
Structured Learning of Gaussian Graphical Models

Karthik Mohan∗, Michael Jae-Yoon Chung†, Seungyeop Han†,

Daniela Witten‡, Su-In Lee§, Maryam Fazel∗

Abstract

We consider estimation of multiple high-dimensional Gaussian graphical mod-
els corresponding to a single set of nodes under several distinct conditions. We
assume that most aspects of the networks are shared, but that there are some struc-
tured differences between them. Specifically, the network differences are gener-
ated from node perturbations: a few nodes are perturbed across networks, and
most or all edges stemming from such nodes differ between networks. This corre-
sponds to a simple model for the mechanism underlying many cancers, in which
the gene regulatory network is disrupted due to the aberrant activity of a few spe-
cific genes. We propose to solve this problem using the perturbed-node joint
graphical lasso, a convex optimization problem that is based upon the use of a
row-column overlap norm penalty. We then solve the convex problem using an
alternating directions method of multipliers algorithm. Our proposal is illustrated
on synthetic data and on an application to brain cancer gene expression data.

1 Introduction

Probabilistic graphical models are widely used in a variety of applications, from computer vision
to natural language processing to computational biology. As this modeling framework is used in
increasingly complex domains, the problem of selecting from among the exponentially large space
of possible network structures is of paramount importance. This problem is especially acute in the
high-dimensional setting, in which the number of variables or nodes in the graphical model is much
larger than the number of observations that are available to estimate it.

As a motivating example, suppose that we have access to gene expression measurements for n1 lung
cancer patients and n2 brain cancer patients, and that we would like to estimate the gene regulatory
networks underlying these two types of cancer. We can consider estimating a single network on the
basis of all n1+n2 patients. However, this approach is unlikely to be successful, due to fundamental
differences between the true lung cancer and brain cancer gene regulatory networks that stem from
tissue specificity of gene expression as well as differing etiology of the two diseases. As an alter-
native, we could simply estimate a gene regulatory network using the n1 lung cancer patients and a
separate gene regulatory network using the n2 brain cancer patients. However, this approach fails to
exploit the fact that the two underlying gene regulatory networks likely have substantial commonal-
ity, such as tumor-specific pathways. In order to effectively make use of the available data, we need
a principled approach for jointly estimating the lung cancer and brain cancer networks in such a way
that the two network estimates are encouraged to be quite similar to each other, while allowing for
certain structured differences. In fact, these differences themselves may be of scientific interest.

In this paper, we propose a general framework for jointly learning the structure of K networks, under
the assumption that the networks are similar overall, but may have certain structured differences.

∗Electrical Engineering, Univ. of Washington. {karna,mfazel}@uw.edu
†Computer Science and Engineering, Univ. of Washington. {mjyc,syhan}@cs.washington.edu
‡Biostatistics, Univ. of Washington. dwitten@uw.edu
§Computer Science and Engineering, and Genome Sciences, Univ. of Washington. suinlee@uw.edu

1

Specifically, we assume that the network differences result from node perturbation – that is, certain
nodes are perturbed across the conditions, and so all or most of the edges associated with those
nodes differ across the K networks. We detect such differences through the use of a row-column
overlap norm penalty. Figure 1 illustrates a toy example in which a pair of networks are identical to
each other, except for a single perturbed node (X2) that will be detected using our proposal.

The problem of estimating multiple networks that differ due to node perturbations arises in a number
of applications. For instance, the gene regulatory networks in cancer patients and in normal individ-
uals are likely to be similar to each other, with specific node perturbations that arise from a small
set of genes with somatic (cancer-specific) mutations. Another example arises in the analysis of the
conditional independence relationships among p stocks at two distinct points in time. We might be
interested in detecting stocks that have differential connectivity with all other edges across the two
time points, as these likely correspond to companies that have undergone significant changes. Still
another example can be found in the field of neuroscience, where we are interested in learning how
the connectivity of neurons in the human brain changes over time.

