Alpha-Beta Community

Supasorn Suwajanakorn

March 15, 2010

Supasorn Suwajanakorn ()

Alpha-Beta Community

March 15, 2010 1 / 19

▲ 同 ▶ → 三 ▶

э

Definition from Nina's paper

Definition 1. Given a graph G = (V, E), where every vertex has a self-loop $C \subset V$ is an (α, β) -cluster if

- 1) Internally Dense $\forall v \in C, |E(v, C)| \geq \beta |C|$
- 2) Externally Sparse $\forall u \in V \setminus C, |E(u, C)| \leq \alpha |C|$

- 4 同 6 4 日 6 4 日 6

Example of (alpha = 0.5, beta = 0.75)-cluster

Supasorn Suwajanakorn ()

Alpha-Beta Community

March 15, 2010 3 / 19

3

<ロ> (日) (日) (日) (日) (日)

Our modified definition

Definition 2. Given a graph G = (V, E), where every vertex has a self-loop $C \subset V$

1)
$$\forall v \in C, \beta(v) = |E(v, C)|$$

2) $\forall v \notin C, \alpha(v) = |E(v, C)|$
3) $\beta(C) = \min_{v \in C} \beta(v)$
4) $\alpha(C) = \max_{v \notin C} \alpha(v)$

* Definition 1 uses α, β as a fraction of C

* Definition 2 uses α, β as a number of vertices in C

Example of (alpha = 0.5, beta = 0.75)-cluster

- 2

イロン イヨン イヨン イヨン

Trivial community

We're only interested in large size communities.

► < Ξ ►</p>

Our goal

We want to find a non-trivial (α, β) community such that $\beta > \alpha$.

(二)、

Proof of existence of non-trivial community

Proof: Given a graph G = (V, E). Let K = V and we repeatedly remove a vertex with lowest beta value from K. Let r_1 be the first vertex removed from K whose $\beta(r_1) = \rho$. Once r_1 is removed, $\alpha(r_1) = \rho - 1$ since its self-loop is no longer counted. Suppose K is still not a community i.e. $\alpha(K) = \rho - 1 = \beta(K)$, then r_1 must be connected to a vertex r_2 and removal of r_1 must have decreased $\beta(r_2)$ by one.

If r_i will be removed from K by the algorithm, $\beta(r_i)$ before removal needs to equal $\rho - (i - 1)$ which implies r_i has initial beta value ρ and is connected to all $r_1, r_2, \ldots, r_{i-1}$ already outside K. (By induction) if the last r_n , where n = |V|, is removed from K, all of the removed vertices r_1, r_2, \ldots, r_n form a clique.

Swapping-Algorithm

C = SWAPPING(G = (V, E), C)while $\beta(C) < \alpha(C)$ 1 2 $a \leftarrow a \notin C$ whose $\alpha(a)$ is maximum 3 $b \leftarrow b \in C$ whose $\beta(b)$ is minimum 4 $C \leftarrow (C - \{b\}) \cup \{a\}$ 5 return C

Claim 1. In the swapping algorithm, $\sum_{v \in C} \beta(v)$ is strictly increasing **Claim 2.** The swapping algorithm always terminates and swapping any pair of vertices will not further increase $\sum_{v \in C} \beta(v)$.

Claim 3. The swapping algorithm returns C where $\beta(C) \ge \alpha(C)$.

Swapping-Algorithm: $(a, b) \notin E$

 $\alpha(a) = 3, \beta(b) = 2$

If
$$(a, b) \notin E$$
, $\sum_{v \in C} \beta(v)$ increases by
 $2\alpha(a) + 1 - (2\beta(b) - 1) = 2(\alpha(a) - \beta(b)) + 2$

Swapping-Algorithm: $(a, b) \in E$

 $\alpha(a) = 4, \beta(b) = 2$

If
$$(a, b) \in E$$
, $\sum_{v \in C} \beta(v)$ increases by
 $2\alpha(a) - 1 - (2\beta(b) - 1) = 2(\alpha(a) - \beta(b))$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Swapping-Algorithm

If
$$(a, b) \notin E$$
, $\sum_{v \in C} \beta(v)$ increases by $2(\alpha(a) - \beta(b)) + 2$
If $(a, b) \in E$, $\sum_{v \in C} \beta(v)$ increases by $2(\alpha(a) - \beta(b))$
 $\sum_{v \in C} \beta(v)$ will always increase if
 $(a, b) \notin E \land \alpha(a) \ge \beta(b)$ or
 $(a, b) \in E \land \alpha(a) > \beta(b)$

Let A be the set of highest-alpha vertices not in CLet B be the set of lowest-beta vertices in C

This implies that at the end of *Swapping* algorithm, $\beta(C) > \alpha(C)$ or $\beta(C) = \alpha(C)$ and the edges between A and B form a **biclique**.

