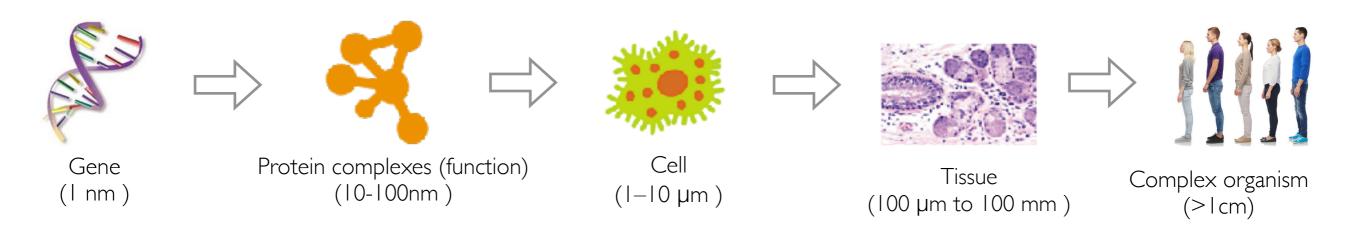
CSE 427 Computational Biology

Lecture I: Introduction

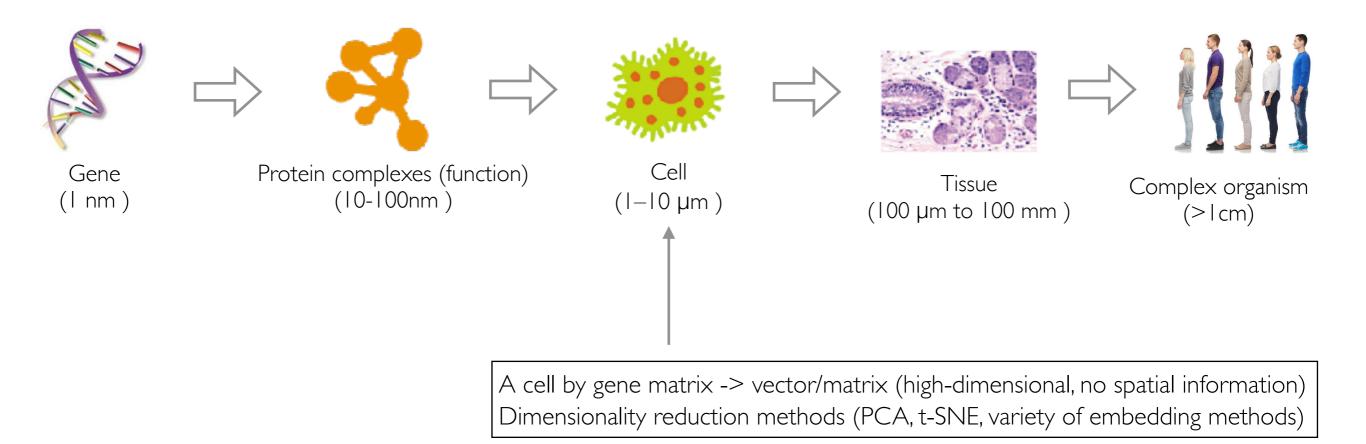
CSE427: Computational methods for biology at different scales



A rich hierarchy of biological subsystems at multiple scales: genotypic variations in nucleotides (1 nm scale) -> proteins (1–10 nm) -> protein complexes (10–100 nm), cellular processes (100 nm) -> phenotypic behaviors of cells (1–10 μ m), tissues (100 μ m to 100 mm), -> complex organisms (>1 m).

source: Yu, Michael Ku, et al. "Translation of genotype to phenotype by a hierarchy of cell subsystems." *Cell systems* 2.2 (2016): 77-88.

Data structure for each scale: cell

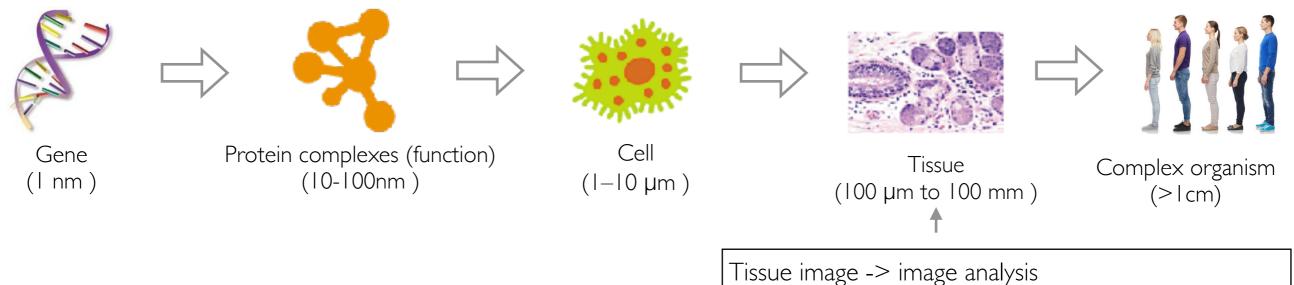


High-dimensional, noisy, large-scale

Single cell RNA sequencing (scRNA-seq)

- What is scRNA-seq?
 - A technique that can measure the gene expression vector of each cell
- What is the data structure?
 - A 2D array. Rows are cells. Columns are genes.
 - Lots of rows (millions of cells)
 - ~20k columns for human
- Analogy in other applications?
- What is the research question here?
 - Machine learning: dimensionality reduction, clustering, classification.

Data structure for each scale: tissue

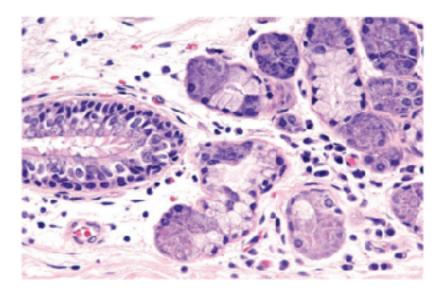


I issue image -> image analysis Image analysis (segmentation, detection, CNN)

Image analysis, lack of high-quality annotations

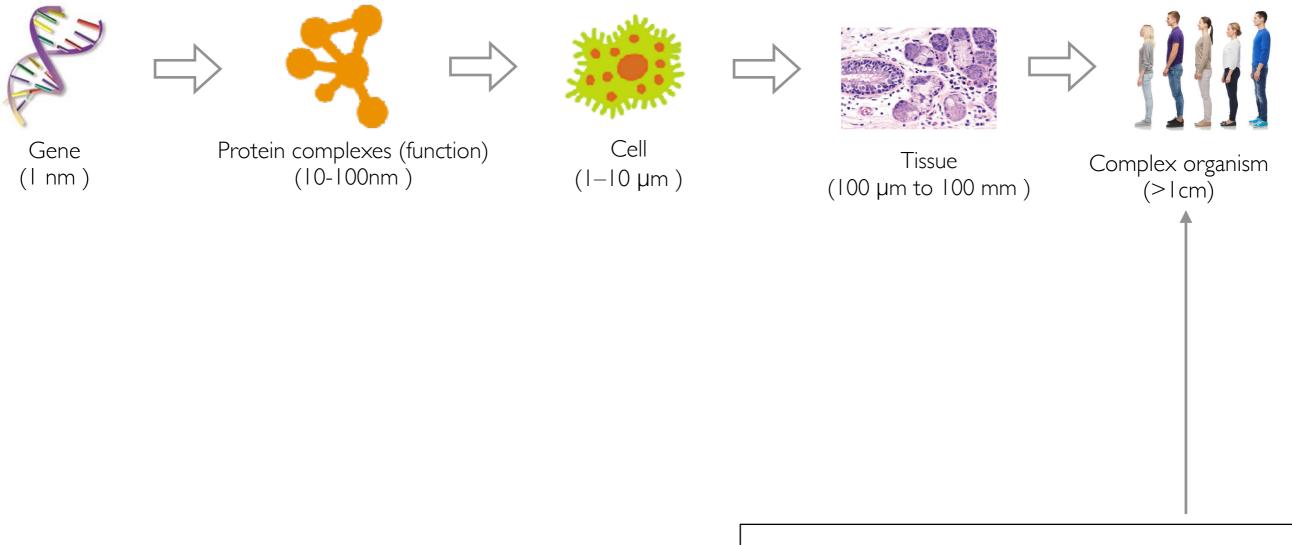
Medical imaging technology

- What is the data structure?
 - One image for a small part of the tissue
- Analogy in other applications?
 - Image analysis
- What is the research question here?
 - Machine learning: image segmentation (which region is tumor), image classification (tumor v.s. healthy)



Tumor tissue image

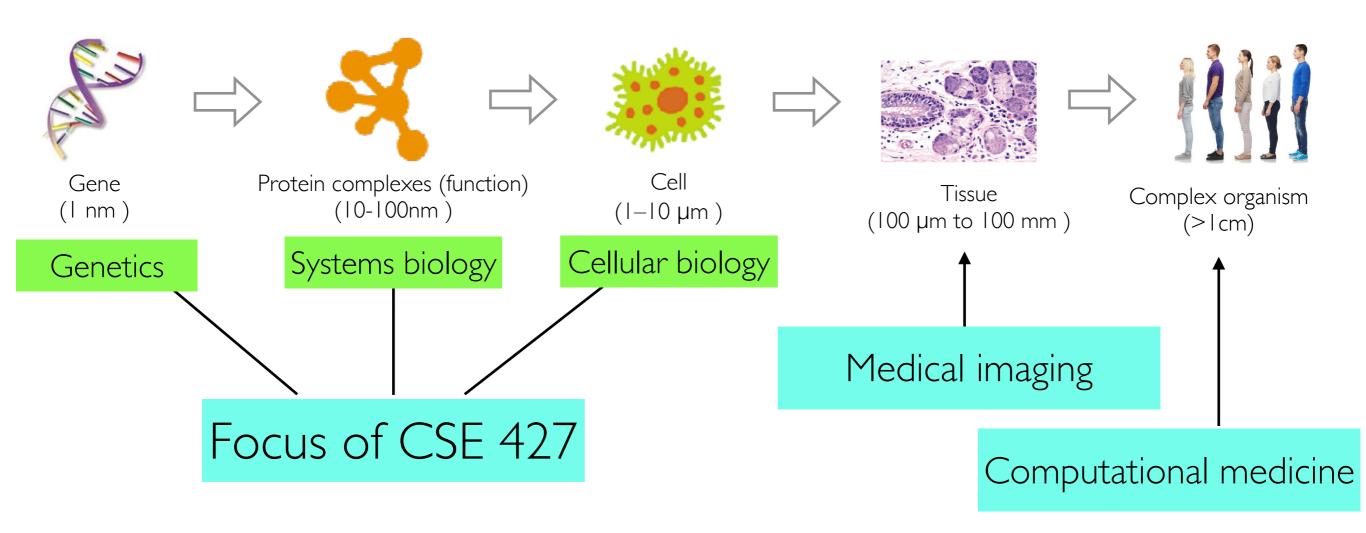
Data structure for each scale: organism



Disease mechanisms -> Multimodality Integration of information from sequences, networks, images and matrixes

Multi-modality and heterogeneous

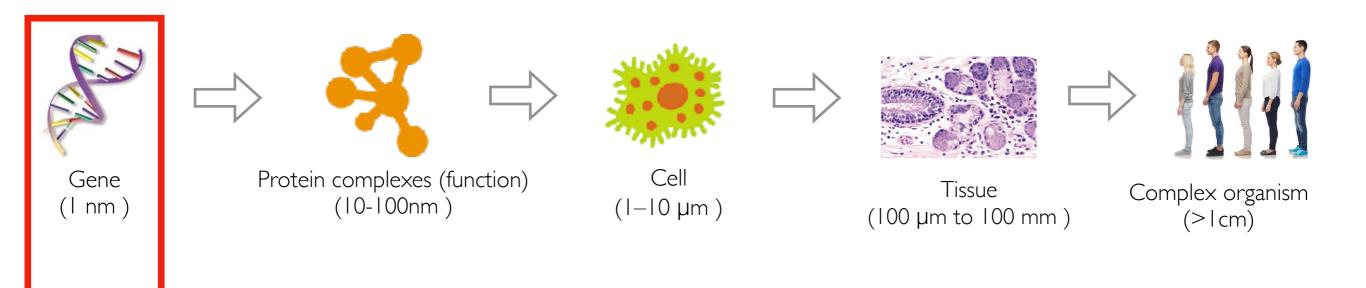
Computational methods for biology at different scales



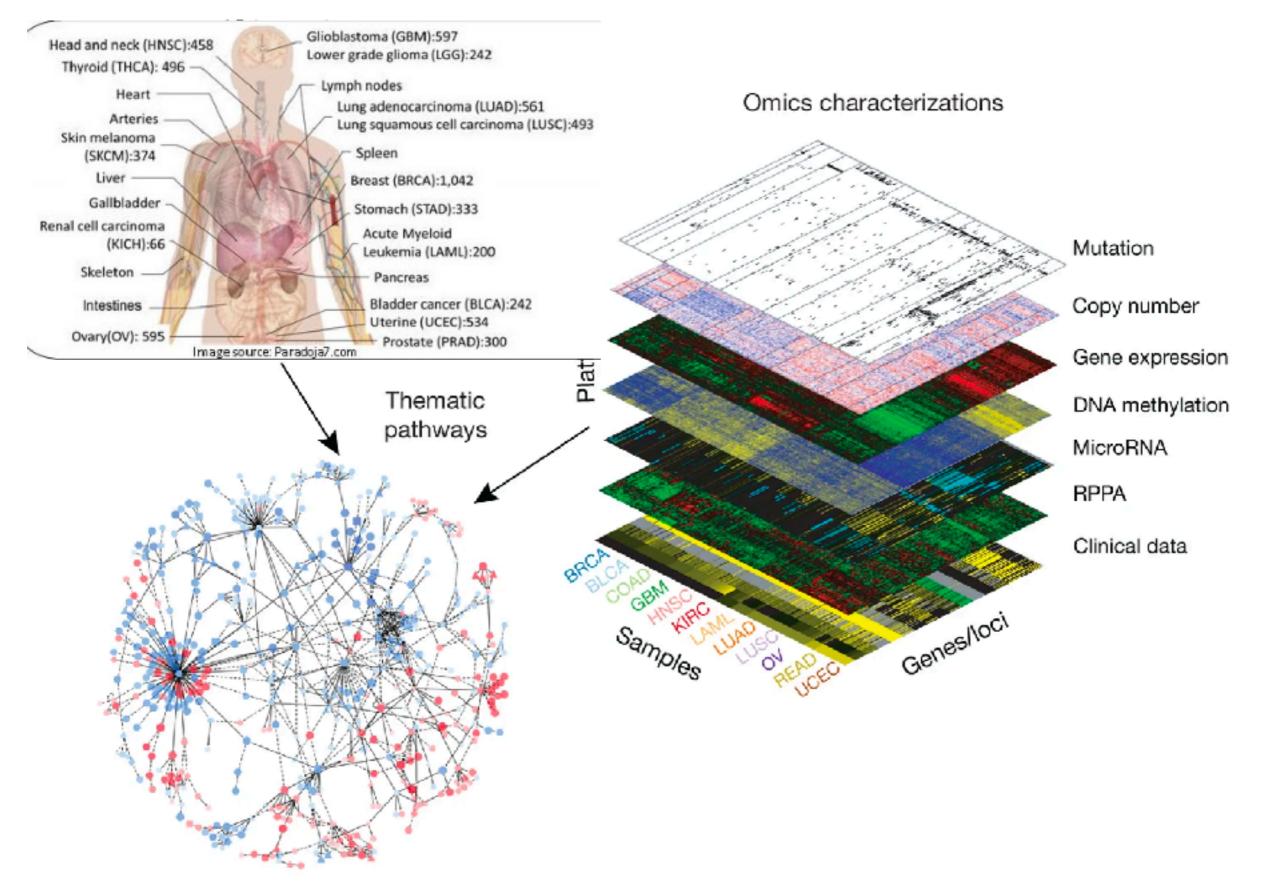
Real world research question: how to measure the similarity between two patients

- We will have
 - DNA sequences of these two persons
 - A protein-protein interaction network
 - Gene expression matrix of cells in each person
 - Tissue image
 - Other datasets...
- Which of these data should we use?
- How should we integrate these multiple datasets?