Figure 1: An example of two networks that differ due to node perturbation of X2. (a) Network 1
and its adjacency matrix. (b) Network 2 and its adjacency matrix. (c) Left: Edges that differ between
the two networks. Right: Shaded cells indicate edges that differ between Networks 1 and 2.

Our proposal for estimating multiple networks in the presence of node perturbation can be formu-
lated as a convex optimization problem, which we solve using an efficient alternating directions
method of multipliers (ADMM) algorithm that significantly outperforms general-purpose optimiza-
tion tools. We test our method on synthetic data generated from known graphical models, and on
one real-world task that involves inferring gene regulatory networks from experimental data.

The rest of this paper is organized as follows. In Section 2, we present recent work in the estimation
of Gaussian graphical models (GGMs). In Section 3, we present our proposal for structured learning
of multiple GGMs using the row-column overlap norm penalty. In Section 4, we present an ADMM
algorithm that solves the proposed convex optimization problem. Applications to synthetic and real
data are in Section 5, and the discussion is in Section 6.

2 Background

2.1 The graphical lasso

Suppose that we wish to estimate a GGM on the basis of n observations, X1, . . . , Xn ∈ Rp, which
are independent and identically distributed N(0,Σ). It is well known that this amounts to learning
the sparsity structure of Σ−1 [1, 2]. When n > p, one can estimate Σ−1 by maximum likelihood, but
when p > n this is not possible because the empirical covariance matrix is singular. Consequently,
a number of authors [3, 4, 5, 6, 7, 8, 9] have considered maximizing the penalized log likelihood

maximize
Θ∈Sp

++

{log detΘ− trace(SΘ)− λ∥Θ∥1} , (1)

where S is the empirical covariance matrix based on the n observations, λ is a positive tuning
parameter, Sp

++ denotes the set of positive definite matrices of size p, and ∥Θ∥1 is the entrywise ℓ1
norm. The Θ̂ that solves (1) serves as an estimate of Σ−1. This estimate will be positive definite for
any λ > 0, and sparse when λ is sufficiently large, due to the ℓ1 penalty [10] in (1). We refer to (1)
as the graphical lasso formulation. This formulation is convex, and efficient algorithms for solving
it are available [6, 4, 5, 7, 11].

2

2.2 The fused graphical lasso

In recent literature, convex formulations have been proposed for extending the graphical lasso (1) to
the setting in which one has access to a number of observations from K distinct conditions. The goal
of the formulations is to estimate a graphical model for each condition under the assumption that the
K networks share certain characteristics [12, 13]. Suppose that Xk

1 , . . . , X
k
nk
∈ Rp are independent

and identically distributed from a N(0,Σk) distribution, for k = 1, . . . ,K. Letting Sk denote the
empirical covariance matrix for the kth class, one can maximize the penalized log likelihood

maximize
Θ1∈Sp

++,...,ΘK∈Sp
++

L(Θ1, . . . ,ΘK)− λ1

K∑
k=1

∥Θk∥1 − λ2

∑
i̸=j

P (Θ1
ij , . . . ,Θ

K
ij)

 , (2)

where L(Θ1, . . . ,ΘK) =
∑K

k=1 nk

(
log detΘk − trace(SkΘk)

)
, λ1 and λ2 are nonnegative

tuning parameters, and P (Θ1
ij , . . . ,Θ

K
ij) is a penalty applied to each off-diagonal element of

Θ1, . . . ,ΘK in order to encourage similarity among them. Then the Θ̂1, . . . , Θ̂K that solve (2)
serve as estimates for (Σ1)−1, . . . , (ΣK)−1. In particular, [13] considered the use of

P (Θ1
ij , . . . ,Θ

K
ij) =

∑
k<k′

|Θk
ij −Θk′

ij |, (3)

a fused lasso penalty [14] on the differences between pairs of network edges. When λ1 is large, the
network estimates will be sparse, and when λ2 is large, pairs of network estimates will have identical
edges. We refer to (2) with penalty (3) as the fused graphical lasso formulation (FGL).