Community-Algorithm

C = COMMUNITY(G = (V, E)) $C \leftarrow$ any subset of V of constant size 1 2while $\beta(C) < \alpha(C)$ 3 $C \leftarrow \text{SWAPPINGALGORITHM}(G, C)$ if $\beta(C) > \alpha(C)$ then 4 5return C6 $A \leftarrow$ set of highest-alpha vertices not in C 7 $B \leftarrow$ set of lowest-beta vertices in C 8 if |A| = 1 then return $C \cup A$ 9 10if there exists $a_i \in A$ s.t. $(a_i, a_j) \notin E$ for all $a_i \in A$ then 11 return $C \cup \{a_i\}$ 12else 13 $(a_i, a_k) \leftarrow$ any edge $(a_i, a_k) \in E$ s.t. $a_i, a_k \in A$ $C \leftarrow C \cup \{a_i, a_k\}$ 14 if $\beta(C) \leq \alpha(C)$ then 1516 $v \leftarrow$ any vertex $v \in \alpha(C)$ s.t $(v, a_i) \in E$ or $(v, a_k) \in E$ 17 $C \leftarrow C \cup \{v\}$ 1819return C

Community-Algorithm

C = COMMUNITY(G = (V, E)) $C \leftarrow$ any subset of V of constant size while $\beta(C) < \alpha(C)$ 2 $C \leftarrow \text{SwappingAlgorithm}(G, C)$ 3 if $\beta(C) > \alpha(C)$ then 4 return C5 $A \leftarrow$ set of highest-alpha vertices no 6 7 $B \leftarrow$ set of lowest-beta vertices in (8 if |A| = 1 then 9 return $C \cup A$ 10 if there exists $a_i \in A$ s.t. $(a_i, a_j) \notin$ 11 return $C \cup \{a_i\}$ else 12 13 $(a_i, a_k) \leftarrow$ any edge $(a_i, a_k) \in$ $C \leftarrow C \cup \{a_i, a_k\}$ 14 15if $\beta(C) \leq \alpha(C)$ then 16 $v \leftarrow$ any vertex $v \in \alpha(C)$ s. 17 $C \leftarrow C \cup \{v\}$ 18 19 return C

イロト イポト イヨト イヨト

Community-Algorithm

Problem

э

・ロン ・四 ・ ・ ヨン ・ ヨン

Our work

Convergence For 6-regular degree graph, we can prove termination.

Proof: Consider $d|C| - \sum_{v \in C} \beta(v)$ where *d* is the number of highest degree in the graph. If we add 3 vertices to *C*, $\sum_{v \in C} \beta(v)$ will increase by $6\alpha + 7$. Since $\alpha \ge 2$, $d|C| - \sum_{v \in C} \beta(v)$ will decrease by at least d(3) - (6(2) + 7). If $d \le 6$, $d(3) - (6(2) + 7) \le -1$. Therefore, $d|C| - \sum_{v \in C} \beta(v)$ will eventually reach 0.

We need a prove of convergence for any graph whose d > 6.

Prof. Hopcroft's experiments

Random graph In a random regular-degree graph (d/|V| = [0.02, 0.04]), there are an enormous number of communities.

Real graph In a real graph with two strongly-knit core clusters, the algorithm terminates in most cases and returns a community concentrated around the cores but in a few cases, found a biclique. Additionally, the cores contain many smaller communities that satisfy $\beta > \alpha$.

Constructed graph In a graph where there are 3 strongly-knit clusters connected to each other by a few edges, if we start with random initial vertices, the algorithm returns a community with an approximately equal number of vertices from the 3 clusters.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Future work

More strict definition to prevent disjoint components, increase gap between β and α , expand smaller community to its super-set community Alternative definition to better represent communities in real graphs **Proof of convergence** for the algorithm for any kind of graph