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Histologic transformation (HT) of follicu-
lar lymphoma to diffuse large B-cell lym-
phoma (DLBCL-t) is associated with accel-
erated disease course and drastically
worse outcome, yet the underlying mecha-
nisms are poorly understood. We show
that a network of gene transcriptional
modules underlies HT. Central to the net-
work hierarchy is a signature strikingly
enriched for pluripotency-related genes.
These genes are typically expressed in
embryonic stem cells (ESCs), including
MYC and its direct targets. This core

ESC-like program was independent of
proliferation/cell-cycle and overlapped but
was distinct from normal B-cell transcrip-
tional programs. Furthermore, we show
that the ESC program is correlated with
transcriptional programs maintaining tu-
mor phenotype in transgenic MYC-driven
mouse models of lymphoma. Although
our approach was to identify HT mecha-
nisms rather than to derive an optimal
survival predictor, a model based on ESC/
differentiation programs stratified patient
outcomes in 2 independent patient co-

horts and was predictive of propensity of
follicular lymphoma tumors to transform.
Transformation was associated with an
expression signature combining high ex-
pression of ESC transcriptional programs
with reduced expression of stromal pro-
grams. Together, these findings suggest
a central role for an ESC-like signature in
the mechanism of HT and provide new
clues for potential therapeutic targets.
(Blood. 2009;114:3158-3166)

Introduction

Follicular lymphoma (FL), the most common indolent subtype of
non-Hodgkin lymphoma, is clinically heterogeneous and remains
largely incurable. Persons with FL frequently experience histologic
transformation (HT) to a more aggressive histology, such as diffuse
large B-cell lymphoma (DLBCL), usually followed by rapid
disease progression, resistance to therapy, and death.1-3 Estimates
of the probability of HT have varied significantly from 10% to
60%; and given biases in ascertainment, it has been difficult to
discern whether potential for transformation is an inherent property
of all FL tumors.4 A variety of factors have been associated with
risk of HT, including histologic grade and stage of disease at
diagnosis, although in most series the strongest predictor remains
the Follicular Lymphoma Prognostic Index.2

A comprehensive understanding of the mechanisms underlying
HT of FL is important for identifying patients at risk and guiding
novel therapies. Several studies have investigated global gene
expression and genetic changes associated with HT,5-9 and impli-
cated several pathways and processes, including deregulation of
MYC and its target genes,8 activation of mitogen-activated protein
kinase signaling,10 activation of proliferation pathways,5 preserva-
tion of a germinal center B-cell like phenotype,5 interactions with
infiltrating T cells and the FL nodal microenvironment.7,11 Given
these numerous and seemingly heterogeneous findings, the most
critical factors underlying HT remain obscure.

In an effort to better understand HT, we constructed a module
network from gene expression profiles of patients with FL and

transformed DLBCL.12 This method does not assume a uniform
shift in expression patterns of genes between phenotypic classes
but instead allows for more complex changes in expression that
probably underlie molecular networks. Module networks have
been successfully applied to dissecting regulatory networks in
yeast microarray data, and in the analysis of human cancer, yielding
experimentally validated models of regulatory relationships.13

Given a microarray dataset, the aim of module network construc-
tion is to deduce the most probable assignment of genes to modules
(ie, groups of genes with correlated expression profiles) and regulatory
programs that could have produced the observed expression data
(supplemental Figure 1, available on the Blood website; see the
Supplemental Materials link at the top of the online article). Defining the
unit of analysis as coherent changes in collections of genes (modules)
can facilitate interpretation and understanding of the biologic processes
underlying expression changes.13

Here, we describe the transcriptional module hierarchy in the
network underlying HT, and the relationship of constituent mod-
ules to known pathways and biologic processes (Figure 1).
Strikingly, central to the hierarchy predicting HT, we found a core
program highly enriched for genes typically expressed in embry-
onic stem cells (ESCs). This ESC-like signature overlapped with a
similar expression program distinguishing the centroblast stage of
normal B-cell development within germinal centers, with the
exception of MYC and several of its direct targets. When assessed
in separate patient cohorts and independent data, expression of this
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signature was associated with shorter survival of patients with FL
and was predictive of their HT to DLBCL. Our results resonate
with other recent studies implicating inappropriate activation of
stem cell–like transcriptional programs in cancer initiation, aggres-
siveness, and progression.14-16

