of the system is to retrieve CT images by their skull shape abnormality
severity. To rank the CT images, a qualification criterion for shape abnormality
is needed. Based on our previous work [1], sparse logistic regression models have
been effectively used to fit our data with the high dimensional shape features
(CI). We use these models to generate quantification scores that represent the
severity of the abnormality.

4 Sparse Logistic Regression Models for Abnormality
Quantification

4.1 Sparse Logistic Regression Models

In our previous work, we explored logistic regression and three sparse logistic
regression models for the purpose of classifying three different types of cran-
iosynostosis. They can be summarized as follows.

Logistic Regression Logistic regression is a workhorse in machine learning
that uses a generalized linear model for binomial regression. In logistic regression
model, the probability of being classified as one class is a linear function of the
features.

p(y|x,w) =
1

1 + exp(−y(wTx + w0))
(1)

where vector x contains the feature values of a data sample; y is its class label
(for example, y = 1 refers to coronal and y = −1 refers to non-coronal), w
contains the coefficients for x, and w0 is the intercept. Furthermore, w0 and
w are model parameters, and p(y|x,w) is the probability that a data sample
belongs to a certain class.

We can estimate the optimal parameters w0 and w that minimize the fol-
lowing loss function:

l(w0,w) =

n∑
i=1

log(1 + exp(−yi(wTxi + w0))) (2)

{w0,w} = min
w0,w

l(w0,w) (3)

where yi is the actual class label of a data sample xi.
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L1 Regularized Logistic Regression Due to the high-dimensionality of the
data (i.e. a large number of features and a modest size of samples), learning the
unregularized logistic regression [3] will result in overfitting. To avoid overfitting,
L1 regularization is usually applied to induce sparsity in the solution w such that
many of the coefficients in w are set to exactly zero. L1 regularization [2] has
been rigorously proven to be effective in selecting relevant features when there
are exponentially many irrelevant ones [6]. The log-likelihood of L1 regularized
logistic regression is as follows.

l(w0,w) =

n∑
i=1

log(1 + exp(−yi(wTxi + w0))) + λ

m∑
i=1

|wi| (4)

where λ is a regularization parameter for the L1-norm of the coefficients.

Fused Lasso One problem with L1 regularization is that when features are
highly correlated, it arbitrarily chooses one of many correlated features. Some
variations of L1 regularization can better exploit the underlying structure of our
feature data. Specifically, the fused lasso induces bias from prior knowledge such
that correlated feature groups will be assigned similar weights. In this work,
the fused lasso [9] places a constraint on the weights of the features that are
geographically related - sharing the same or neighboring surface points.

The loss function of the fused lasso with induced bias is,

l(w0,w) =

n∑
i=1

log(1 + exp(−yi(wTxi + w0)))

+λ

m∑
i=1

|wi|+ µ
∑

{wi,wj}∈M

|wi − wj | (5)

where µ is a regularization parameter for the new penalty term. M is a set that
contains all pairs of features that are neighbors, whose endpoints are the same or
next to each other. In equation [5], λ

∑m
i=1 |wi| penalizes large feature weights,

and µ
∑

{wi,wj}∈M |wi−wj | penalizes large weight differences between correlated
features.

Clustering Lasso As mentioned before, L1 regularized logistic regression tends
to assign different weights to highly correlated features. When features are highly
correlated, it arbitrarily chooses one of them and assigns a non-zero weight only
to it. The fused lasso is one way to avoid this problem by placing constraints
on the weight differences based on prior knowledge. However, this requires the
model to know ahead of time the right grouping of the features. An alternative
to using such prior knowledge, is to penalize the weight differences of correlated
features.

The clustering lasso (or cLasso) is a new form of regularized logistic regression
we recently proposed in [1]. The model for the clustering lasso is:

p(y|x,w,wc) =
1

1 + exp(−y(wTx + wcT c + w0))
(6)
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where x contains the feature values of a data sample; y is its class label (for
example, y = 1 refers to sagittal and y = −1 refers to non-sagittal); c are the
cluster centers of x; w contains the coefficients for x; wc contains the coefficients
for c; and w0 is the intercept. Furthermore, w0, w and wc are model parameters,
while p(y|x,w,wc) is the probability that a data sample belongs to a certain
class.

The loss function for the cLasso is

l(w0,w,w
c) =

n∑
i=1

log(1 + exp(−yi(wTxi + wcT ci + w0)))

+λ

m∑
i=1

|wi|+ ν

k∑
i=1

|wc
i | (7)

where ci (i ∈ [1, k]) is the centroid of a group of features {xi1 ,xi2 ,...,xik} (its
feature value is their average); wc

i is the weight for ci; and ν is the regularization
parameter for the weights of the cluster centers.