Computational methods for biology at different scales



A concrete example: The Cancer Genome Atlas Program



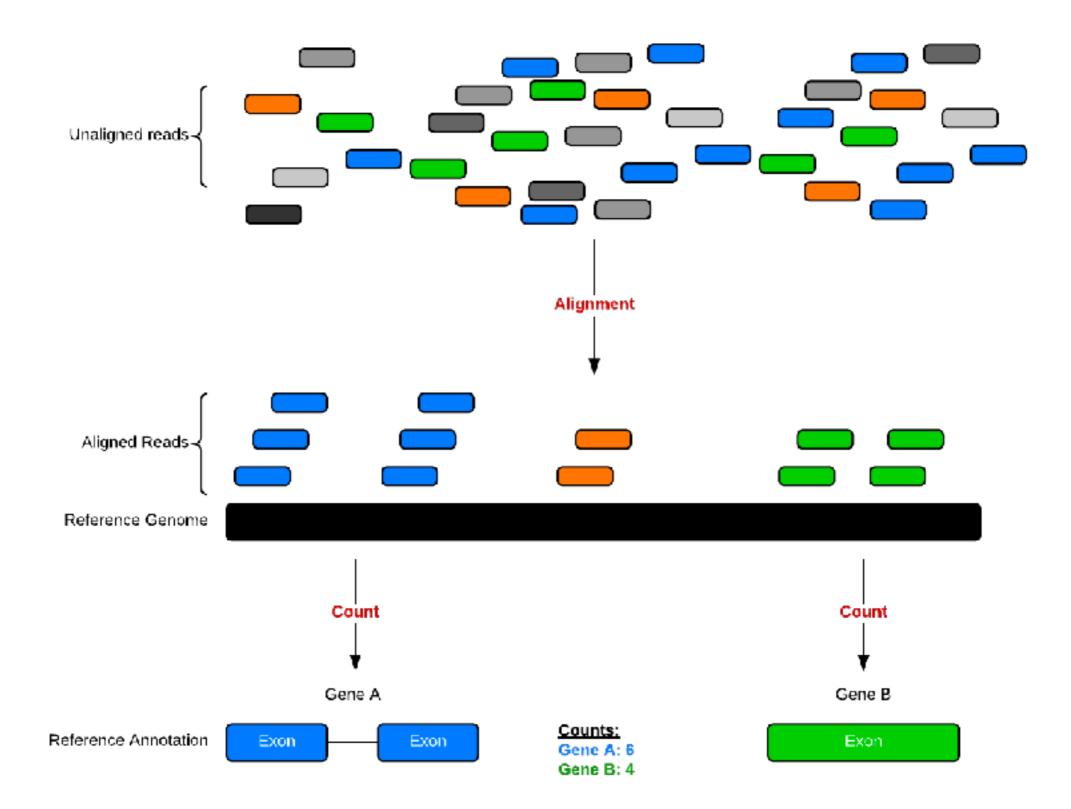
DNA sample analysis by 23andMe

DNA sample

How did they do this?

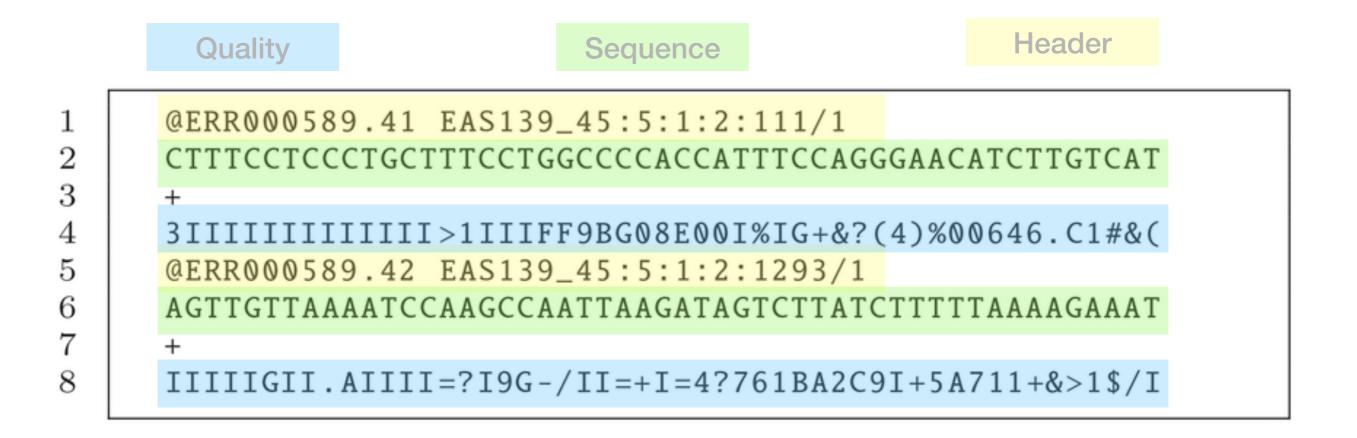
Our job as a computer scientist: analyze *.fastq file

Process raw data using sequence alignment (dynamic programming)



source: https://bioconnector.github.io/bims8382/r-rnaseq-airway.html

What does a fastq file look like?



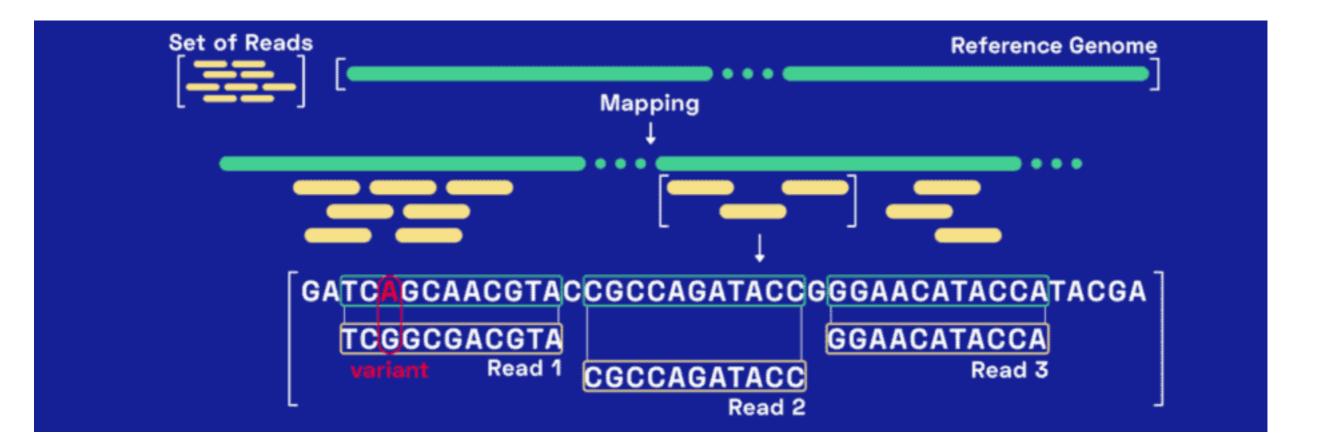
Very large! ~30000000 lines Quality: ASCII chars

What should we do? Map each short sequence (we call it read) to the entire human genome

What does a fastq file look like?

Reference genome: "average" human genome.

Most widely used human genome GRCh38: derived from 13 thirteen anonymous volunteers



Processed data

countData

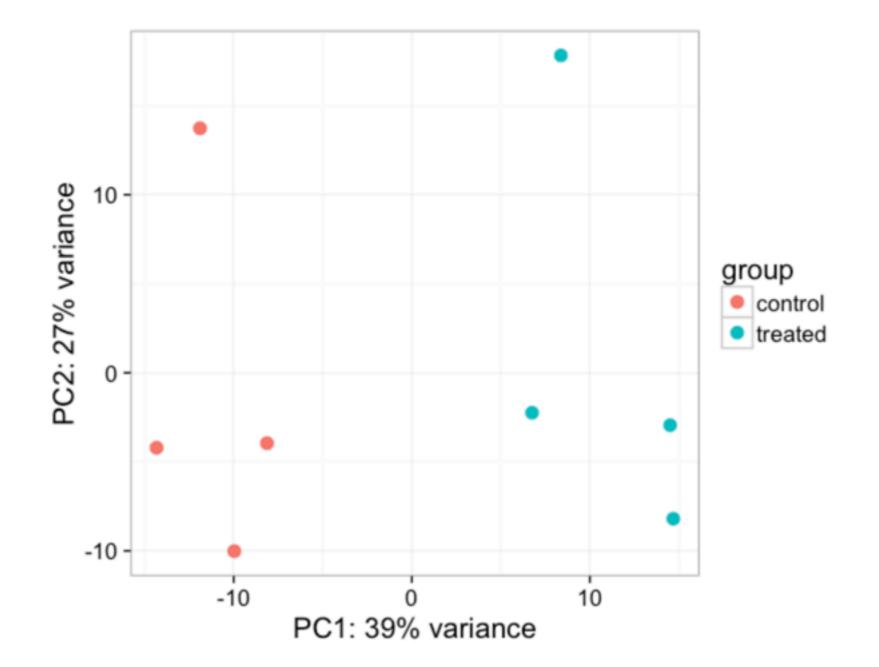
	ctrl_1	ctrl_2	exp_1	exp_1
geneA	10	11	56	45
geneB	0	0	128	54
geneC	42	41	59	41
geneD	103	122	1	23
geneE	10	23	14	56
geneF	0	1	2	0

colData

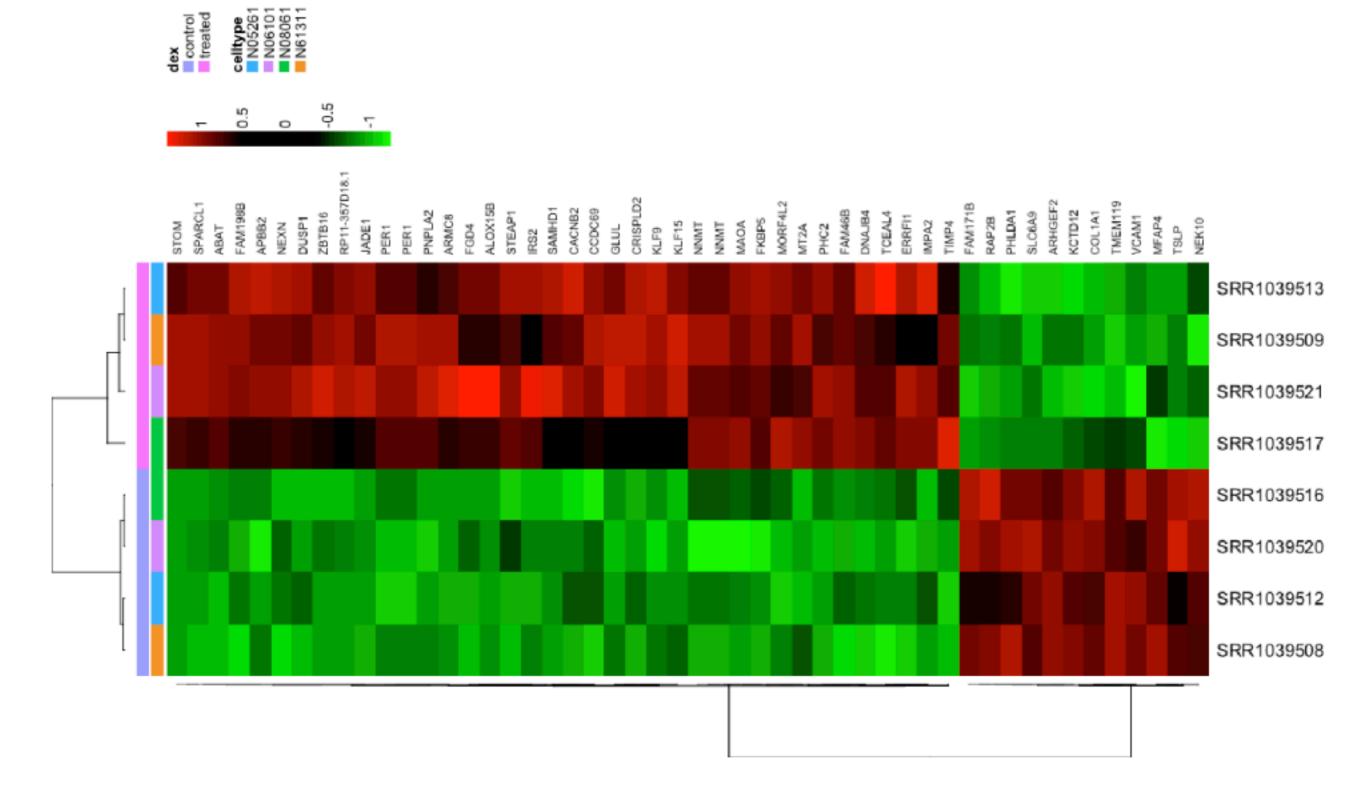
	treatment	sex
ctrl_1	control	male
ctrl_2	control	female
exp_1	treatment	male
exp_2	treatment	female

Sample names: ctrl_1, ctrl_2, exp_1, exp_2

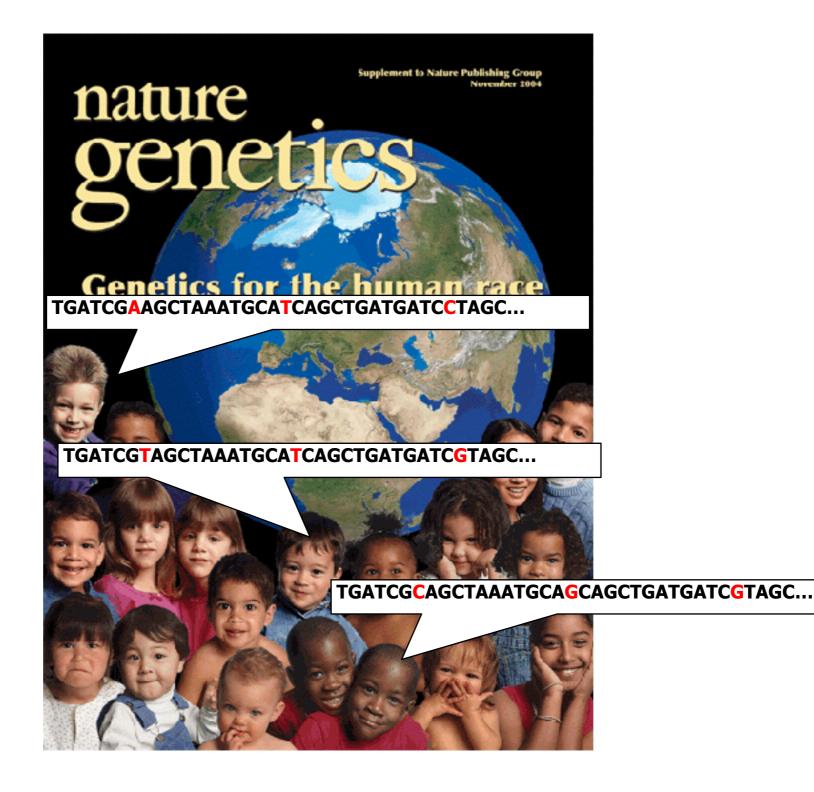
Clustering analysis using dimensionality reduction