Methods

Our overall strategy (Figure 1) was to construct a network of modules of
coregulated genes, using expression data from both FL and DLBCL,7

leveraging the strongest possible signature of transformation-associated
expression changes. We then applied survival analysis to the FL samples
alone, to refine understanding of which combination of modules was
predictive of HT. We validated the survival predictor in an independent set
of FL patients, selected without bias in their propensity to undergo HT.11

Finally, we conducted additional validation of our results using a transgenic
mouse model of MYC-driven lymphomas that we have described
previously.17

Gene expression data used in construction of module network

We used gene expression data from 88 patient samples with unambiguous
histology, generated by Glas et al on cDNA microarrays.7,18 Of these,
30 samples represented DLBCLs known to result by transformation from
antecedent FL. The other 58 were classified as FL, of which 40 were known
to transform to DLBCL during subsequent patient follow-up. A set of
24 samples from 12 patients represented paired pre- and post-HT tumor
samples. Of the unpaired samples, 5 patients were represented by 2 FL
samples each, whereas the remaining samples were from unique patients.
A total of 36 diagnostic samples were obtained from patients who had not
received any treatment. Detailed clinical data are given in supplemental
Table 1 of Glas et al.7 We refer to FL tumors where the disease was not
known to transform as FL-nt, FL that transform to DLBCL as FL-pt
(“primed” to transform), and DLBCL that result by HT as DLBCL-t, to
distinguish them from other types of DLBCL that arise de novo. FL-pt and
FL-nt are referred to collectively as simply FL. Because transcriptional
regulation can only be inferred for genes that show significant variation in
their expression level, we filtered the array probes to eliminate genes with
only small variance, retaining approximately 12 700 probes. Each probe
was standardized across samples to have mean 0 and SD 1.

Construction and analysis of module network

We used Genomica12 to construct a module network, using a list of 2846 putative
regulatory genes, including transcription factors, mRNA modification and

processing, chromatin modification, canonical cellular pathways, and
immune system signaling pathways. This list was compiled from the
following sources. First, we included transcription factors listed in TRANS-
FAC, and a custom transcription factor array maintained by the University
of Washington (http://hg.wustl.edu/lovett/TF_june04table.html). Entrez Gene
was searched for all genes annotated as relevant to transcription (co)activa-
tion, (co)repression, (co)regulation, (co)suppression, and initiation/
termination. To these we added genes involved in nonmetabolic canonical
pathways, which we obtained by merging the KEGG, Biocarta, and
Ingenuity Pathways Analysis (IPA; Ingenuity Systems Inc) databases. IPA
was used to identify genes involved in chromatin modification, and RNA
modifications and processing (splicing, decay, metabolism). Finally, we
included genes related to cytokine signaling, immune system signaling, and
development from IPA. The list was screened against the array annotation
data, yielding 3946 probes corresponding to 2846 unique gene symbols.

Based on prior experience, module sizes of 50 to 80 genes are generally
appropriate, and regulators at a tree depth of 4 levels or more are rarely
statistically significant. Therefore, we limited the tree search depth to 4,
with 200 modules to allow approximately 65 genes per module on average.
Each inferred module was then represented across samples by the mean
expression of its component genes (“metagene”). Statistically significant
associations between sample types (FL-nt, FL-pt, and DLBCL-t) and
modules were evaluated using prediction analysis of microarrays (PAM).19

Separate analyses were performed on FL-pt versus DLBCL-t, and FL-nt
versus FL-pt. After score thresholding, 10-fold cross-validation was used to
estimate misclassification errors.

For mapping module gene assignments defined in one dataset to a
second expression dataset, we used official gene symbols. If multiple
probes in the mapped module corresponded to the same gene, they were
collapsed by averaging, before calculating a final metagene.

Biologic coherence of regulatory modules

To infer potential biologic relevance of modules, we compared the genes
assigned to them with the mSigDB database of precompiled gene sets.20

Significant overlaps between modules and known gene sets were evaluated
by hypergeometric test and corrected for false discovery rate (FDR; q) by
permutation test. A complete list of significant (q � .05) associations is
given in supplemental Tables 1 and 4. We augmented the mSigDB database
of gene sets with additional ones pertaining to the immune system and stem
cell regulation. Immune gene sets were obtained from the database
maintained by the Staudt laboratory.21 Stem cell–related sets included
expression experiments comparing stem cells with their normal counter-
parts, chromatin binding assays examining induced pluripotency, and
cellular differentiation programs driven by specific transcription factors,
such as IRF4 and PAX5 (supplemental Table 5). Mouse gene symbols were
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Figure 1. Overview of analysis. A module network was constructed from expression data on FL/DLBCL-t7 using Genomica. Modules were annotated by comparison with
curated gene sets, and a core network, putatively underlying transformation, was identified that involved differentiation/stem cell–related transcriptional programs. We selected
modules for incorporation into a survival model using stepwise regression. The survival model was validated in an independent set from a different group.11 Survival analysis
based on core modules was performed with and without proliferation genes.
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mapped to human using Homologene release 62 (http://www.ncbi.nlm.
nih.gov/HomoloGene/).