Solving the FGL formulation allows for much more accurate network inference than simply learning
each of the K networks separately, because FGL borrows strength across all available observations
in estimating each network. But in doing so, it implicitly assumes that differences among the K
networks arise from edge perturbations. Therefore, this approach does not take full advantage of
the structure of the learning problem, which is that differences between the K networks are driven
by nodes that differ across networks, rather than differences in individual edges.

3 The perturbed-node joint graphical lasso

3.1 Why is detecting node perturbation challenging?

At first glance, the problem of detecting node perturbation seems simple: in the case K = 2, we
could simply modify (2) as follows,

maximize
Θ1∈Sp

++,Θ2∈Sp
++

L(Θ1,Θ2)− λ1∥Θ1∥1 − λ1∥Θ2∥1 − λ2

p∑
j=1

∥Θ1
j −Θ2

j∥2

 , (4)

where Θk
j is the jth column of the matrix Θk. This amounts to applying a group lasso [15] penalty

to the columns of Θ1 − Θ2. Since a group lasso penalty simultaneously shrinks all elements to
which it is applied to zero, it appears that this will give the desired node perturbation structure. We
will refer to this as the naive group lasso approach.

Unfortunately, a problem arises due to the fact that the optimization problem (4) must be performed
subject to a symmetry constraint on Θ1 and Θ2. This symmetry constraint effectively imposes
overlap among the elements in the p group lasso penalties in (4), since the (i, j)th element of Θ1 −
Θ2 is in both the ith (row) and jth (column) groups. In the presence of overlapping groups, the
group lasso penalty yields estimates whose support is the complement of the union of groups [16, 17].
Figure 2 shows a simple example of (Σ1)−1−(Σ2)−1 in the case of node perturbation, as well as the
estimate obtained using (4). The figure reveals that (4) cannot be used to detect node perturbation,
since this task requires a penalty that yields estimates whose support is the union of groups.

3.2 Proposed approach

A node-perturbation in a GGM can be equivalently represented through a perturbation of the entries
of a row and column of the corresponding precision matrix (Figure 1). In other words, we can

3

Figure 2: A toy example with p = 6 variables, of which two are perturbed (in red). Each panel
shows an estimate of (Σ1)−1− (Σ2)−1, displayed as a network and as an adjacency matrix. Shaded
elements of the adjacency matrix indicate non-zero elements of Θ̂1−Θ̂2, as do edges in the network.
Results are shown for (a): PNJGL with q = 2, which gives the correct sparsity pattern; (b)-(c): the
naive group lasso. The naive group lasso is unable to detect the pattern of node perturbation.

detect a single node perturbation by looking for a row and a corresponding column of Θ1 − Θ2

that has nonzero elements. We define a row-column group as a group that consists of a row and the
corresponding column in a matrix. Note that in a p × p matrix, there exist p such groups, which
overlap. If several nodes of a GGM are perturbed, then this will correspond to the union of the
corresponding row-column groups in Θ1 −Θ2. Therefore, in order to detect node perturbations in
a GGM (Figure 1), we must construct a regularizer that can promote estimates whose support is the
union of row-column groups. For this task, we propose the row-column overlap norm as a penalty.
Definition 3.1. The row-column overlap norm (RCON) induced by a matrix norm f is defined as

Ωf (A) = min
V:A=V+VT

f(V). (5)

RCON satisfies the following properties that are easy to check: (1) Ωf is indeed a norm. Con-
sequently, it is convex. (2) When f is symmetric in its argument, i.e., f(V) = f(VT), then
Ωf (A) = f(A)/2.