Heatmap for visualization

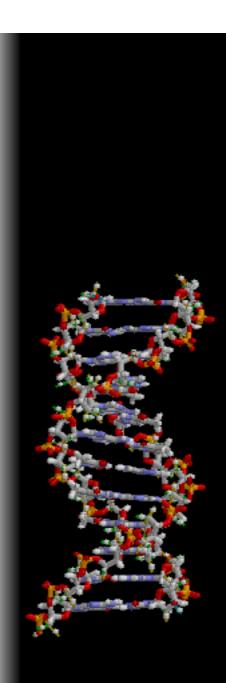


Each individual has a slightly different version of the DNA sequence



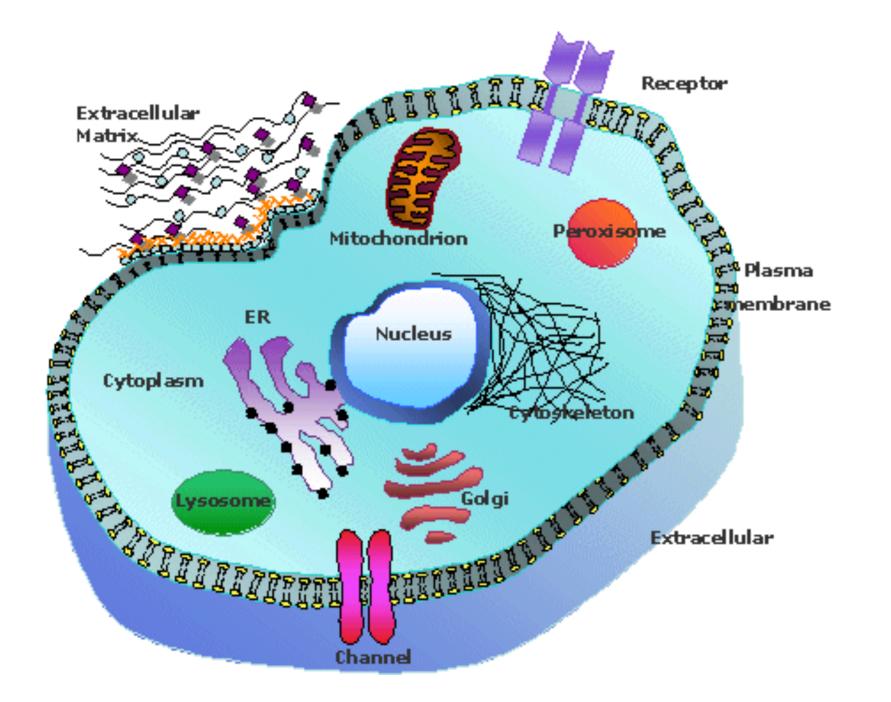
DNA: "Blueprints" for a cell

- Genetic information encoded in long strings of double-stranded DNA (Deoxyribo Nucleic Acid)
- DNA comes in only four flavors: Adenine, Cytosine, Guanine, Thymine
 - In human, DNA is a 3 billion-long string of As, Cs, Gs and Ts
- DNA acts as the "brain" of the cell, telling the cell how to properly grow and work



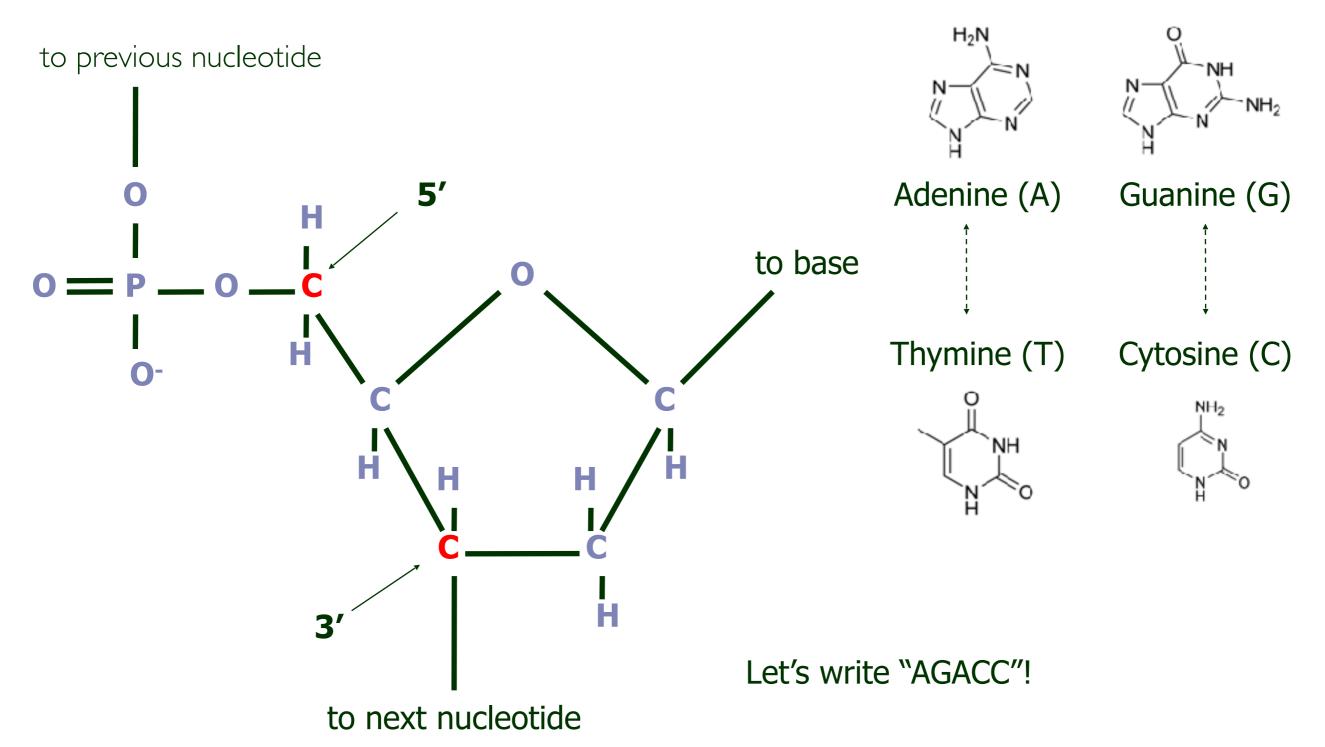
Cell

Cell, nucleus, cytoplasm, mitochondrion

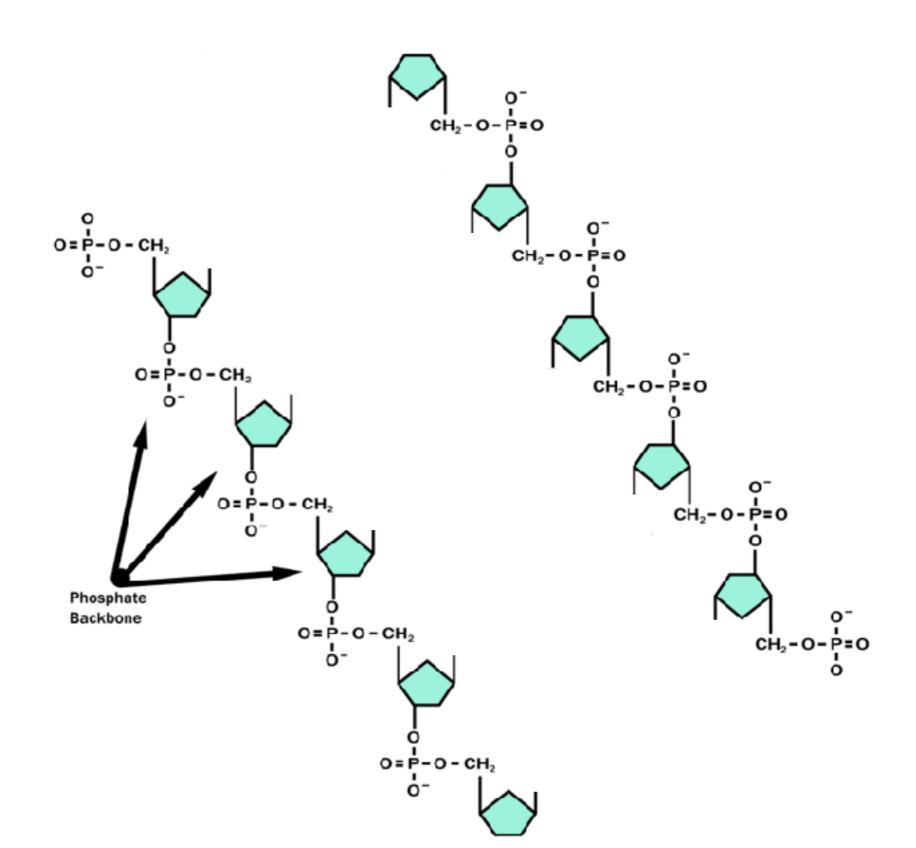


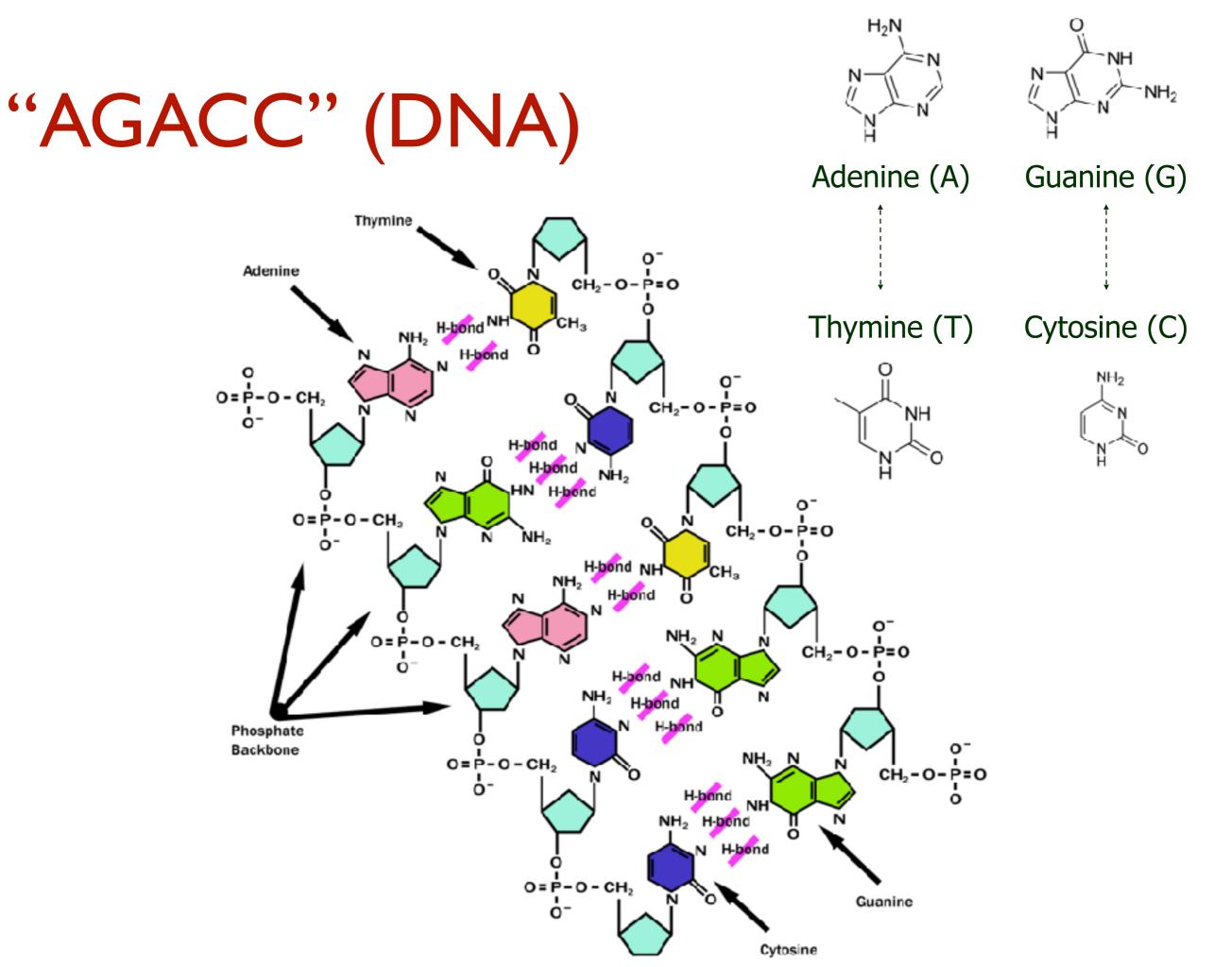
Nucleotide

Nucleotide, base, A, C, G, T, 3', 5'



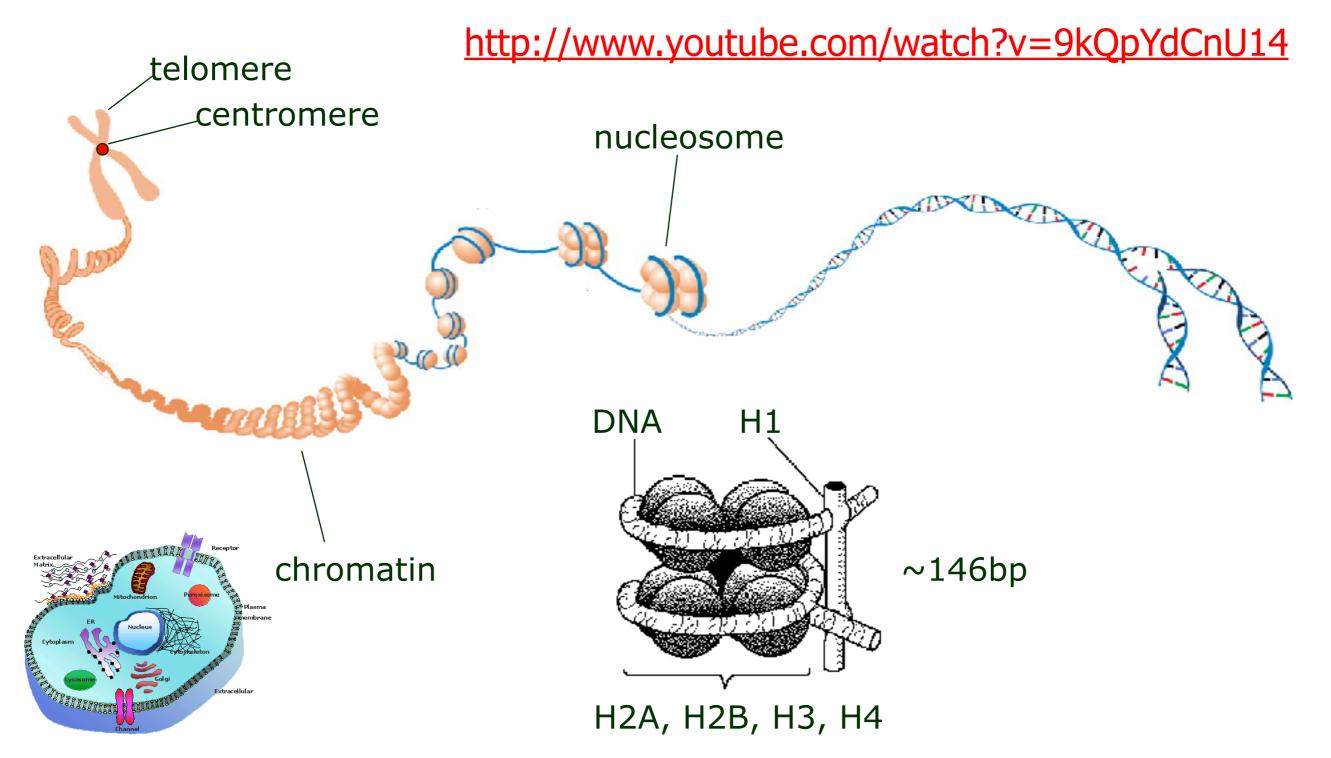
"AGACC" (backbone)