Gene expression of normal germinal center B cells

Tonsils were obtained from children undergoing routine tonsillectomy with
informed consent obtained in accordance with the Declaration of Helsinki
and approval from the Ethics Committee of the Norwegian Radium Hospital.
The tonsils were minced, and mononuclear cells were purified by standard
density gradient centrifugation (Lymphoprep, 1077 mg/l; Nycomed). CD19�

B cells were purified by magnetic bead separation (Dynabeads CD19 Pan B and
DETACHaBEAD CD19; Invitrogen). The CD19� cells were stained with
anti-CD38 PECy5 (Coulter Beckman), anti-IgD PE (DakoCytomation), and
anti-CD77 FITC (Becton Dickinson) for 30 minutes at 4°C, washed once in
RPMI with 2% fetal calf serum, followed by sorting of CD38�IgD�CD77�

naive B cells, CD38�IgD�CD77� centrocytes (CCs), CD38� IgD�CD77�

centroblasts (CBs), or CD38�IgD�CD77� memory B cells using a FACStar Plus
cell sorter (BD Biosciences). The purity of CC and CB populations was
reproducibly greater than 92%, and each cell population was isolated from
4 different donors. RNAwas extracted using TRIzol, and RNAfrom the different
donors was pooled together for each population. RNA amplification, labeling,
and hybridization to Lymphochip cDNA microarrays were performed as
described by Hystad et al.22

Survival analysis

Cox proportional hazards regression was used to build a model of survival
based on metagene expression of modules in the training set of FL-nt and
FL-pt samples. The model was initialized on the core ESC1 modules and
stepwise AIC regression was applied to build a multivariate predictor from
the 18 modules in total that were annotated as related to cellular
differentiation/stemness. The resulting model is composed of a total of
5 modules. Because 2 of these modules contributed only very weakly to
survival (P � .001 vs P � .001 without them), we eliminated these and
retained only 3 modules. The final model (and associated linear predictor
score [LPS]) was built using these 3 modules alone in the Cox regression.
To obtain Kaplan-Meier curves, patients were divided into high- or low-risk
groups according to whether their LPS was higher or lower than its median
value. Statistical significance of survival curve separation was evaluated by
log-rank test.

Transgenic mice

The Tet system was used to generate transgenic mice that conditionally
express the human MYC cDNA in T-cell lymphocytes.23 Titration of MYC
levels in cultured tumor cells was performed as described previously.17

Apoptotic cells were detected by the TdT-mediated dUTP nick end labeling
assay in situ death detection kit (Roche Diagnostics) and counterstained
with 4,6-diamidino-2-phenylindole (Vector Laboratories). Cells were grown
in their respective media requirements and then pulsed with 0.1 mM
bromodeoxyuridine for 1 hour. They were then collected and fixed with
70% ethanol and stained for bromodeoxyuridine incorporation according to
the manufacturer’s instructions (BD Biosciences PharMingen). For gene
expression profiling, 50 �g total RNA and 50 �g pooled sample reference
mRNA were differentially labeled with Cy5 and Cy3, respectively, and
hybridized to Stanford MEEBO oligonucleotide arrays as described.17 Data
are available in the Gene Expression Omnibus (National Center for
Biotechnology Information, http://www.ncbi.nlm.nih.gov/geo/) under acces-
sion number GSE10200.

Results

Construction and annotation of a regulatory network of FL
transformation

To identify mechanisms underlying HT, we constructed a module
network24 using microarray gene expression data from patients
with FL and patients with DLBCL-t that evolved from antecedent

FL.7 The resulting network consists of modules of coregulated
genes, with inferred regulatory relationships between them (sup-
plemental Figure 1). To infer the biologic relevance of modules,
we compared them with precompiled gene sets.20 Consistent with
previous analyses of FL and DLBCL expression profiles,5,7,8,10,11

the regulatory network included coherent modules highly enriched
for genes involved in cell-cycle progression, proliferation, cell-
ular differentiation, ribosomal protein activity, T-cell activation and
receptor signaling, B-cell development and differentiation, inflam-
matory response, proteasome components, hypoxia signaling, and
mitochondrial function (supplemental Table 1).