In this paper, we are interested in the particular class of RCON penalty where f is given by

f(V) =

p∑
j=1

∥Vj∥q, (6)

where 1 ≤ q ≤ ∞. The norm in (6) is known as the ℓ1/ℓq norm since it can be interpreted as the
ℓ1 norm of the ℓq norms of the columns of a matrix. With a little abuse of notation, we will let Ωq

denote Ωf with an ℓ1/ℓq norm of the form (6). We note that Ωq is closely related to the overlap
group lasso penalty [17, 16], and in fact can be derived from it (for the case of q = 2). However,
our definition naturally and elegantly handles the grouping structure induced by the overlap of rows
and columns, and can accommodate any ℓq norm with q ≥ 1, and more generally any norm f . As
discussed in [17], when applied to Θ1−Θ2, the penalty Ωq (with q = 2) will encourage the support
of the matrix Θ̂1 − Θ̂2 to be the union of a set of rows and columns.

Now, consider the task of jointly estimating two precision matrices by solving
maximize

Θ1∈Sp
++,Θ2∈Sp

++

{
L(Θ1,Θ2)− λ1∥Θ1∥1 − λ1∥Θ2∥1 − λ2Ωq(Θ

1 −Θ2)
}
. (7)

We refer to the convex optimization problem (7) as the perturbed-node joint graphical lasso (PN-
JGL) formulation. In (7), λ1 and λ2 are nonnegative tuning parameters, and q ≥ 1. Note that
f(V) = ∥V∥1 satisfies property 2 of the RCON penalty. Thus we have the following observation.
Remark 3.1. The FGL formulation (2) is a special case of the PNJGL formulation (7) with q = 1.

Let Θ̂1, Θ̂2 be the optimal solution to (7). Note that the FGL formulation is an edge-based approach
that promotes many entries (or edges) in Θ̂1−Θ̂2 to be set to zero. However, setting q = 2 or q =∞
in (7) gives us a node-based approach, where the support of Θ̂1 − Θ̂2 is encouraged to be a union
of a few rows and the corresponding columns [17, 16]. Thus the nodes that have been perturbed can
be clearly detected using PNJGL with q = 2,∞. An example of the sparsity structure detected by
PNJGL with q = 2 is shown in the left-hand panel of Figure 2. We note that the above formulation
can be easily extended to the estimation of K > 2 GGMs by including K(K−1)

2 RCON penalty
terms in (7), one for each pair of models. However we restrict ourselves to the case of K = 2 in this
paper.

4

4 An ADMM algorithm for the PNJGL formulation

The PNJGL optimization problem (7) is convex, and so can be directly solved in the modeling
environment cvx [18], which calls conic interior-point solvers such as SeDuMi or SDPT3. How-
ever, such a general approach does not fully exploit the structure of the problem and will not scale
well to large-scale instances. Other algorithms proposed for overlapping group lasso penalties
[19, 20, 21] do not apply to our setting since the PNJGL formulation has a combination of Gaussian
log-likelihood loss (instead of squared error loss) and the RCON penalty along with a positive-
definite constraint. We also note that other first-order methods are not easily applied to solve the
PNJGL formulation because the subgradient of the RCON is not easy to compute and in addition
the proximal operator to RCON is non-trivial to compute.

In this section we present a fast and scalable alternating directions method of multipliers (ADMM)
algorithm [22] to solve the problem (7). We first reformulate (7) by introducing new variables, so
as to decouple some of the terms in the objective function that are difficult to optimize jointly. This
will result in a simple algorithm with closed-form updates. The reformulation is as follows:

minimize
Θ1∈Sp

++,Θ2∈Sp
++,Z1,Z2,V,W

−L(Θ1,Θ2) + λ1∥Z1∥1 + λ1∥Z2∥1 + λ2

p∑
j=1

∥Vj∥q

subject to Θ1 −Θ2 = V +W,V = WT ,Θ1 = Z1,Θ

2 = Z2. (8)

An ADMM algorithm can now be obtained in a standard fashion from the augmented Lagrangian
to (8). We defer the details to a longer version of this paper. The complete algorithm for (8) is given
in Algorithm 1, in which the operator Expand is given by