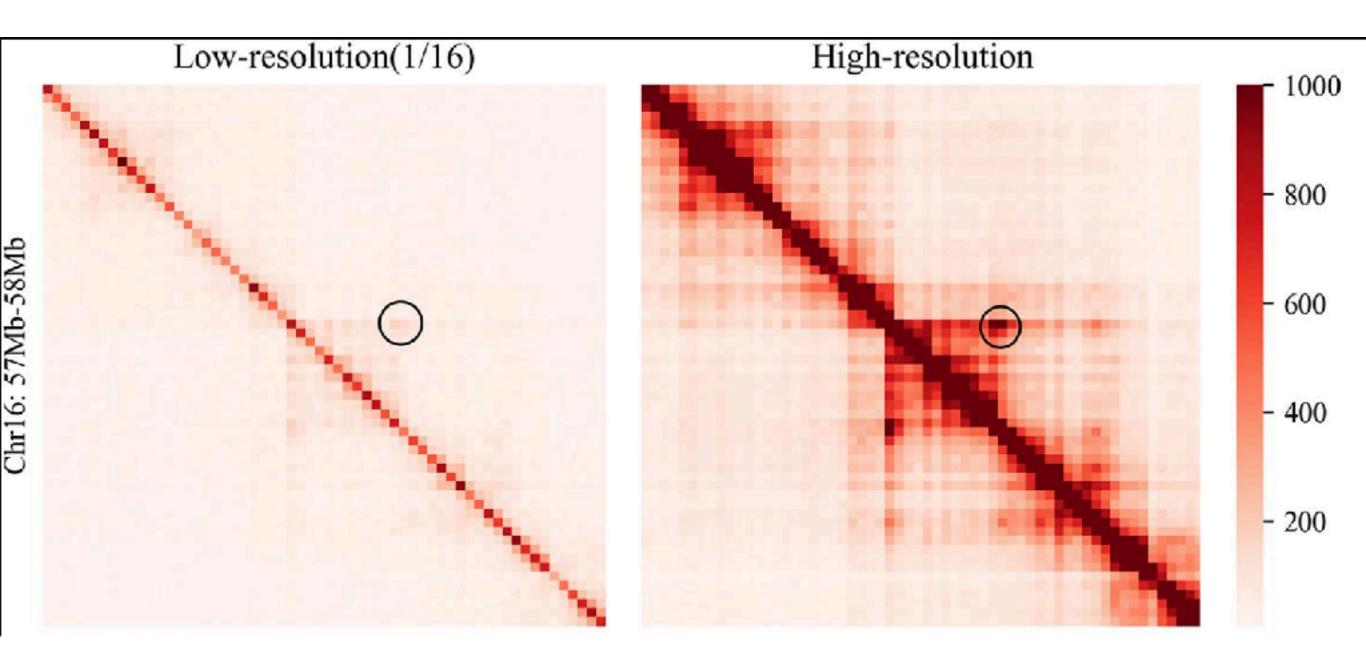


DNA packaging (DNA is 6 feet long!)

Histone, nucleosome, chromatin, chromosome, centromere, telomere

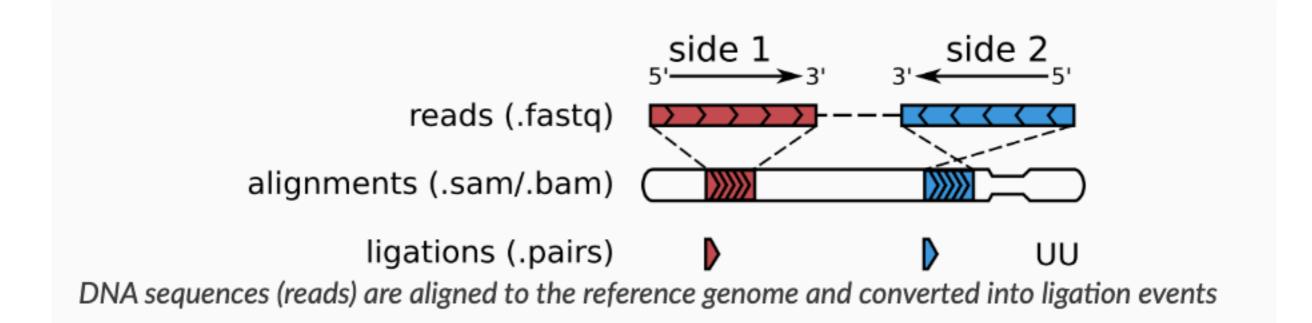


Data structure and computational problem



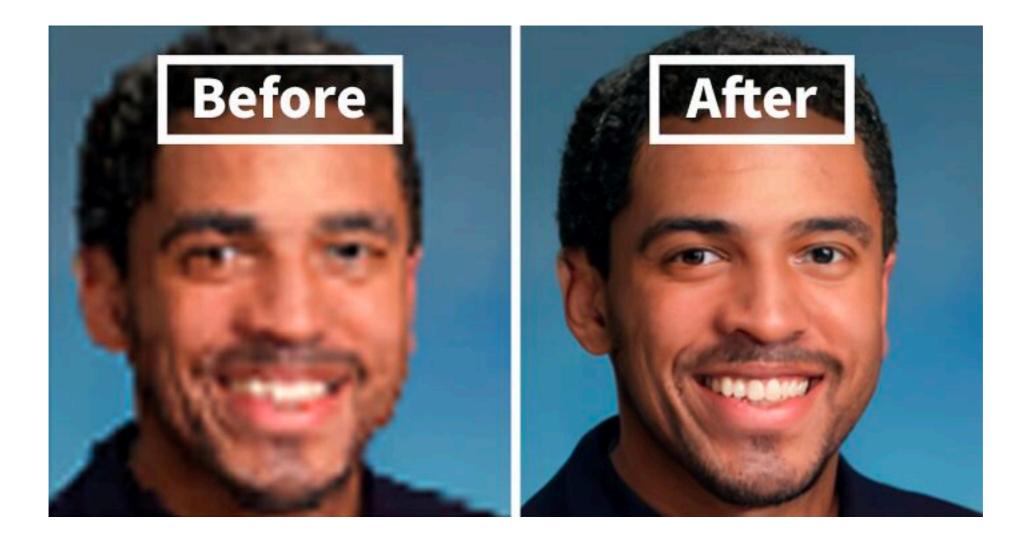
source: SRHiC: A Deep Learning Model to Enhance the Resolution of Hi-C Data

What will the data look like? Two .fastq files. Lines correspond to each other



bowtie2 -p 20 -x hg38index -U hicExp1_R1_fastq.trimmed > hicExp1_R1.hg38.sam bowtie2 -p 20 -x hg38index -U hicExp1_R2_fastq.trimmed > hicExp1_R2.hg38.sam

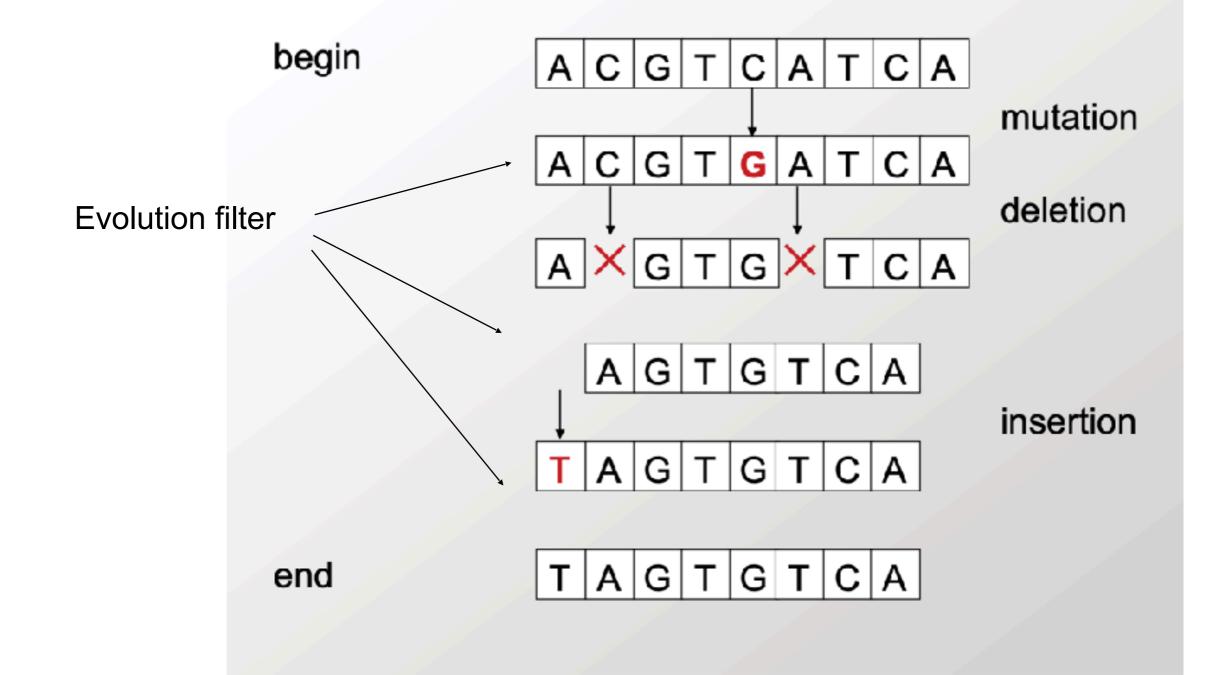
Computer vision-based solution



source:https://www.boredpanda.com/google-ai-amazing-image-enhancement/

Nothing in biology makes sense except in the light of evolution --Theodosius Dobzhansky

Genomes change over time



That is why we want to compare sequences

Partial CTCF protein sequence in 8 organisms:

H .	sapiens	-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPEPQPVTPA
Ρ.	troglodytes	-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPEPQPVTPA
С.	lupus	-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPEPQPVTPA
B .	taurus	-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPEPQPVTPA
M.	musculus	-EDSSDSEENAEPDLDDNEEEEEPAVEIEPEPEPQPQPPPPPQPVAPA
R .	norvegicus	-EDSSDS-ENAEPDLDDNEEEEEPAVEIEPEPEPQPQPQPQPQPQPVAPA
G.	gallus	-EDSSDSEENAEPDLDDNEDEEETAVEIEAEPEVSAEAPA
D.	rerio	DDDDDDSDEHGEPDLDDIDEEDEDDL-LDEDQMGLLDQAPPSVPIP-APA

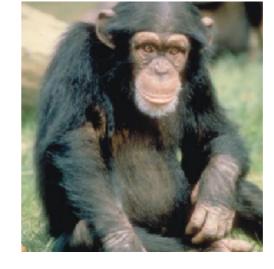
- Identify important sequences by finding conserved regions.
- Find genes similar to known genes.
- Understand evolutionary relationships and distances (D. rerio aka zebrafish is farther from humans than G. gallus aka chicken).
- Interface to databases of genetic sequences.
- As a step in genome assembly, and other sequence analysis tasks.
- Provide hints about protein structure and function

That is why we want to compare sequences

Partial CTCF protein sequence in 8 organisms:

- H. sapiens
- P. troglodytes
- C. lupus
- B. taurus
- M. musculus
- R. norvegicus
- G. gallus
- D. rerio

-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-----PQPVTPA -EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE----PQPVTPA -EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE----PQPVTPA -EDSSDS-ENAEPDLDDNEEEEPAVEIEPEPE---PQPQPPPPPQPVAPA -EDSSDS-ENAEPDLDDNEEEEEPAVEIEPEPEPQPQPQPQPQPQPQPVAPA -EDSSDS-ENAEPDLDDNEEEEEPAVEIEPEPEPQPQPQPQPQPQPQPVAPA -EDSSDSEENAEPDLDDNEDEEETAVEIEAEPE----VSAEAPA DDDDDDSDEHGEPDLDDIDEEDEDDL-LDEDQMGLLDQAPPSVPIP-APA