This loss function is designed to cluster the features based on their correla-
tion, and penalize their shared weights (wc

i ) and individual weights (wi1 , wi2 , ...,
wik) respectively. When ν is small and λ is large, individual weights are penal-
ized, and features tend to be split into groups based on their correlation and to
share the same weights. When λ is large enough, this model is equivalent to the
model of L1 regularized logistic regression (equation [4]).

Parameter wc
i encourages correlated features to share the same weight, and

wi allows unique features to be used. Therefore, the cLasso is equivalent to
using only shared weights (wc

i ) when each centroid ci (i ∈ [1, k]) is computed as
a weighted average with the weights determined by (wi1 , wi2 , . . . , wik).

4.2 Abnormality Quantification

Using the models to fit to the data, the predicted probability of a sample data set
x being a certain class p(y = 1|x,w) can be viewed as a quantification measure
of skull abnormality. However, the use of the sigmoid function P (t) = 1

1+e−t

in computing the probability does not work well as a quantification criteria.
Because a regression model that fits the data well tends to assign a value close
to 1 to all positive instances, the quantification results are too similar. Instead,
we use the linear function of the features before taking the sigmoid function
to obtain the probability. The second option produces a better quantification
measure, because the linear function differentiates abnormal skulls better, even
when they are classified as the same class.

For the logistic regression, lasso and fused lasso models, the quantification
scores are

S(x) = −y(wTx + w0) (8)

For the clustering Lasso, the quantification score is

S(x) = −y(wTx + wcT + w0) (9)
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Coronal

Metopic

Sagittal

Control

Fig. 2. Examples of CT image slices

5 Experiments

The experiments were designed to show the ability of our system to retrieve CT
images based on skull shape abnormality of different types of craniosynostosis. As
a measurement for performance, we also provide phenotype prediction accuracy
by comparing our prediction with the groundtruth diagnoses of the doctors.
Cranial images were generated using our system with 10 planes and 10 points
on each plane. Logistic regression, L1 regularized logistic regression, the fused
lasso and the cLasso were compared in terms of phenotype prediction accuracy,
while the quantification measure of cLasso is used as the ranking criterion in
our system. Implementation of L1 regularized logistic regression is from the
authors of [6], and implementation of the fused lasso is the machine learning
package SLEP [10]. In our previous work, we did a thorough study on choosing
regularization parameter λ, µ and ν in equations 4, 5 and 7 for the sparse logistic
regression models. We continue to use these parameters.

5.1 Medical data

Our system was tested on 3D CT images of children’s heads from hospitals in four
different cities in the US. There are different types of craniosynostosis depending
on the affected suture; the sagittal suture is between the parietal bones, metopic
between the frontal bones, coronal between the frontal and parietal bones, and
lambdoid between the parietal and occipital bones. Our study is focused on
three types of synostosis - sagittal, metopic, and coronal. In total we examined
approximately 200 CT image volumes, each comprising a stack of image slices
(approximately 150 slices per volume). About half the data are controls (normal
skulls), and the other half have one of the three types of craniosynostosis. Fig.
2 shows some examples of slices from the CT image stacks for all four classes.
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5.2 Evaluation on Classification

In the first part of our experiment, we evaluate our approach based on its pre-
diction of whether a skull is abnormal or not, meaning the misclassification rate
of each class. Classification results using the four different models are shown in
Table 1. The results of logistic regression substantiates the overfitting problem
with the large number of features it uses. The misclassification rate greatly im-
proves when regularization is used in the logistic regression model. Specifically,
the clustering lasso exhibits the best results on average. The misclassification
rate of the coronal class is higher than the other two classes. This is because the
coronal class is the most similar to the controls of all three classes. Its shape
deformation is not immediately obvious as the deformation of the sagittal and
metopic classes, as can be observed from Figure 2. This is consistent with the
results from [1].

Misclassification Rate Coronal vs Control Metopic vs Control Sagittal vs Control

Logistic regression 37.5% 36.25% 30%
L1 regression 26.3% 8.75% 8.75%
Fused lasso 16.3% 21.3% 8.75%
Clustering lasso 14.1% 7.5% 8.75%

Table 1. Misclassification rates using multiple planes for three types of craniasyn-
ostosis versus controlled skulls. Four different logistic regression models are used for
comparison. Classo performs the best on all three types.

5.3 Abnormality Quantification of Pre- and Post-Operative Skulls

Besides testing our quantification measure on the CT images of patients when
they are diagnosed, we also tested it on their CT scans two years after skull
surgery was performed. Although the skull abnormality is corrected with surgery,
it tends to relapse toward the original deformity with time. Our quantitative
severity measure provides an objective measure for the comparison. Fig. 3 shows
the comparison results for a set of pre-operative and post-operative skulls. The
pair of skulls in each column are from the same patient. The abnormality re-
duction after surgery is according to our scoring method. This shows that the
surgeries resulted in improvement in all cases even after two years of growth.