Expand(A, ρ, nk) = argmin
Θ∈Sp

++

{
−nk log det(Θ) + ρ∥Θ−A∥2F

}
=

1

2
U

(
D+

√
D2 +

2nk

ρ
I

)
UT ,

where UDUT is the eigenvalue decomposition of A, and as mentioned earlier, nk is the number of
observations in the kth class. The operator Tq is given by

Tq(A, λ) = argmin
X

1

2
∥X−A∥2F + λ

p∑
j=1

∥Xj∥q

 ,

and is also known as the proximal operator corresponding to the ℓ1/ℓq norm. For q = 1, 2,∞, Tq
takes a simple form, which we omit here due to space constraints. A description of these operators
can also be found in Section 5 of [25].

Algorithm 1 can be interpreted as an approximate dual gradient ascent method. The approximation
is due to the fact that the gradient of the dual to the augmented Lagrangian in each iteration is
computed inexactly, through a coordinate descent cycling through the primal variables.

Typically ADMM algorithms iterate over only two groups of primal variables. For such algorithms,
the convergence properties are well-known (see e.g. [22]). However, in our case we cycle through
more than two such groups. Although investigation of the convergence properties of ADMM algo-
rithms for an arbitrary number of groups is an ongoing research area in the optimization literature
[23, 24] and specific convergence results for our algorithm are not known, we empirically observe
very good convergence behavior. Further study of this issue is a direction for future work.

We initialize the primal variables to the identity matrix, and the dual variables to the matrix of zeros.
We set µ = 5, and tmax = 1000. In our implementation, the stopping criterion is that the difference
between consecutive iterates becomes smaller than a tolerance ϵ. The ADMM algorithm is orders
of magnitude faster than an interior point method and also comparable in accuracy. Note that the
per-iteration complexity of the ADMM algorithm is O(p3) (complexity of computing SVD). On
the other hand, the complexity of an interior point method is O(p6). When p = 30, the interior
point method (using cvx, which calls Sedumi) takes 7 minutes to run while ADMM takes only
10 seconds. When p = 50, the times are 3.5 hours and 2 minutes, respectively. Also, we observe
that the average error between the cvx and ADMM solution when averaged over many random
generations of the data is of O(10−4).

5

Algorithm 1: ADMM algorithm for the PNJGL optimization problem (7)
input: ρ > 0, µ > 1, tmax > 0, ϵ > 0;
for t = 1:tmax do

ρ← µρ ;
while Not converged do

Θ1 ← Expand
(

1
2 (Θ

2 +V +W + Z1)− 1
2ρ (Q1 + n1S1 + F), ρ, n1

)
;

Θ2 ← Expand
(

1
2 (Θ

1 − (V +W) + Z2)− 1
2ρ (Q2 + n2S2 − F), ρ, n2

)
;

Zi ← T1
(
Θi + Qi

ρ , λ1

ρ

)
for i = 1, 2 ;

V← Tq
(

1
2 (W

T −W + (Θ1 −Θ2)) + 1
2ρ (F−G), λ2

2ρ

)
;

W← 1
2 (V

T −V + (Θ1 −Θ2)) + 1
2ρ (F+GT) ;

F← F+ ρ(Θ1 −Θ2 − (V +W)) ;
G← G+ ρ(V −WT);
Qi ← Qi + ρ(Θi − Zi) for i = 1, 2

5 Experiments

We describe experiments and report results on both synthetically generated data and real data.

5.1 Synthetic experiments

Synthetic data generation. We generated two networks as follows. The networks share individual
edges as well as hub nodes, or nodes that are highly-connected to many other nodes. There are also
perturbed nodes that differ between the networks. We first create a p× p symmetric matrix A, with
diagonal elements equal to one. For i < j, we set

Aij ∼i.i.d.