D. rerio

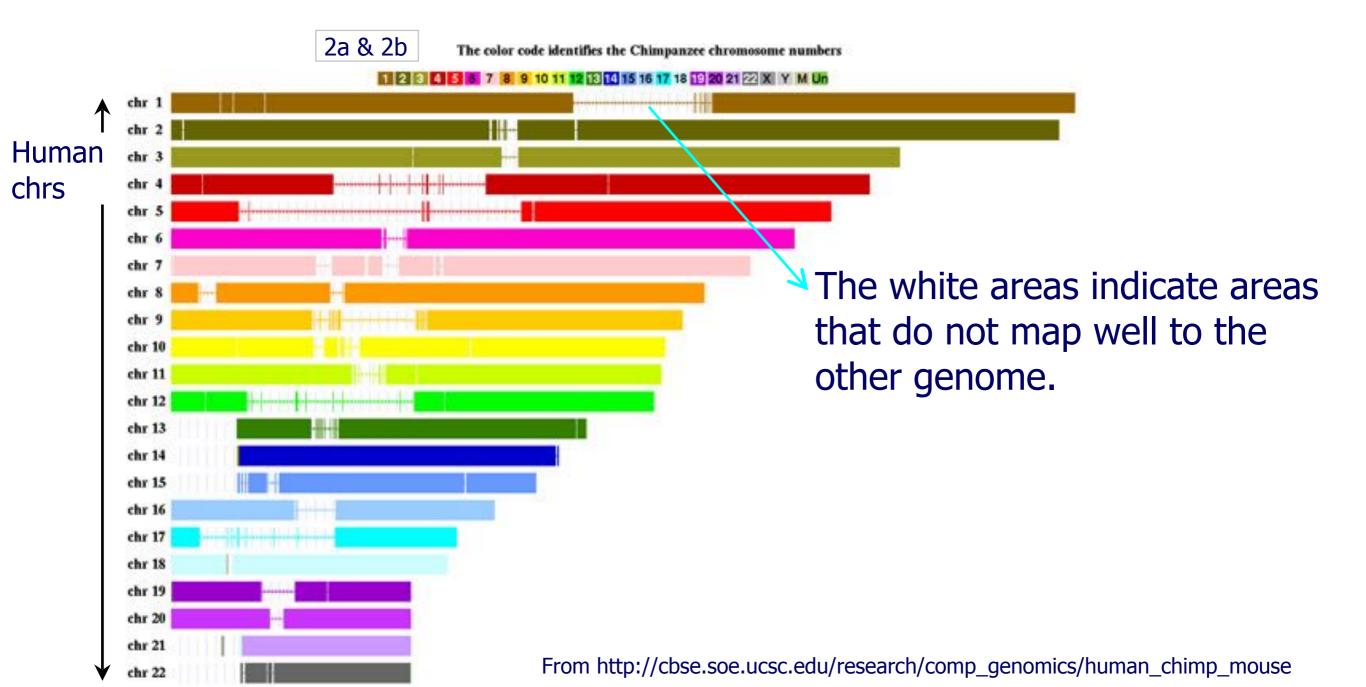
G. gallus

P. Troglodytes

C. lupus

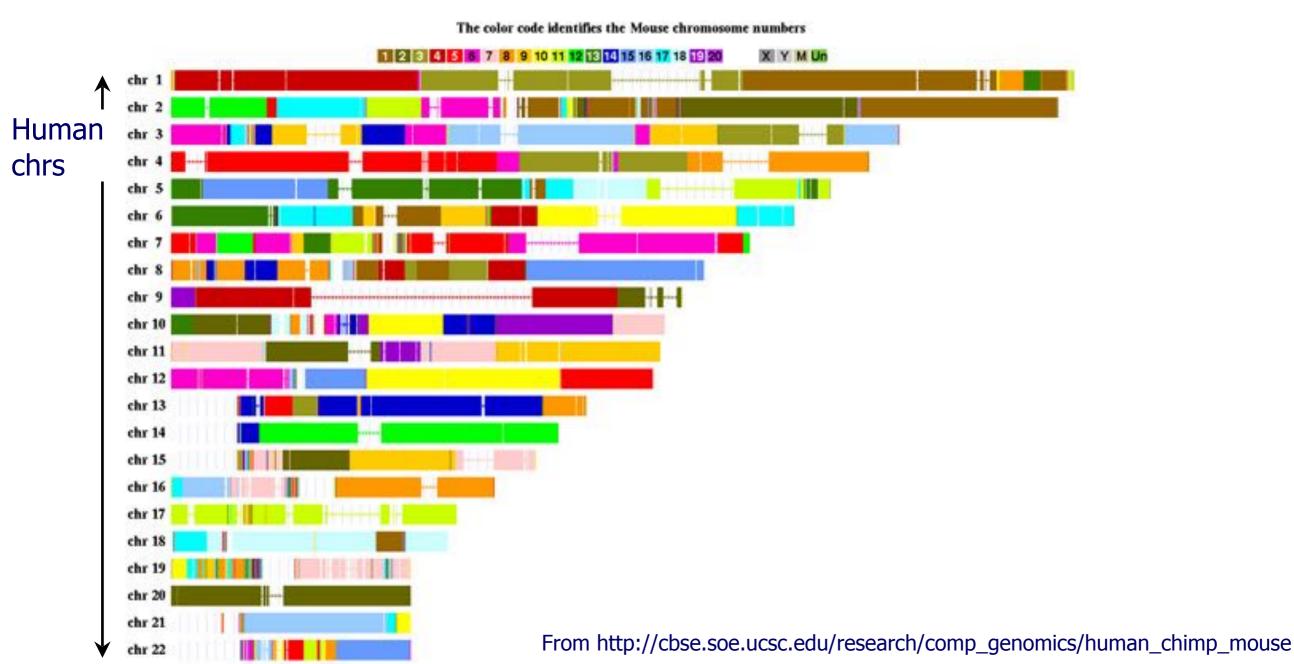
Comparing Human, Chimp, and Mouse Genomes

95% of the chimp genome is mapped to identical sequence in the human genome.

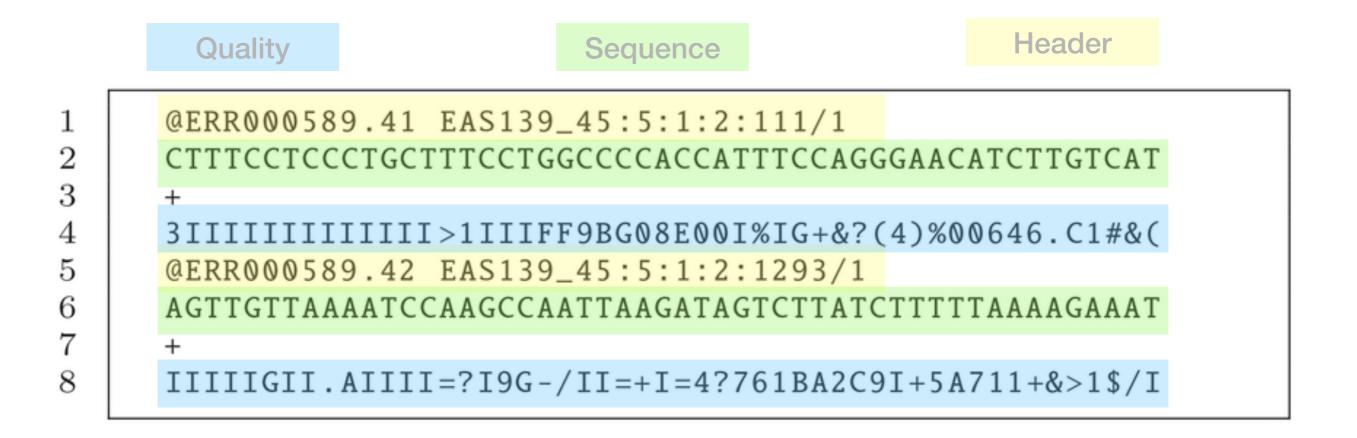


Comparing Human, Chimp, and Mouse Genomes

 34% of the mouse genome is mapped to identical sequence in the human genome.



What does a fastq file look like?



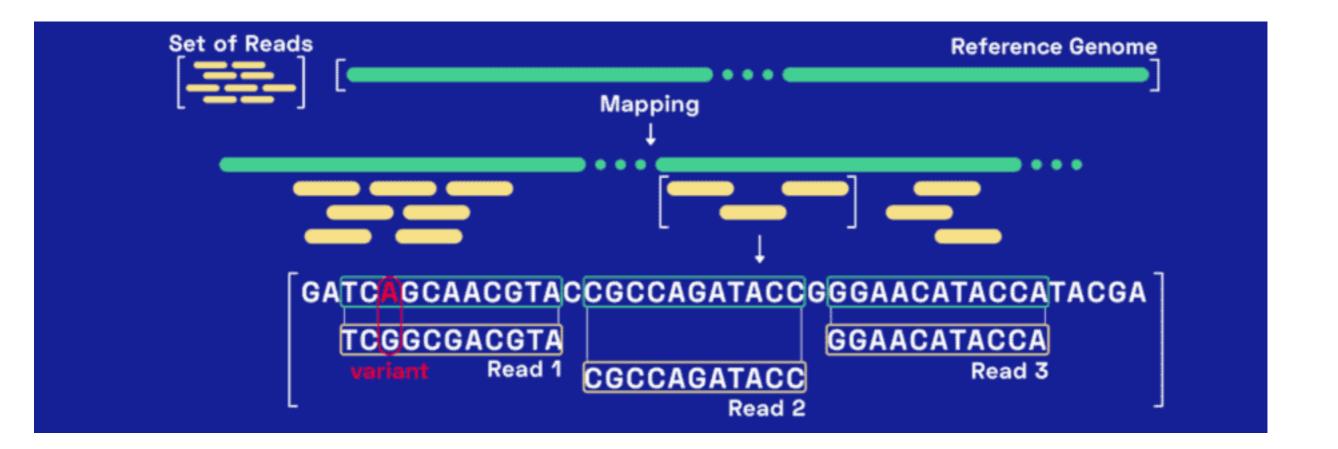
Very large! ~30000000 lines Quality: ASCII chars

What should we do? Map each short sequence (we call it read) to the entire human genome

What does a fastq file look like?

Reference genome: "average" human genome.

Most widely used human genome GRCh38: derived from 13 thirteen anonymous volunteers



The Simplest String Comparison Problem

```
Given: Two strings
```

 $a = a_1 a_2 a_3 a_4 \dots a_m$ $b = b_1 b_2 b_3 b_4 \dots b_n$

where *a_i*, *b_i* are letters from some alphabet like {A,C,G,T}.

Compute how similar the two strings are.

What do we mean by "similar"?

Edit distance between strings *a* and *b* = the smallest number of the following operations that are needed to transform *a* into *b*:

riddle $\xrightarrow{\text{delete}}$ ridle $\xrightarrow{\text{mutate}}$ riple $\xrightarrow{\text{insert}}$

triple

- mutate (replace) a character
- delete a character
- insert a character

Dynamic Programming (DP)

- Dynamic programming is used to solve optimization problems, similar to greedy algorithms.
- DP problem can always be decomposed to a series of subproblems with the same structure.
 - Define proper subproblems.
 - Ensure the subproblem space is polynomial.
 - Define a table (matrix), called DP table, to store all the optimal score for each subproblem.
 - Need a traversal order. Subproblems must be ready (solved) when they are needed, so computation order matters.
 - Determine a recursive formula: A larger subproblem is typically solved as a function of its subparts.
 - Remember choices or the solution of each subproblem.

Dynamic Programming (DP)

- Once dynamic programming is setup, computation is typically straight-forward:
 - Systematically fill in the table of results (and usually traceback pointers) and find an optimal score.
 - Traceback from the optimal score through the pointers to determine an optimal solution.

- Example: Fibonacci Numbers
 - The Fibonacci sequence is recursively defined as F(0) = F(1) = 1, F(n) = F(n-1) + F(n-2) for $n \ge 2$.

Local and Global Alignment

Sometimes we need to choose whether we want to align the entire sequence.

А	Т	Α	С	G	Т	С	Т

 A
 T
 A
 C
 G
 T
 C
 T
 C
 T
 C
 T
 C
 T
 C
 T
 C
 T
 C
 T
 C
 T
 C
 T
 C
 T
 C
 T
 C
 T
 T
 C
 T
 C
 T
 C
 T
 T
 T
 A
 C
 G
 T
 C
 T
 T
 T
 A
 T
 A
 C
 G
 T
 C
 T
 T
 T
 A
 T
 A
 C
 G
 T
 C
 T
 T
 T
 A
 T
 A
 C
 G
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T

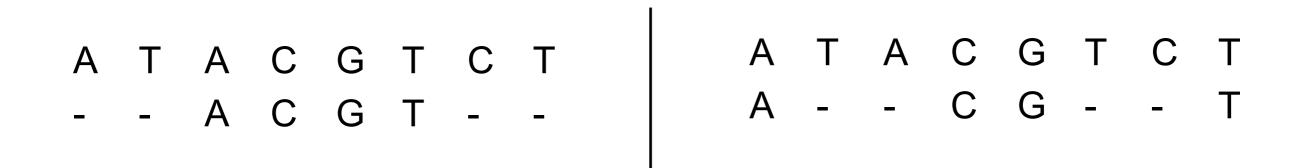
Local alignment: Smith-Waterman algorithm

Global alignment: Needleman-Wunsh algorithm

- They both contain four align positions and four gaps. Which one should we choose?
- Criteria
 - Do we want to check the whole sequence or a local region?
 - Is there a big length difference between two sequences?
 - Are the sequences distantly related during evolution?
 - Is your job about finding motifs, conserved domains?

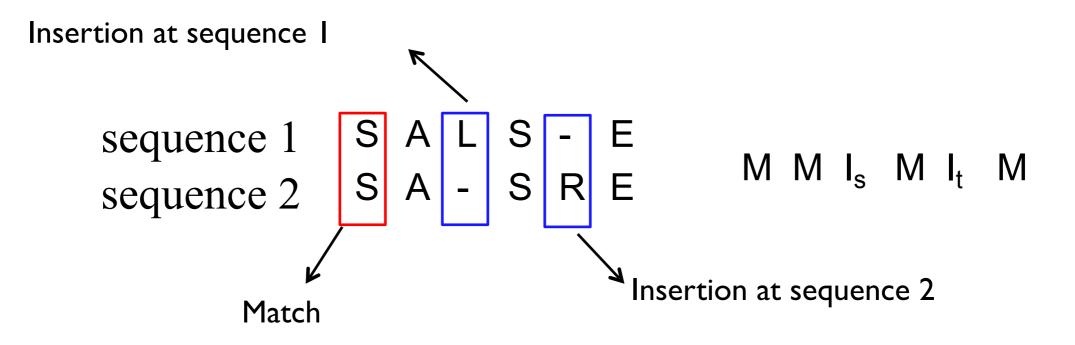
Key difference

Sometimes we need to choose whether we want to align the entire sequence.



We don't want to punish the gap at the two ends!

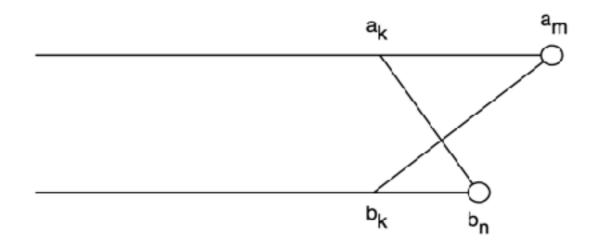
We need to assign a score for each alignment



The score of an alignment is equal to the sum of the score contributed by each position.

Several rules must hold:

- Each position on sequence I can only be aligned to one position on sequence 2
- No crossing rule:



Sequence alignment

AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

What is a good alignment?

AGGCTAGTT, AGCGAAGTTT

AGGCTAGTT-AGCGAAGTTT 6 matches, 3 mismatches, 1 gap

AGGCTA-GTT-AG-CGAAGTTT 7 matches, 1 mismatch, 3 gaps

AGGC-TA-GTT-AG-CG-AAGTTT 7 matches, 0 mismatches, 5 gaps

Scoring Function

 Sequence ed 	its:	AGGCCTC	
 Mutations 		AGGACTC	
 Insertions 		AGGGCCTC	
 Deletions 		AGG . CTC	
			Alternative definition:
			minimal edit distance
Scoring Func	tion:		
Match:	+m		"Given two strings x, y,
Mismatch:	-S		find minimum # of edits (insertions, deletions,
Gap:	-d		mutations) to transform one string to the other"

Score $F = (\# matches) \times m - (\# mismatches) \times s - (\# gaps) \times d$

How do we compute the best alignment?

Y

 \rightarrow N bps AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA 12 GTGACCTGGGAAGACCCTGACCCTGGG CACAAAA OTO OTO

Every non-decreasing path from (0,0) to (M, N) corresponds to an alignment of the two sequences, and vice versa.

(exercise)

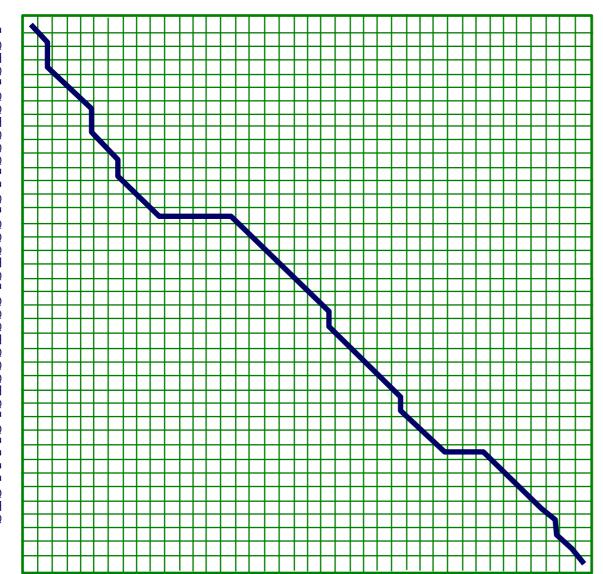
X:AGTGACCTGGGAAGA----C... Y:AG--TGC--CC-TGGAACCCT...

M base pairs (bps)

X

How do we compute the best alignment?