Unexpectedly, multiple modules within the network signifi-
cantly overlapped with gene sets stereotypically expressed in ESCs
(supplemental Table 1). We refined associations between these
modules and ESC-related transcriptional programs by comparing
them with 385 additional gene sets that we curated from the
literature, focusing on studies of self-renewing cell types from
various developmental stages, pluripotency pathways, and genes
associated with proliferation and cell cycle regulation. The most
significant recurring association was between several core network
modules and a set of ESC-like signatures (supplemental Table 1)
that has been described as aberrantly expressed in multiple
epithelial tumors, coordinately regulated by MYC, and indepen-
dently associated with histologic grade, risk of metastasis, and
death in patients with carcinomas of the breast and lung.16

A core network associated with HT reveals an ESC-like
signature

We next identified 19 modules that were most closely associated with
HT. Genes in 10 modules were induced on HT, whereas 9 modules were
repressed (Figure 2A; supplemental Table 2). Strikingly, several mod-
ules induced in transformation were enriched for genes highly expressed
in ESCs relative to adult stem cells and differentiated tissues (Figure
2B). Consistent with this, modules coordinately repressed on HT were
enriched for genes that are repressed by the polycomb group (PcG) in
ESCs relative to differentiated cells, and for genes expressed in adult
tissue stem cells and differentiated cell types, including T cells (Figure
2B). This implies that DLBCL-t does not arise from an HSC progenitor,
but rather from a more differentiated germinal center B cell (FL, or a
progenitor of FL clones) that acquires an enhanced stem cell–like
expression pattern. With the exception of one module, the 19 HT
modules formed a tightly connected subnetwork within the overall
module network (Figure 3A). Comparison of paired FL-pt and
DLBCL-t specimens from 12 patients revealed the 19 modules to be
consistently induced or repressed in HT (Figure 3B). One module
(denoted as ESC1) lay at the core of the group of 19 modules (Figure
3A), being highly connected to others while itself having few upstream
neighbors. ESC1 was also the single module most predictive for HT,
suggesting a key role in transformation. The ESC1 module was
composed of 101 genes, including MYC and RUVBL1, and highly
overlapped genes previously identified as core components of ESC
maintenance programs (FDR, q � 1.2 � 10�7), as well as direct tran-
scriptional targets of MYC (q � 6 � 10�7) and IRF4 (q � 1.4 � 10�5;
Figure 2B).16

Given the unexpected enrichment of HT modules for genes
distinguishing self-renewing stem cells of embryonic derivation,
we considered the behavior of transcriptional regulators of B-cell
development,25 focusing on paired samples from patients whose
disease transformed (supplemental Figure 2). Genes frequently
induced on HT included MYC, SOX2, and STAT4. MYC and SOX2
are 2 of 4 master regulatory transcription factors with central roles
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in self-renewal, capable of pluripotency induction in terminally
differentiated tissues.26 Oct4 (POU5F1) and NANOG, the other
2 reprogramming factors, were not represented in the microarray
data. Genes frequently repressed on HT included PAX5, CEBPA,
and STAT3. Notably, repression of PAX5 is known to be central to
reprogramming of mature B lymphocytes to pluripotency,27 and
inactivating somatic mutations within PAX5 are recurrent events in
precursor B-lymphoblastic leukemias.28 Another module consis-
tently down-regulated on HT (Module 13 in Figure 2) was enriched
for targets of the PcG members SUZ12 (q � 3 � 10�4), EED
(q � 8 � 10�4), and RNF2 (q � 8 � 10�3). These genes are re-
pressed by PcG activity in ES cells.29-32 Aberrant methylation of
PcG targets has been implicated recently as a factor in ESC-like
expression signatures in other aggressive B-cell lymphomas.15

ESC-like signature underlying HT is independent of
proliferation

Because programs of self-renewal and differentiation are inti-
mately connected with proliferation and the cell cycle, we verified
that core modules predictive of HT do not just reflect proliferative
differences between FL and DLBCL-t tumors. We compiled a list
of 844 genes (supplemental Table 3) related to proliferation and
cell cycle.33,34 Even after removing these genes from our analysis,
HT modules were still significantly enriched for genes expressed in
ESCs (supplemental Table 4). Given the known correlation be-
tween histologic grade and proliferative indices in FL,35 we also
examined the relationship between histologic grade and expression
of the ESC1 module. Grades 1/2 FL tumors showed similar
expression of this module (even though they differ in their
proportion of rapidly proliferating centrocytes), with both being
lower than FL3b/DLBCL-t samples (P � .001, t test; supplemental