{
0 with probability 0.98

Unif([−0.6,−0.3] ∪ [0.3, 0.6]) otherwise
,

and then we set Aji to equal Aij . Next, we randomly selected seven hub nodes, and set the elements
of the corresponding rows and columns to be i.i.d. from a Unif([−0.6,−0.3]∪[0.3, 0.6]) distribution.
These steps resulted in a background pattern of structure common to both networks. Next, we copied
A into two matrices, A1 and A2. We randomly selected m perturbed nodes that differ between A1

and A2, and set the elements of the corresponding row and column of either A1 or A2 (chosen at
random) to be i.i.d. draws from a Unif([−1.0,−0.5]∪ [0.5, 1.0]) distribution. Finally, we computed
c = min(λmin(A

1), λmin(A
2)), the smallest eigenvalue of A1 and A2. We then set (Σ1)−1 equal

to A1 + (0.1− c)I and set (Σ2)−1 equal to A2 + (0.1− c)I. This last step is performed in order to
ensure positive definiteness. We generated n independent observations each from a N(0,Σ1) and a
N(0,Σ2) distribution, and used these to compute the empirical covariance matrices S1 and S2. We
compared the performances of graphical lasso, FGL, and PNJGL with q = 2 with p = 100, m = 2,
and n = {10, 25, 50, 200}.

Results. Results (averaged over 100 iterations) are shown in Figure 3. Increasing n yields more
accurate results for PNJGL with q = 2, FGL, and graphical lasso. Furthermore, PNJGL with q = 2
identifies non-zero edges and differing edges much more accurately than does FGL, which is in turn
more accurate than graphical lasso. PNJGL also leads to the most accurate estimates of Θ1 and Θ2.
The extent to which PNJGL with q = 2 outperforms others is more apparent when n is small.

5.2 Inferring biological networks

We applied the PNJGL method to a recently-published cancer gene expression data set [26], with
mRNA expression measurements for 11,861 genes in 220 patients with glioblastoma multiforme
(GBM), a brain cancer. Each patient has one of four distinct clinical subtypes: Proneural, Neural,
Classical, and Mesenchymal. We selected two subtypes – Proneural (53 patients) and Mesenchymal

6

Figure 3: Simulation study results for PNJGL with q = 2, FGL, and the graphical lasso (GL),
for (a) n = 10, (b) n = 25, (c) n = 50, (d) n = 200, when p = 100. Within each panel,
each line corresponds to a fixed value of λ2 (for PNJGL with q = 2 and for FGL). Each plot’s
x-axis denotes the number of edges estimated to be non-zero. The y-axes are as follows. Left:
Number of edges correctly estimated to be non-zero. Center: Number of edges correctly estimated
to differ across networks, divided by the number of edges estimated to differ across networks. Right:
The Frobenius norm of the error in the estimated precision matrices, i.e. (

∑
i̸=j(θ

1
ij − θ̂1ij)

2)
1/2

+

(
∑

i̸=j(θ
2
ij − θ̂2ij)

2)
1/2

.

(56 patients) – for our analysis. In this experiment, we aim to reconstruct the gene regulatory
networks of the two subtypes, as well as to identify genes whose interactions with other genes vary
significantly between the subtypes. Such genes are likely to have many somatic (cancer-specific)
mutations. Understanding the molecular basis of these subtypes will lead to better understanding of
brain cancer, and eventually, improved patient treatment. We selected the 250 genes with the highest
within-subtype variance, as well as 10 genes known to be frequently mutated across the four GBM
subtypes [26]: TP53, PTEN, NF1, EGFR, IDH1, PIK3R1, RB1, ERBB2, PIK3CA, PDGFRA. Two
of these genes (EGFR, PDGFRA) were in the initial list of 250 genes selected based on the within-
subtype variance. This led to a total of 258 genes. We then applied PNJGL with q = 2 and FGL
to the resulting 53 × 258 and 56 × 258 gene expression datasets, after standardizing each gene to
have variance one. Tuning parameters were selected so that each approach results in a per-network
estimate of approximately 6,000 non-zero edges, as well as approximately 4,000 edges that differ

7

across the two network estimates. However, the results that follow persisted across a wide range of
tuning parameter values.