AGTGACCTGGGAAGACCCTGACCCTGGGTCACAAAACTC



AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA

Too many possible alignments:

>> 3min(M,N)

Alignment is additive

Observation:

The score of aligning	x ₁ .	X _M
is additive	yı.	y _N
Say that	x ₁ x _i	x _{i+1} x _M
aligns to	$\mathbf{y}_1 \dots \mathbf{y}_j$	у _{j+1} у _N

The two scores add up:

F(x[1:M], y[1:N]) = F(x[1:i], y[1:j]) + F(x[i+1:M], y[j+1:N])

Dynamic Programming

- Consider subproblems for $i \le M$ and $j \le N$
 - Align $x_1...x_i$ to $y_1...y_j$
- Original problem is one of the subproblems
 - Align $x_1...x_M$ to $y_1...y_N$
- Each subproblem is easily solved from smaller subproblems
 We will show next
- Then, we can apply Dynamic Programming!!!

Let F(i, j) = optimal score of aligning $x_1....x_i$ $y_1....y_j$

F is the DP "Matrix" or "Table"

"Memorization"

Scoring Function

 Sequence ed 	its:	AGGCCTC	
 Mutations 		AGGACTC	
 Insertions 		AGGGCCTC	
 Deletions 		AGG . CTC	
			Alternative definition:
			minimal edit distance
Scoring Func	tion:		
Match:	+m		"Given two strings x, y,
Mismatch:	-S		find minimum # of edits (insertions, deletions,
Gap:	-d		mutations) to transform one string to the other"

Score $F = (\# matches) \times m - (\# mismatches) \times s - (\# gaps) \times d$

Dynamic Programming (cont'd)

Notice three possible cases:

I. x_i aligns to y_i $X_1 \dots X_{i-1} \quad X_i$ y_1, \dots, y_{j-1}, y_j

$$F(i, j) = F(i - 1, j - 1) + \begin{cases} m, \text{ if } x_i = y_j \\ -s, \text{ if not} \end{cases}$$

1

- 2. x_i aligns to a gap $X_1 \dots X_{i-1} \quad X_i$ y₁.....y_i -
- 3. y_i aligns to a gap X₁.....X_i y_1, \dots, y_{j-1}, y_j

$$F(i, j) = F(i - 1, j) - d$$

$$F(i, j) = F(i, j - 1) - d$$

Dynamic Programming (cont'd)

How do we know which case is correct?

Inductive assumption:

F(i, j - 1), F(i - 1, j), F(i - 1, j - 1) are optimal

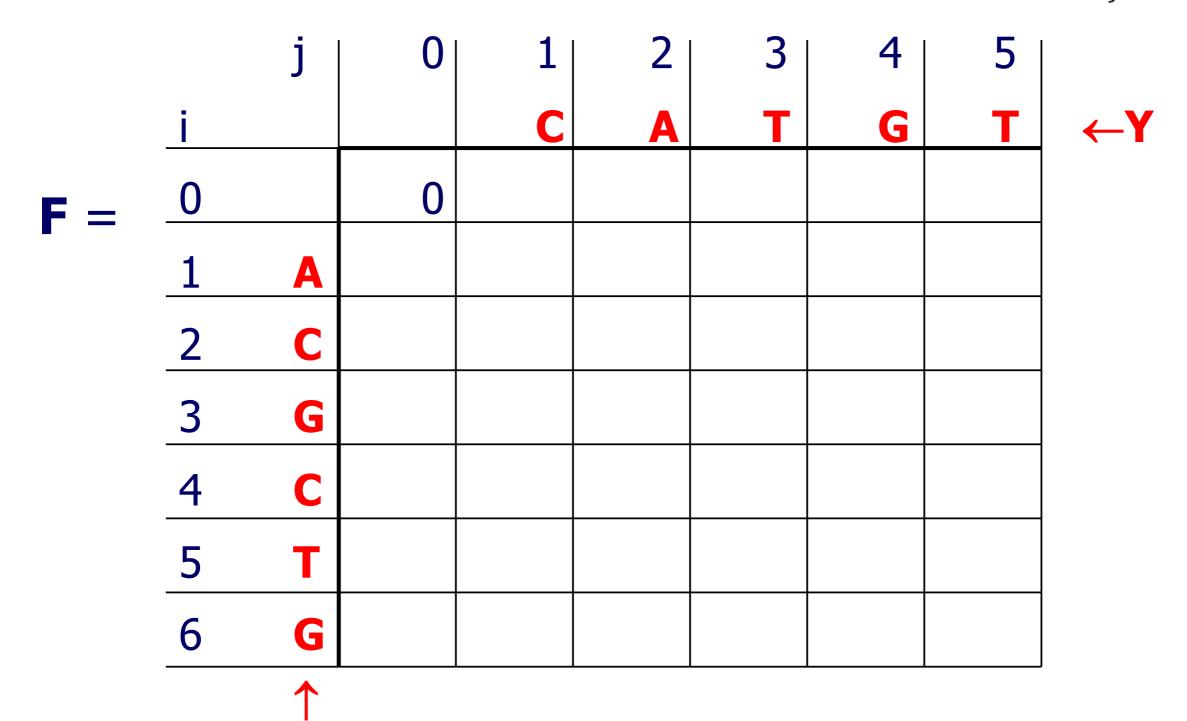
Then,

F(i, j) = max
$$\begin{cases} F(i - 1, j - 1) + s(x_i, y_j) \\ F(i - 1, j) - d \\ F(i, j - 1) - d \end{cases}$$

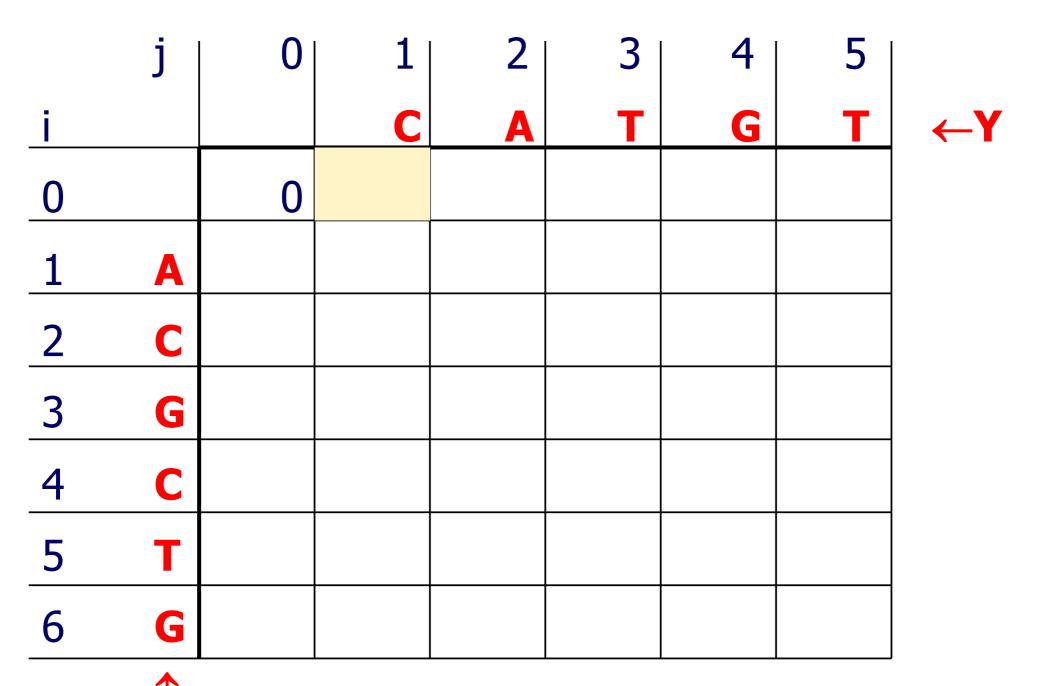
where

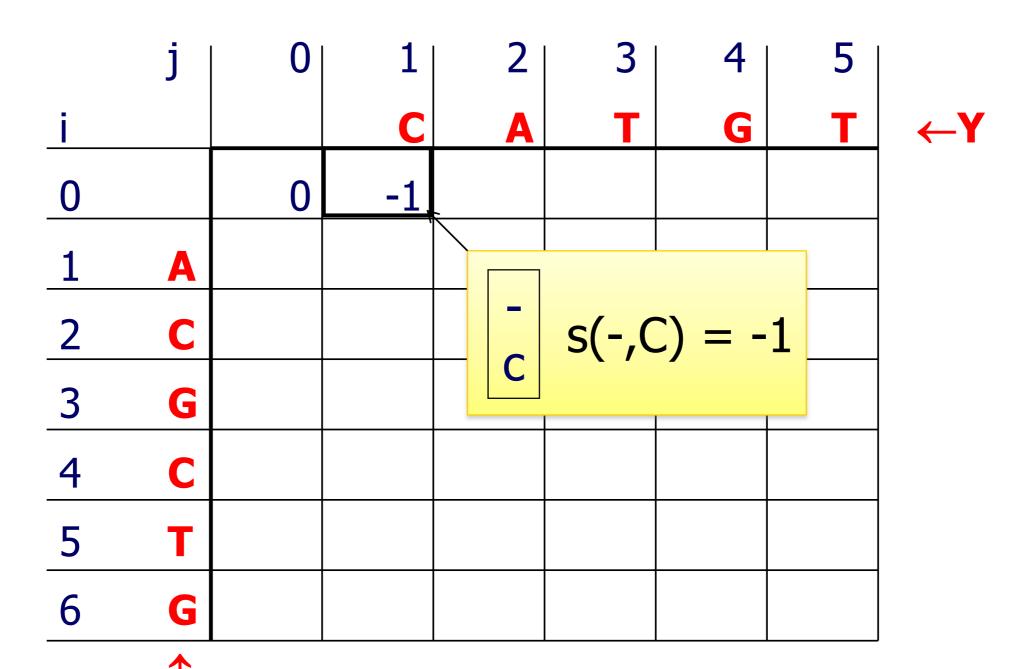
 $s(x_i, y_j) = \begin{cases} m, \text{ if } x_i = y_j \\ -s, \text{ if not} \end{cases}$

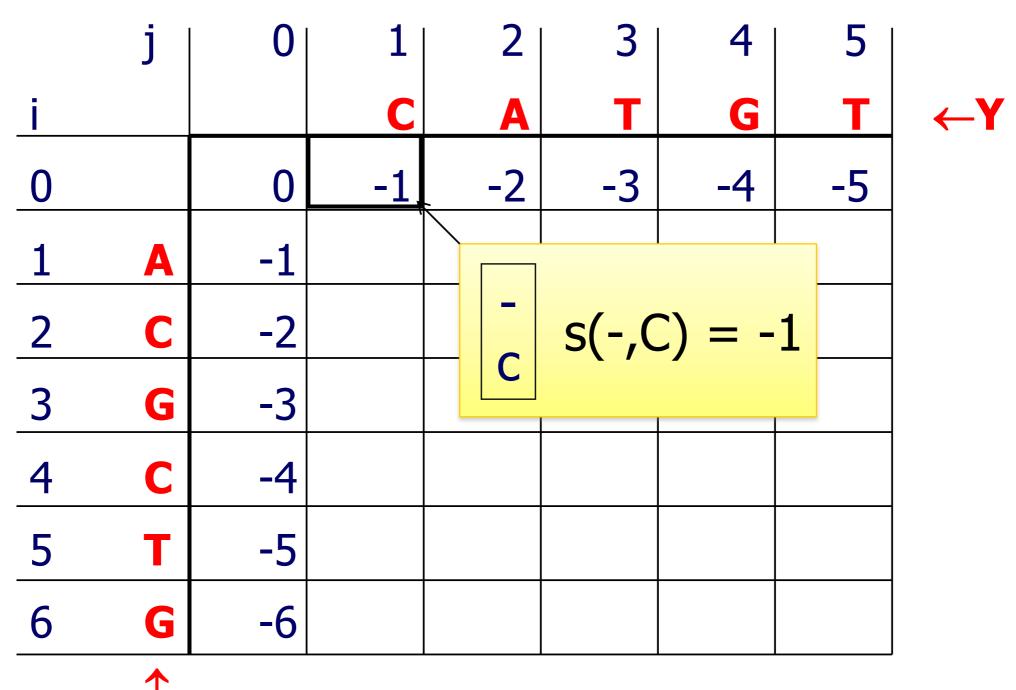
F(*i*, *j*) = optimal score of aligning $x_1, ..., x_i$ to $y_1, ..., y_j$



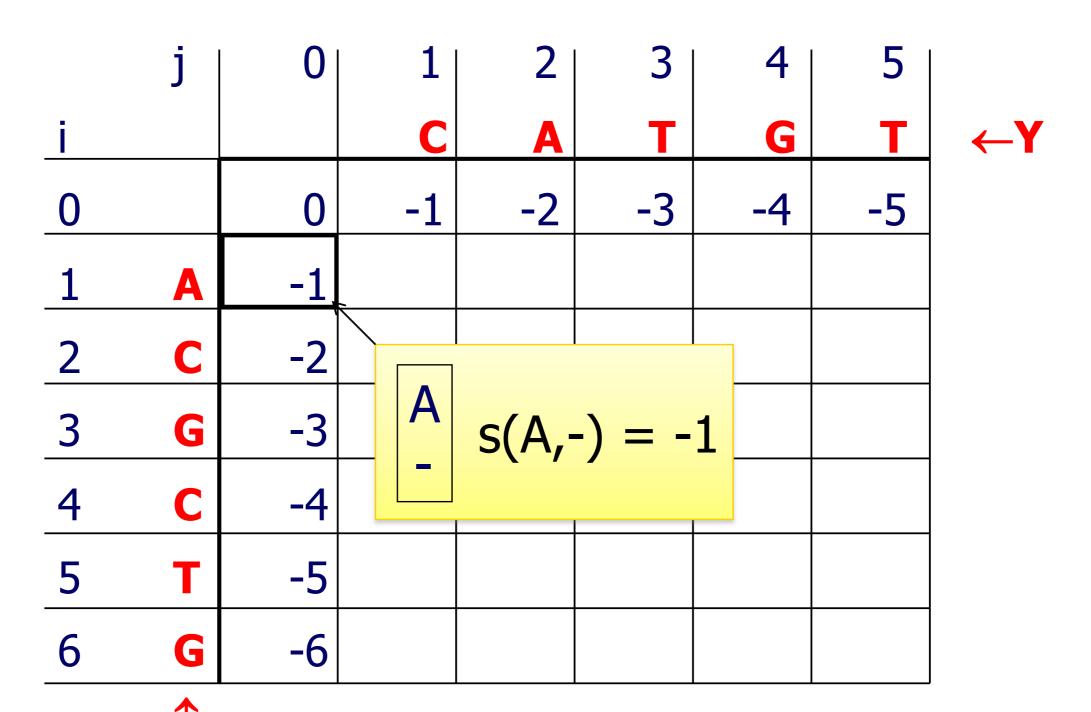
x = ACGCTGmatch: +2 mismatch, gap: -1 y = CATGT