5.4 Evaluation of Skull Retrieval

There is no gold standard for evaluating the quantification results, because an
objective judgement of severity of craniosynostosis in the form of a medical test
does not exist. Medical experts are accustomed to providing diagnoses but have
no scoring criteria. In fact, our work was motivated by the need for severity
quantification in medical research. However, we were able to have a craniofacial
expert rank a subset of the skulls for each type of abnormality for our compar-
isons.
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type coronal coronal coronal metopic metopic metopic sagittal sagittal sagittal

Pre-Op
0.9698 0.9208 0.7145 1.00 0.5355 0.9773 0.3464 0.5794 0.5831

Post-Op
0.4164 0.3775 0.3930 0.5471 0.3134 0.5471 0.1890 0.3745 0.4895

ratio 43% 41% 55% 55% 59% 56% 55% 65% 84%

Fig. 3. Quantification comparison of pre-operative and post-operative skulls: these
images are the superior views of nine skulls (for each symptom type). Under the images
are their severity scores. The upper row contains pre-operative skulls, and the bottom
row are the post-operative skulls of the same subjects as the pre-op ones above it. A
subject is normal if the score is ≤ 0. The larger a number is, the more abnormal it is.

Based on the quantification measure using the clustering lasso, each skull was
assigned a value that represents the degree of severity of the craniosynostosis type
to which it belongs (coronal, metopic or sagittal). The results for these skulls
in each class are shown in Fig. 4. (The numbers are normalized from -1 to 1; 0
to 1 means a subject is abnormal, and −1 to 0 means a subject is a control.)
This result provides a useful measurement for physicians and researchers to
quantify the severity of individual cases with different types of craniosynostosis.
Our results correlate well with expert measures. Most of the orderings are only
slightly permuted from the expert’s ranking. This is because some of the severity
scores are very similar in themselves, so any of them can be ranked before the
others in a subjective ordering. There are several exceptions on which our system
and the expert disagree in an obvious way, such as No. 4 in the metopic group
and No. 9 in the sagittal group in Fig. 4. Discussion with the expert disclosed
that different parts of the skull were being weighted differently by the system
and the expert. For example for No. 4 in the metopic group, the expert ranked
it last because his focus, the pointy shape at the front, is not obvious in the
skull. However, our system ranked it higher because its global shape is more
similar to a typical metopic skull. This discovery reversely inspired the expert
to notice certain shape features that he had previously ignored. The expert also
told us that our quantification captured some shape features that could not be
observed from the three standard views by doctors. This is evidence that our
system would be helpful for clinicians to make more accurate diagnoses.

6 Conclusions

In this work, we built a system that performed skull analysis and severity based
retrieval for patients with craniosynostosis. The system was tested with four
different logistic regression models: logistic regression, L1 regularized logistic
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regression, the fused lasso and the clustering lasso on classifying abnormal skulls
from normal ones. The cLasso model was used for quantification of skull shape
abnormality. Our experimental results validate the model, both by the error rate
on the classification task and by comparison with expert ranks on the retrieval
task. This retrieval system provides a convenient tool that can help medical
researchers to quantify craniosynostosis for research studies. For example, the
methods reported here would facilitate studies of the effects of different surgical
methods on cranial shape, associations between severity of cranial deformation
and subsequent neurodevelopmental outcomes and the relation of severity to
genetic processes.
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Endowment for Craniofacial Medicine.
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Coronal

Frontier

Superior

Lateral

score 0.9976 0.9919 0.9701 0.9208 0.8761 0.8681 0.8635 0.8532 0.7145

our rank 1 2 3 4 5 6 7 8 9

expert rank 1 4 3 5 2 8 9 6 7
Metopic

Frontier

Superior

Lateral

score 1.00 0.8689 0.8445 0.8291 0.8233 0.7275 0.7070 0.6658 0.6517

our rank 1 2 3 4 5 6 7 8 9

expert rank 4 2 1 8 5 6 9 3 7
Sagittal

Frontier

Lateral

Superior

score 1.00 0.6377 0.5831 0.5794 0.5014 0.4622 0.3943 0.3570 0.3511

our rank 1 2 3 4 5 6 7 8 9

expert rank 1 3 4 5 7 6 9 8 2

Fig. 4. Quantification results: nine skulls are shown for each type of synostosis (coronal,
metopic, and sagittal) from three different views. They are ordered by the severity
scores produced by our system for the craniosynostosis type to which they belong.
Under the images are their severity scores, their ranks by our system (ordered 1-9,
with 1 being most severe), and expert ranks for comparison.