Figure 4: PNJGL with q = 2 and FGL were performed on the brain cancer data set corresponding
to 258 genes in patients with Proneural and Mesenchymal subtypes. (a)-(b): NPj is plotted for each
gene, based on (a) the FGL estimates and (b) the PNJGL estimates. (c)-(d): A heatmap of Θ̂1− Θ̂2

is shown for (c) FGL and (d) PNJGL; zero values are in white, and non-zero values are in black.

We quantify the extent of node perturbation (NP) in the network estimates as follows: NPj =∑
i |Vij |; for FGL we get V from the PNJGL formulation as 1

2 (Θ̂
1−Θ̂2). If NPj = 0 (using a zero-

threshold of 10−6), then the jth gene has the same edge weights in the two conditions. In Figure 4(a)-
(b), we plotted the resulting values for each of the 258 genes in FGL and PNJGL. Although the
network estimates resulting from PNJGL and FGL have approximately the same number of edges
that differ across cancer subtypes, PNJGL results in estimates in which only 37 genes appear to have
node perturbation. FGL results in estimates in which all 258 genes appear to have node perturbation.
In Figure 4(c)-(d), the non-zero elements of Θ̂1−Θ̂2 for FGL and for PNJGL are displayed. Clearly,
the pattern of network differences resulting from PNJGL is far more structured. The genes known
to be frequently mutated across GBM subtypes are somewhat enriched out of those that appear to be
perturbed according to the PNJGL estimates (3 out of 10 mutated genes were detected by PNJGL; 37
out of 258 total genes were detected by PNJGL; hypergeometric p-value = 0.1594). In contrast, FGL
detects every gene as having node perturbation (Figure 4(a)). The gene with the highest NPj value
(according to both FGL and PNJGL with q = 2) is CXCL13, a small cytokine that belongs to the
CXC chemokine family. Together with its receptor CXCR5, it controls the organization of B-cells
within follicles of lymphoid tissues. This gene was not identified as a frequently mutated gene in
GBM [26]. However, there is recent evidence that CXCL13 plays a critical role in driving cancerous
pathways in breast, prostate, and ovarian tissue [27, 28]. Our results suggest the possibility of a
previously unknown role of CXCL13 in brain cancer.

6 Discussion and future work

We have proposed the perturbed-node joint graphical lasso, a new approach for jointly learning
Gaussian graphical models under the assumption that network differences result from node pertur-
bations. We impose this structure using a novel RCON penalty, which encourages the differences
between the estimated networks to be the union of just a few rows and columns. We solve the result-
ing convex optimization problem using ADMM, which is more efficient and scalable than standard
interior point methods. Our proposed approach leads to far better performance on synthetic data
than two alternative approaches: learning Gaussian graphical models assuming edge perturbation
[13], or simply learning each model separately. Future work will involve other forms of structured
sparsity beyond simply node perturbation. For instance, if certain subnetworks are known a priori
to be related to the conditions under study, then the RCON penalty can be modified in order to en-
courage some subnetworks to be perturbed across the conditions. In addition, the ADMM algorithm
described in this paper requires computation of the eigen decomposition of a p × p matrix at each
iteration; we plan to develop computational improvements that mirror recent results on related prob-
lems in order to reduce the computations involved in solving the FGL optimization problem [6, 13].

Acknowledgments D.W. was supported by NIH Grant DP5OD009145, M.F. was supported in part
by NSF grant ECCS-0847077.

8

References
[1] K.V. Mardia, J. Kent, and J.M. Bibby. Multivariate Analysis. Academic Press, 1979.

[2] S.L. Lauritzen. Graphical Models. Oxford Science Publications, 1996.

[3] M. Yuan and Y. Lin. Model selection and estimation in the Gaussian graphical model. Biometrika,
94(10):19–35, 2007.

[4] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso.
Biostatistics, 9:432–441, 2007.