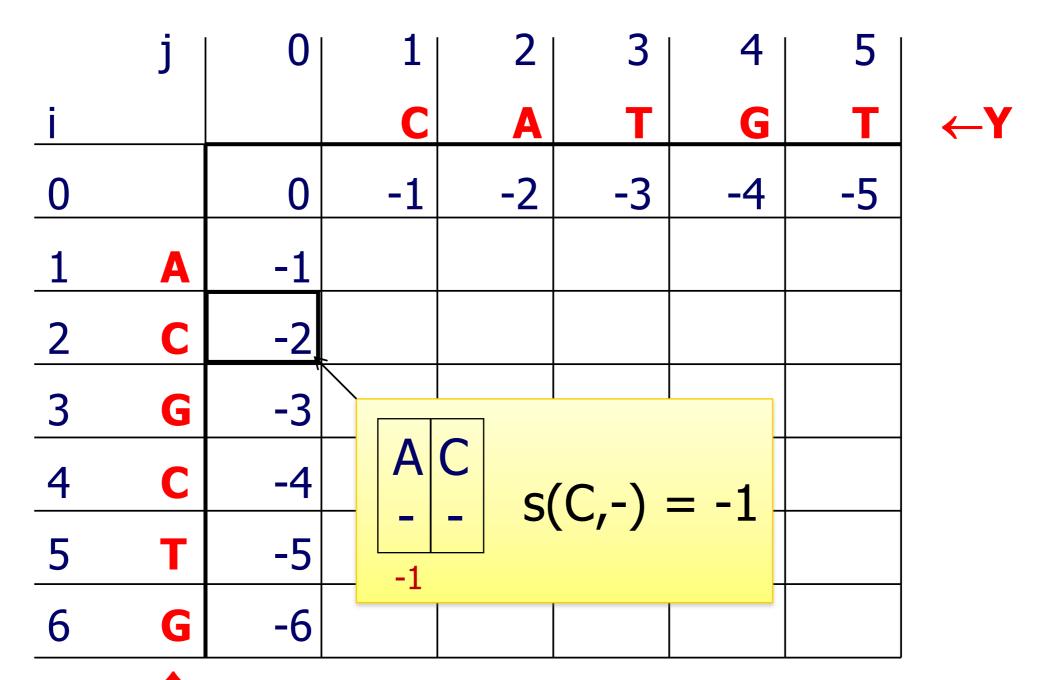


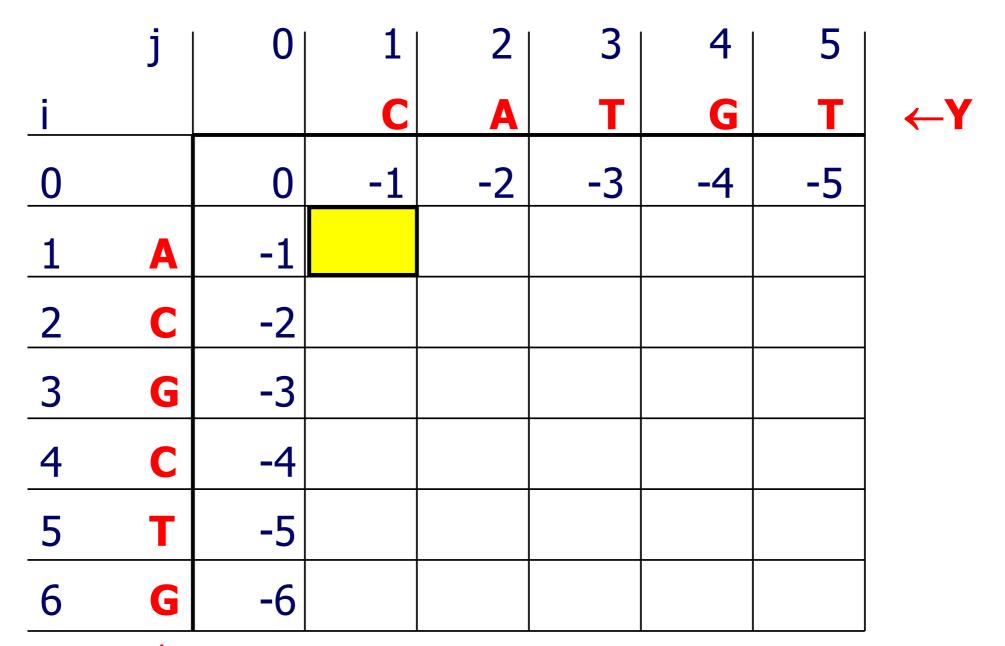


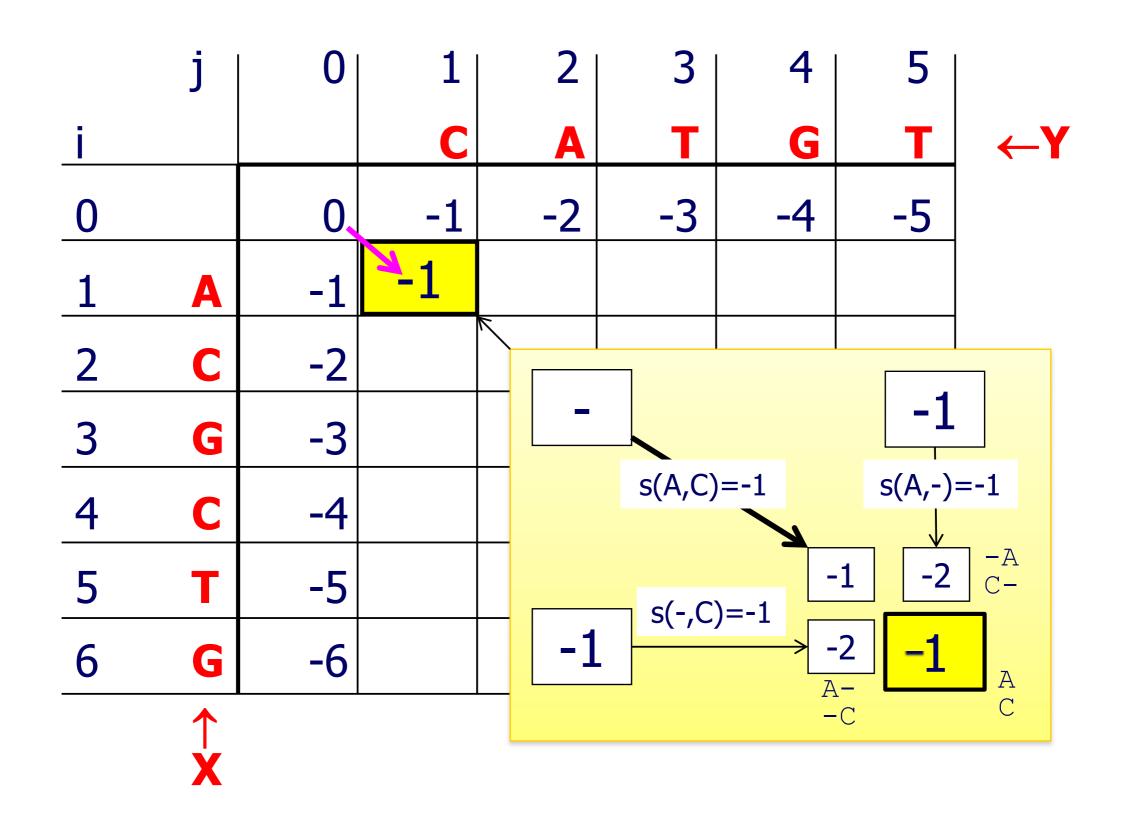
x = ACGCTG	match: +2	2
y = CATGT	mismatch, ga	ap: -1

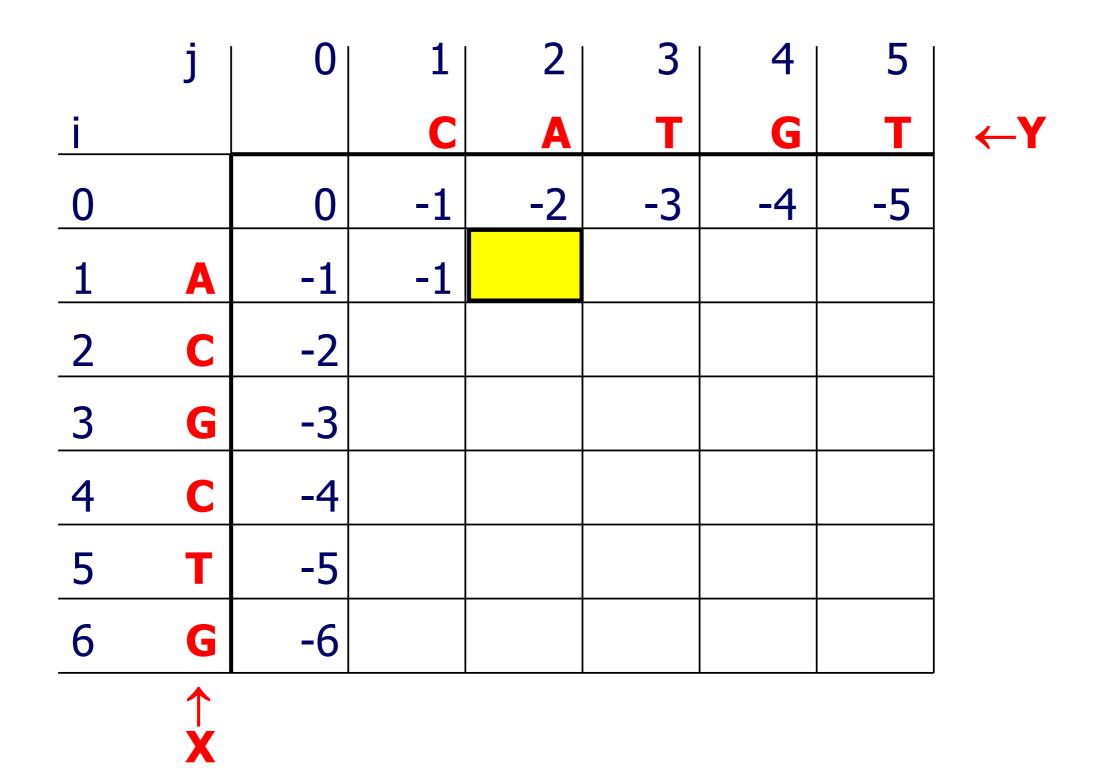


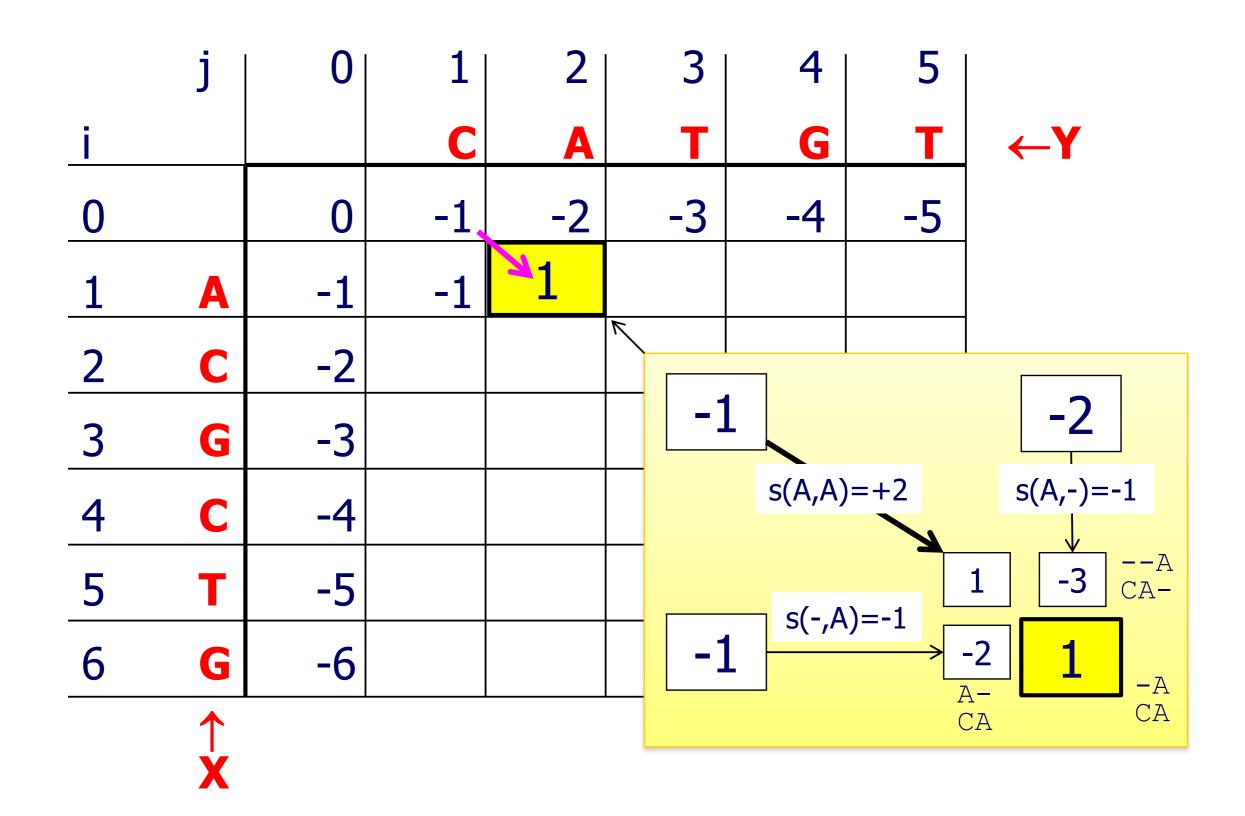
x = ACGCTG	match:	+2
y = CATGT	mismatch	, gap: -1