Figure 3). In addition, expression of the ESC1 module correlated
only weakly with Ki-67 proliferation index in an independent set of
175 DLBCL cases (Pearson correlation � � 0.34, supplemental
Figure 4).36 We conclude that core signatures underlying transfor-
mation are enriched for genes expressed in ESCs and that their
induction on HT is not a proxy for proliferative differences between
FL and DLBCL-t.

ESC-like signature underlying HT is distinct from normal B-cell
transcriptional programs

The modules distinguishing FL from DLBCL-t could represent
gene expression differences between histologies, rather than the
underlying HT mechanisms. They might also reflect distinctions
between NHL variants beyond FL and DLBCL-t. We therefore
examined the expression of the HT modules across normal B-cell
developmental stages and across diverse NHL histologies,22,37,38

with specific emphasis on the core ESC1 module. Given its role in
ESC-related cancer signatures,16 we separately evaluated MYC, a
component gene of the ESC1 module, in the same datasets.

HT modules exhibited heterogeneous expression across diverse
normal/malignant histologies (supplemental Figure 5). By measur-
ing gene expression on Lymphochip cDNA microarrays, we deter-
mined that the ESC1 module was variably expressed across normal
B-cell development, but particularly highly expressed in CBs and
CCs of germinal centers (Figure 4A). MYC was highly expressed in
early B-cell stages but was down-regulated in CBs/CCs, in direct
contrast to the ESC1 module (Figure 4A-B). We observed an
identical pattern of ESC1 module/MYC expression in an indepen-
dent dataset (Figure 4C-D). MYC expression generally mirrored
ESC1 module expression, but with overlap in the expression ranges
across histologies and between normal/malignant B cells (Figure
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Figure 2. Modules associated with HT are enriched for ESC-like gene expression signatures. In a sample (column), each module (row) is represented by the mean
expression of its component genes (“metagene”). (A) PAM was used to compare FL-pt with DLBCL-t, and modules were ordered by significance, according to their PAM score.
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4C-D). ESC1 module expression was lower in FL than in de novo
DLBCL and normal CBs/CCs. In contrast, MYC was expressed at
similar levels in FL to CBs/CCs, but at a higher level in de novo
DLBCL (Figure 4C-D). In an independent dataset, expression of
the ESC1 module and MYC was similar in transformed and de novo

DLBCLs (supplemental Figure 6), although both showed a ten-
dency to higher expression in ABC subtype de novo DLBCL.
Moreover, expression of ESC1 module/MYC was independent of
the presence or absence of BCL2 translocations (present in � 90%
of FL cases) in germinal center B–like de novo DLBCL cases.
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sents a separate expression dataset, and the 2 columns show
mean expression of ESC1 genes (left, white) and MYC (right,
gray). (A-B) Variation across stages of normal B-cell development
from bone marrow and tonsil samples,22 showing high expression
of ESC1 module but low expression of MYC in CBs/CCs relative
to other normal B cells. (C-D) Normal (right of dotted line) and
malignant (left) B-cell expression.37 ESC1 module is less highly
expressed in FL than in de novo DLBCL (dDLBCL) and normal
CBs/CCs, whereas MYC is higher in dDLBCL than in FL or normal
CBs/CCs. HSC indicates hematopoietic stem cell; EB, early
B cell; ProB, Pro-B cell; PreB, Pre-B cell; ImB, immature B cell;
NB, naive B cell; MB, memory B cell; CLL, chronic lymphocytic
leukemia; HCL, hairy cell leukemia; MCL, mantle cell lymphoma;
FL, follicular lymphoma; dDL, de novo DLBCL; PEL, primary
effusion lymphoma; and BL, Burkitt lymphoma.
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Thus, the ability of modules to distinguish FL from DLBCL-t
appears to reflect HT mechanisms, not histology. The core transcrip-
tional program in HT (ESC1 module) and in normal CBs/CCs cells
overlaps (supplemental Figure 7), but the MYC-related component
is aberrantly expressed in HT.

Correlation between the ESC program (implicated in HT) and
MYC-driven tumors in transgenic mouse models

To confirm whether the core ESC-related program implicated in
HT is directly associated with tumor maintenance and aggressive-
ness, we examined its behavior in transgenic mouse models of
MYC-driven lymphomas. We used this approach because FL
tumors do not grow in culture and FL cell lines representative of the
indolent stages of the disease are not available.