[5] O. Banerjee, L. E. El Ghaoui, and A. d’Aspremont. Model selection through sparse maximum likelihood
estimation for multivariate Gaussian or binary data. JMLR, 9:485–516, 2008.

[6] D.M. Witten, J.H. Friedman, and N. Simon. New insights and faster computations for the graphical lasso.
Journal of Computational and Graphical Statistics, 20(4):892–900, 2011.

[7] K. Scheinberg, S. Ma, and D. Goldfarb. Sparse inverse covariance selection via alternating linearization
methods. Advances in Neural Information Processing Systems, 2010.

[8] P. Ravikumar, M.J. Wainwright, G. Raskutti, and B. Yu. Model selection in gaussian graphical models:
high-dimensional consistency of l1-regularized MLE. Advances in NIPS, 2008.

[9] C.J. Hsieh, M. Sustik, I. Dhillon, and P. Ravikumar. Sparse inverse covariance estimation using quadratic
approximation. Advances in Neural Information Processing Systems, 2011.

[10] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society,
Series B, 58:267–288, 1996.

[11] A. D’Aspremont, O. Banerjee, and L. El Ghaoui. First-order methods for sparse covariance selection.
SIAM Journal on Matrix Analysis and Applications, 30(1):56–66, 2008.

[12] J. Guo, E. Levina, G. Michailidis, and J. Zhu. Joint estimation of multiple graphical models. Biometrika,
98(1):1–15, 2011.

[13] P. Danaher, P. Wang, and D. Witten. The joint graphical lasso for inverse covariance estimation across
multiple classes, 2012. http://arxiv.org/abs/1111.0324.

[14] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via the fused lasso.
Journal of the Royal Statistical Society, Series B, 67:91–108, 2005.

[15] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the
Royal Statistical Society, Series B, 68:49–67, 2007.

[16] L. Jacob, G. Obozinski, and J.P. Vert. Group lasso with overlap and graph lasso. Proceedings of the 26th
International Conference on Machine Learning, 2009.

[17] G. Obozinski, L. Jacob, and J.P. Vert. Group lasso with overlaps: the latent group lasso approach. 2011.
http://arxiv.org/abs/1110.0413.

[18] M. Grant and S. Boyd. cvx version 1.21. ”http://cvxr.com/cvx”, October 2010.

[19] A. Argyriou, C.A. Micchelli, and M. Pontil. Efficient first order methods for linear composite regularizers.
2011. http://arxiv.org/pdf/1104.1436.

[20] X. Chen, Q. Lin, S. Kim, J.G. Carbonell, and E.P. Xing. Smoothing proximal gradient method for general
structured sparse learning. Proceedings of the conference on Uncertainty in Artificial Intelligence, 2011.

[21] S. Mosci, S. Villa, A. Verri, and L. Rosasco. A primal-dual algorithm for group sparse regularization with
overlapping groups. Neural Information Processing Systems, pages 2604 – 2612, 2010.

[22] S.P. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning
via the alternating direction method of multipliers. Foundations and Trends in ML, 3(1):1–122, 2010.

[23] M. Hong and Z. Luo. On the linear convergence of the alternating direction method of multipliers. 2012.
Available at arxiv.org/abs/1208.3922.

[24] B. He, M. Tao, and X. Yuan. Alternating direction method with gaussian back substitution for separable
convex programming. SIAM Journal of Optimization, pages 313 – 340, 2012.

[25] J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. Journal of
Machine Learning Research, pages 2899 – 2934, 2009.

[26] Verhaak et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma charac-
terized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 17(1):98–110, 2010.

[27] Grosso et al. Chemokine CXCL13 is overexpressed in the tumour tissue and in the peripheral blood of
breast cancer patients. British Journal Cancer, 99(6):930–938, 2008.

[28] El-Haibi et al. CXCL13-CXCR5 interactions support prostate cancer cell migration and invasion in a
PI3K p110-, SRC- and FAK-dependent fashion. The Journal of Immunology, 15(19):5968–73, 2009.

9