In a transgenic mouse model, conditional MYC overexpression
using the Tet-system results in development of aggressive T-cell
lymphomas.23 The levels of MYC in the tumors are comparable
with human Burkitt lymphomas. When mice with tumor burden are
treated with doxycycline, transgenic MYC expression is inhibited,
and tumors regress. By titrating the level of MYC expression by
various levels of doxycycline, we have shown previously that there
is a specific threshold level of MYC required to maintain a tumor
phenotype.17 As MYC decreases below the threshold, the balance
between growth and apoptosis of tumor cells switches, so that
tumors begin to regress and die (Figure 5A).

We hypothesized that genes in the core ESC module implicated
in FL transformation should show significant expression changes at
the threshold level of MYC in the mouse MYC-dependent tumors.
By measuring gene expression using microarrays, we found
1904 genes that are statistically significantly (FDR � 5%) down-
regulated as MYC expression drops below the threshold required
for tumor maintenance.17 Fifty-two of the genes from the core HT
ESC1 module mapped to orthologous loci on the mouse arrays, of
which 36 were among those down-regulated at the MYC threshold
(P � .001, hypergeometric test). Changes in expression of the

ESC1 module (mapped to homologous mouse genes) as MYC
levels were progressively reduced are shown in Figure 5B. Hence,
the ESC1 module was highly enriched for genes whose expression
changes decisively when MYC levels are reduced below those
required to maintain a tumor phenotype in our mouse model
system. Separately, we verified that ESC1 module genes were
rapidly down-regulated on MYC inactivation in the mouse model
in a time-dependent fashion (supplemental Figure 8). Finally, we
used the Nextbio search engine (Nextbio Inc), to identify experi-
ments in the NCBI Gene Expression Omnibus where significant
changes in gene expression between experimental conditions were
correlated with the up-regulation of ESC1 module genes in HT. The
most significant association (P � .001) was between ESC1 module
genes and genes that are up-regulated in B-cell lymphomas
generated by MYC overexpression in the E�MYC transgenic
mouse model, relative to normal tissue.39

Thus, the core ESC-like module induced in FL transformation
was strongly enriched for genes that are induced specifically by
MYC overexpression in transgenic mouse lymphoma models.
Furthermore, many of these genes are associated with MYC-
dependent tumor maintenance, as we have previously established.17

A 3-module ESC model stratifies survival in FL and predicts
transformation

Having identified a module enriched for ESC-associated genes at
the core of HT, we hypothesized that, if ESC-like processes drive
HT, rather than being consequences of it, there might be an
ESC-like signature present in pretransformation FL-pt. Given that
HT has a major influence on patient outcomes, we reasoned that
analysis of survival data would provide additional insight.

The ESC1 module on its own was only weakly predictive of
survival (P � .02, log-rank test) in the FL patients of Glas et al.7

We therefore constructed a multivariate predictor from all modules
annotated by gene sets associated with cellular differentiation
processes. The resulting model defined a score based on 3 modules:
LPS � 1.143 � (ESC1) � 1.354 � (stromal module) � 0.722 �
(ESC2 module) (supplemental Table 1), which was predictive of
FL survival (P � .001, log-rank test; hazard ratio � 2.72, 95% confi-
dence interval � 1.71-4.32). Stratification of the training set into high-
or low-risk, based on the median of the LPS, robustly separated survival
curves (Figure 6A). High expression of modules ESC1 and ESC2
(annotated for genes sharing a similar pattern of up-regulation in ESCs
and induced pluripotent stem [iPS] cells; q � 2 � 10�4, supplemental
Table 4) was associated with worse outcome. Conversely, high expres-
sion of a third module (stromal, enriched for targets of transforming
growth factor-	 [TGF-	] signaling and stromal genes) was associated
with improved prognosis. Strikingly, LPS was higher in FL that were
known to transform (FL-pt) than FL that did not transform (FL-nt;
Figure 6B), indicating that the combined expression signature of these
3 modules was associated with propensity to transform (P � .001,
t test), even though none of them individually distinguished FL-pt from
FL-nt. Separation of survival curves based on LPS was also significant
within FL-pt only (P � .006, Figure 6C), but not within FL-nt (P � .08,
Figure 6D).

We validated the survival predictor in an independent dataset of
187 FL patient gene expression samples,11 where it robustly
stratified survival (P � .001, Figure 6E). Surprisingly, this predic-
tor also stratified patient survival when evaluated within DLBCL-t
samples (P � .006, Figure 6F), an unexpected finding because
survival times were from time of initial diagnosis of FL, not from
histologic transformation. This suggested that the relative strength
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Figure 5. Core HT module correlates with MYC-driven tumor growth in
transgenic FVB/N mouse. Gene expression analysis of MYC and expression of
ESC1 module in tumor cells from FVB/N mice with conditional overexpression of
human MYC that were treated with different doses of doxycycline to down-regulate
MYC. At 0.04 to 0.05 ng/mL doxycycline, the level of MYC has dropped below the
threshold required for tumor maintenance. (A) The difference between the proportion
of tumor cells undergoing growth versus apoptosis shifts in favor of the latter at a
specific MYC level (threshold) required to maintain a tumor phenotype. (B) Mean
expression of genes in the core FL transformation module, as determined from
microarray analysis of mouse tumors at each level of doxycycline.
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of the 3-module “HT signature” might be preserved between
patients before and after HT. Indeed, we found that 10 of
12 patients with paired pre- and post-HT samples were similarly
grouped (low- vs high-risk) based on the LPS evaluated in their
FL-pt or DLBCL-t sample (P � .03, hypergeometric test).

Although we previously demonstrated that individual modules
associated with stem cell programs were not simply proxies for
proliferation, we tested the possibility that the multivariate predic-
tor of survival might still correlate to proliferative differences. We
retained only genes associated with self-renewal, stem cells, and
pluripotency, and eliminated genes known to be closely tied to cell
cycle and proliferation. We then rederived the survival predictor
and found that it remained predictive of overall survival (P � .001,
hazard ratio � 2.72, 95% confidence interval � 1.6-4.5), with little
difference in the model parameters (supplemental Table 7). More-
over, proliferation genes alone were not able to stratify FL survival
(supplemental Figure 9).

Hence, a 3-module model stratified survival in FL, with
2 ESC-related modules contributing to poor prognosis and 1 stromal
signature related module contributing to good prognosis. The LPS
power to discriminate between FL-nt and FL-pt supports that an
ESC-related mechanism underlies HT, is present before HT, and
persists after HT.

Discussion

The mechanisms driving lymphoma transformation are undoubt-
edly complex and heterogeneous.40 Previous gene expression

studies have revealed underlying changes related to proliferation,
deregulation of signaling pathways and oncogenes, such as Myc.5-9

The combinatorial nature of transcriptional regulation poses a
challenge to interpreting such data. We performed a network-based
analysis that captures the interconnected nature of regulation. The
module network successfully recapitulated known aspects of the
transformation process, such as shifts in gene expression resulting
from loss of infiltrating T cells in most DLBCL-t relative to FL,8,18

increased proliferative drive, and deregulation of the cell cycle.5-7

The hierarchy suggested by the module network implies that a
group of core ESC-like transcriptional programs, previously associ-
ated with MYC deregulation in epithelial cancers,16 is central to HT
(Figure 3). Notably, the core network module (ESC1, Figure 3)
showed distinct down-regulation at a threshold level of MYC
required for tumor maintenance, in a transgenic mouse lymphoma
model that we have described previously.17 In addition, the same
module of genes was coordinately up-regulated in a different
mouse model of MYC-driven B-cell lymphoma.39

A survival model built around ESC1 stratifies FL survival and is
validated in independent data. Furthermore, this survival predictor
is associated with propensity of FL to transform, supporting that
expression of these modules underlies HT, and is not merely a
consequence of it (Figure 5). Given the centrality of ESC1 in the
network, a tempting interpretation is that it provides the “engine”
for transformation, with probability of HT being increased by high
expression of a second ESC-like module (ESC2) and reduced by a
third (stromal), which is enriched for stromal genes and TGF-	
signaling. TGF-	 signaling has been shown previously to repress
MYC activity through the SMAD pathway.41 Importantly, our use of
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survival analysis was intended specifically to elucidate possible
mechanisms of HT. Other approaches may be better suited to
deriving optimal predictors of FL survival.11,42 However, it is
important that our model validates in an unbiased FL patient
population consisting entirely of diagnostic samples,11 to alleviate
the possibility that our analysis is affected by selection bias in the
training data,7 which contain a high proportion of FL-pt.

The fact that MYC and SOX2, 2 key drivers of iPS, were
generally more highly expressed in DLBCL-t relative to FL
whereas PAX5 was generally repressed, is provocative. Recent
investigations have demonstrated the possibility of conversion
of mature cells into pluripotent cells.43,44 In particular, in
B cells, a key requirement for iPS is abrogation of PAX5
activity.45 PAX5 is a master regulator of B-cell development
whose continued expression is required for maintenance of
B-cell identity.44 However, overexpression of PAX5 can also
induce lymphomagenesis via activation of B-cell receptor
signaling.46 Its involvement in HT deserves further investiga-
tion. Furthermore, our observation that a significant number of
PcG targets are down-regulated in HT is consistent with other
recent findings suggesting that aberrant methylation of PcG
targets might represent an initiating event of lymphomagenesis
in de novo mature aggressive DLBCLs.15

Wong et al have demonstrated that MYC is capable by itself of
inducing expression of ESC-like transcriptional programs.16 In this
context, it is notable that the core module of genes we identified in
HT strongly overlaps with genes that maintain a tumor phenotype
in MYC-driven transgenic mouse models of lymphoma.17 How the
ability of MYC to drive cellular transformation relates to PcG
activity is a topic of considerable current interest, with efforts to
understand their relationship in ESC processes still at an early
stage.47 Moreover, the fact that the HT program overlaps with
normal CC/CB expression patterns resonates with findings in
mouse models of myeloid leukemias, which suggest that self-
renewal capability in leukemic stem cells is acquired by deregula-
tion of normal midmyeloid cell transcriptional processes.48

Recently, analyses of somatic hypermutation region se-
quence evolution and mutations of the switch � region intro-
duced by activation-induced cytidine deaminase have been
reported.49,50 By constructing genealogic trees of clones from
paired pretransformation and posttransformation samples, both
groups found 2 possible routes through which HT could occur.
In the first (direct route), HT occurred directly by transformation
of an FL clone to DLBCL-t. In the second (indirect), an
ancestral/progenitor cell with a less-differentiated phenotype
apparently gave rise to FL and DLBCL-t as separate events in
the same patient. Both are consistent with the results we present
here regarding a role for ESC-like signatures.

In one possible scenario, FL-nt could arise from a less-
differentiated self-renewing ancestral cell by asymmetric divi-
sion, resulting in clones that do not express an ESC-like
transcriptional program, and lack the ability to self-renew and
seed subsequent DLBCL-t. In contrast, some FL clones may
retain at least a partially active ESC-like expression program.
Their transformation to DLBCL-t would then proceed by
acquisition of further mutational events and reexpression of a
full self-renewal program. In this model, we reason that the
barrier to HT is lower in FL-pt than in FL-nt because they
already exhibit an ESC-like expression signature. In the indirect
HT route, the ancestral progenitor producing an initial FL tumor
has full self-renewal capability and could continue to acquire

mutations, eventually leading to enhanced proliferative ability
and generation of DLBCL-t. Because various cell populations
can coexist in tumors, it is not possible to distinguish these
scenarios by gene expression data from bulk tumor samples.
Future studies will be required using purified subsets of tumor
cells and single-cell methods of analysis. It would also be of
interest to determine whether the strength of the HT signature in
FL correlates with time to transformation. Unfortunately, this
information was not available for the datasets studied.

Further validation of our findings will require independent
data where the occurrence or absence of HT is known subse-
quent to FL biopsy. Remaining questions include whether the
HT signature is present in the majority of cells in FL-pt tumors
that undergo HT or only a small subpopulation of clones.
Additional study of MYC’s role in HT is also warranted.
Previous studies found variable induction/repression of MYC
expression in HT,8 although up-regulation is most frequent.7,11

A key question, therefore, is how changes in MYC at the protein
level relate to changes at the mRNA level. In addition, MYC
activity is probably modulated through changes in activity of its
cofactors (eg, MAX) or antagonists (eg, MAD), leading to
changes in transcriptional programs that are not directly corre-
lated with the expression of MYC itself. Finally, our approach
may offer clues for therapeutic targets. Using the Connectivity
Map, we identified drugs, including trichostatin-A and sirolimus
(rapamycin), that induce expression changes in cells in the
opposite direction to the core modules we implicated in HT
(supplemental Table 8). Hence, they potentially obstruct changes
in expression that may drive transformation. Interestingly,
trichostatin-A is a histone deacetylase inhibitor that has been
shown to induce cell differentiation in some contexts.51 Investi-
gations of these aspects represent several potential directions for
future research.
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