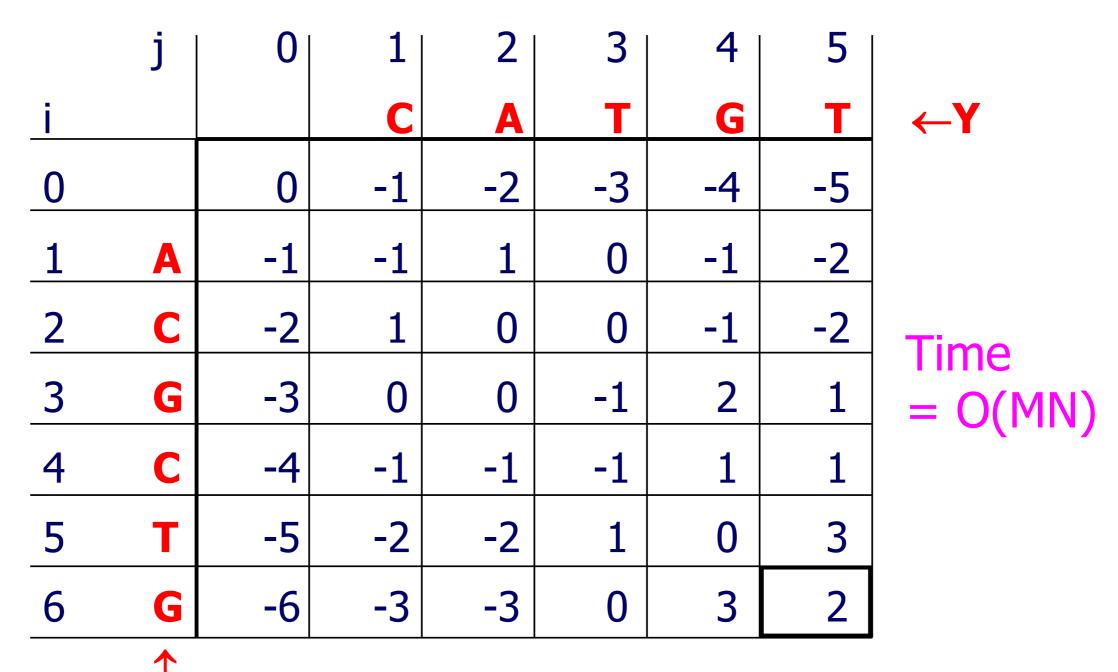






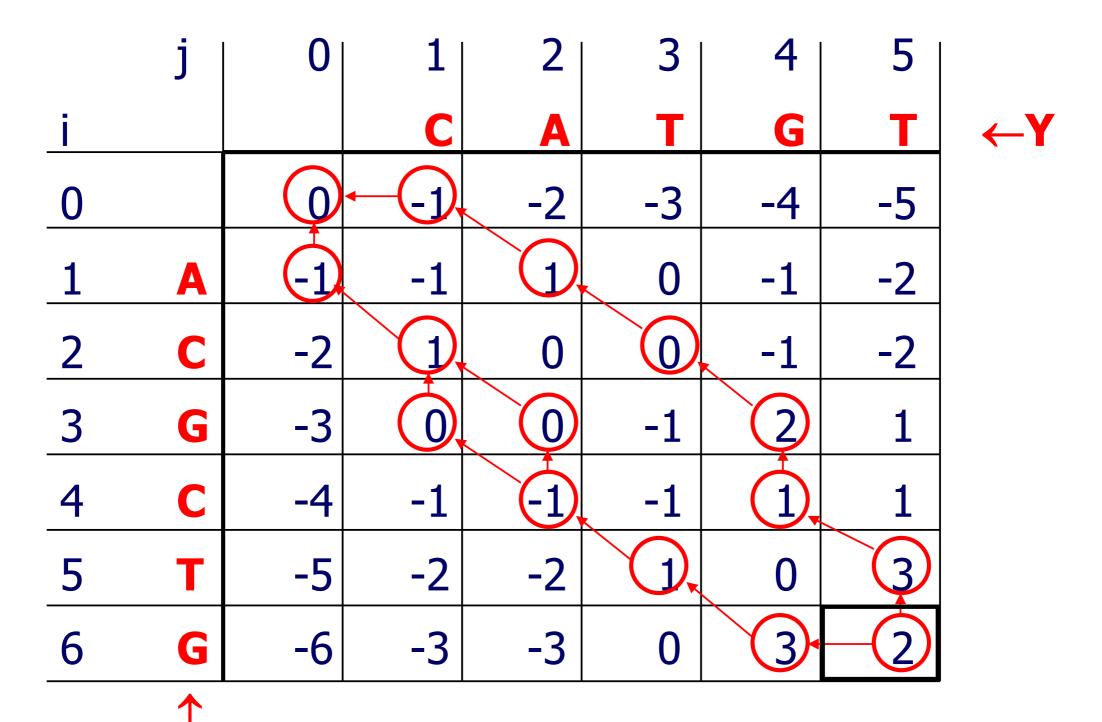




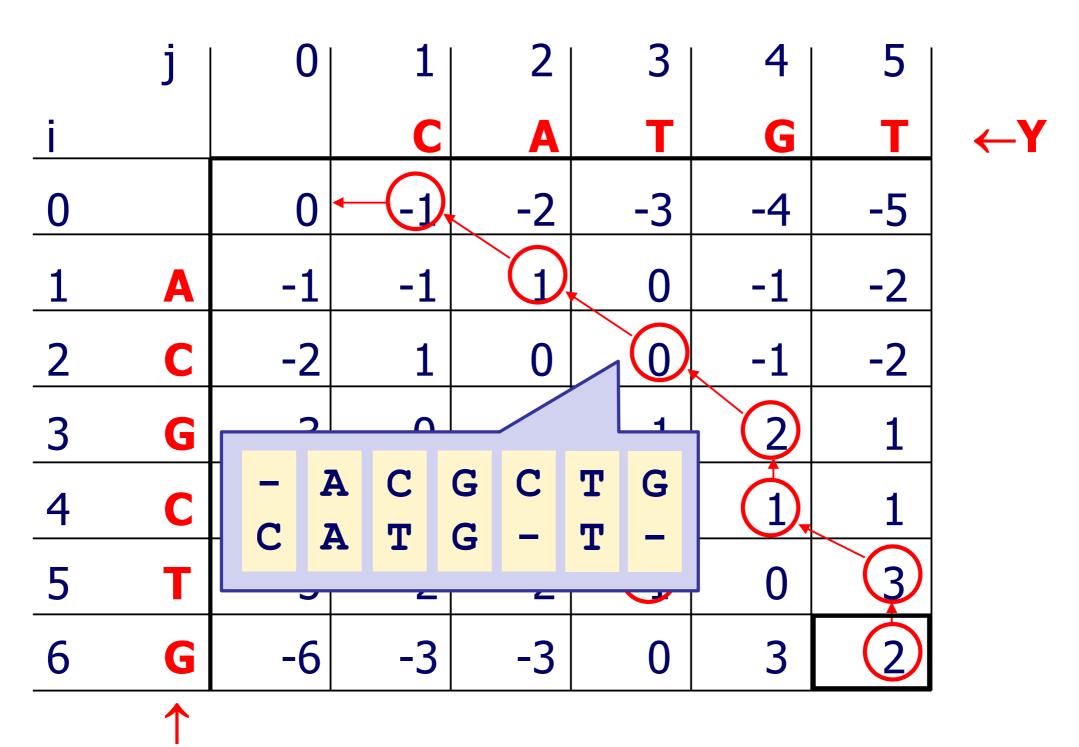


Finding alignments: trace back

Arrows = (ties for) max in F(i,j); 3 LR-to-UL paths = 3 optimal alignments



Finding alignments: trace back



X

The Needleman-Wunsch Algorithm

- 1. <u>Initialization</u>.
 - a. F(0, 0) = 0b. $F(0, j) = -j \times d$
 - c. $F(i, 0) = -i \times d$
- 2. <u>Main Iteration.</u> Filling-in partial alignments
 - For each i = 1....NFor each j = 1....N $F(i, j) = \max \begin{cases} F(i - 1, j - 1) + s(x_i, y_j) & [case 1] \\ F(i - 1, j) - d & [case 2] \\ F(i, j - 1) - d & [case 3] \end{cases}$ $Ptr(i, j) = \begin{cases} DIAG, & if & [case 1] \\ UP, & if & [case 2] \\ LEFT, & if & [case 3] \end{cases}$
- 3. <u>Termination</u>. F(M, N) is the optimal score, and from Ptr(M, N) can trace back optimal alignment

Global Alignment

Needleman-Wunsch algorithm

Initialization:

F(0, 0) = 0

Iteration:

F(i, j) = max

$$\begin{cases}
F(i - 1, j) - d \\
F(i, j - 1) - d \\
F(i - 1, j - 1) + s(x_i, y_j)
\end{cases}$$

Termination:

Bottom right

Termination:

Anywhere

Local alignment

Smith-Waterman algorithm

Initialization:

Iteration:

VS.

 $F(i, j) = max \begin{cases} F(i - 1, j) - d \\ F(i, j - 1) - d \\ F(i - 1, j - 1) + s(x_i, y_j) \end{cases}$

F(0, j) = F(i, 0) = 0

Performance

Time:

O(NM)

Space:

O(NM)

Global Alignment

Needleman-Wunsch algorithm

Initialization:

F(0, 0) = 0

Iteration:

F(i, j) = max

$$\begin{cases}
F(i - 1, j) - d \\
F(i, j - 1) - d \\
F(i - 1, j - 1) + s(x_i, y_j)
\end{cases}$$

Termination:

Bottom right

Termination:

Anywhere

Local alignment

Smith-Waterman algorithm

Initialization:

Iteration:

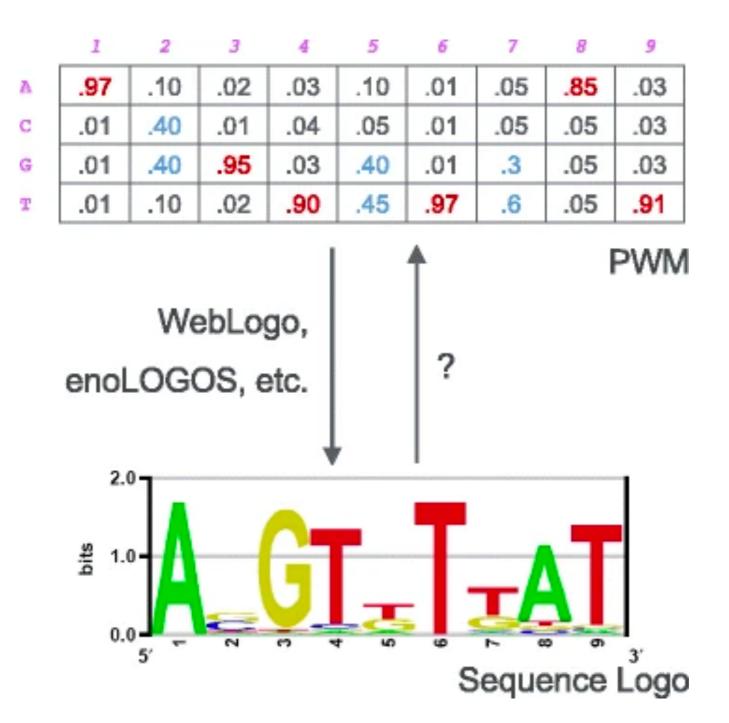
VS.

 $F(i, j) = max \begin{cases} F(i - 1, j) - d \\ F(i, j - 1) - d \\ F(i - 1, j - 1) + s(x_i, y_j) \end{cases}$

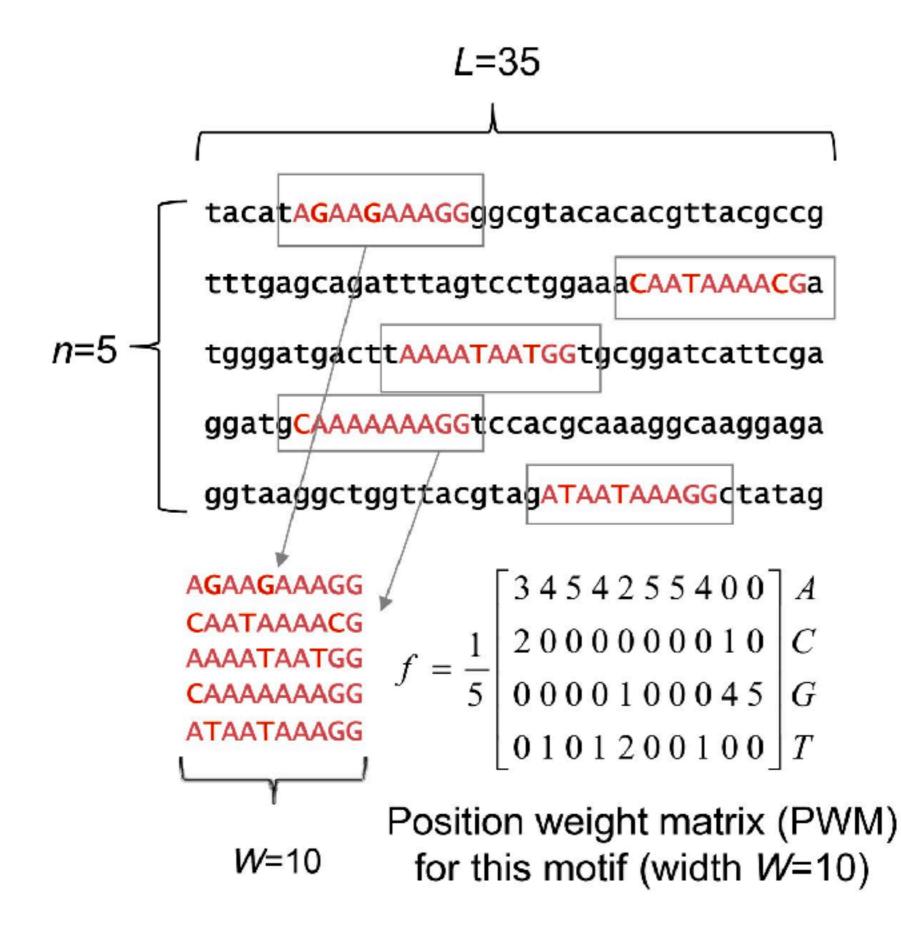
F(0, j) = F(i, 0) = 0

- What if we only penalize the gap at the beginning
- What if we only penalize the gap at the end

Motif: probabilistic representation of a sequence



https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-017-4023-9/figures/1



For example, given the following DNA sequences:

GAGGTAAAC	
TCCGTAAGT	
CAGGTTGGA	
ACAGTCAGT	
TAGGTCATT	
TAGGTACTG	
ATGGTAACT	
CAGGTATAC	
TGTGTGAGT	
AAGGTAAGT	

The corresponding PFM is:

 $M = egin{array}{c} A \ C \ G \ G \ T \ 1 \ 1 \ 7 \ 10 \ 0 \ 1 \ 1 \ 2 \ 6 \ \end{array} egin{array}{c} 0 & 0 & 6 & 7 & 2 & 1 \ 2 & 2 & 1 & 0 & 0 & 2 & 1 & 1 & 2 \ 1 & 1 & 7 & 10 & 0 & 1 & 1 & 5 & 1 \ 4 & 1 & 1 & 0 & 10 & 1 & 1 & 2 & 6 \ \end{array} egin{array}{c} . \end{array}$

Therefore, the resulting PPM is:[1]

$$M = \begin{bmatrix} A \\ C \\ G \\ T \end{bmatrix} \begin{bmatrix} 0.3 & 0.6 & 0.1 & 0.0 & 0.0 & 0.6 & 0.7 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0.1 & 0.0 & 0.0 & 0.2 & 0.1 & 0.1 & 0.2 \\ 0.1 & 0.1 & 0.7 & 1.0 & 0.0 & 0.1 & 0.1 & 0.5 & 0.1 \\ 0.4 & 0.1 & 0.1 & 0.0 & 1.0 & 0.1 & 0.1 & 0.2 & 0.6 \end{bmatrix}$$

https://en.wikipedia.org/wiki/Position_weight_matrix#:~:text=A%20position%20weight%20matrix%20(PWM,represented%20graphically%20as%20sequence%20logos.

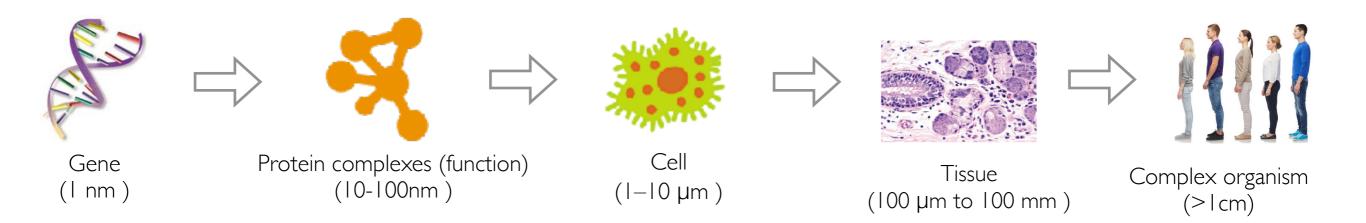
$$M = \begin{bmatrix} A \\ C \\ G \\ T \end{bmatrix} \begin{bmatrix} 0.3 & 0.6 & 0.1 & 0.0 & 0.0 & 0.6 & 0.7 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0.1 & 0.0 & 0.0 & 0.2 & 0.1 & 0.1 & 0.2 \\ 0.1 & 0.1 & 0.7 & 1.0 & 0.0 & 0.1 & 0.1 & 0.5 & 0.1 \\ 0.4 & 0.1 & 0.1 & 0.0 & 1.0 & 0.1 & 0.1 & 0.2 & 0.6 \end{bmatrix}.$$

the probability of the sequence S = GAGGTAAAC given the above PPM M

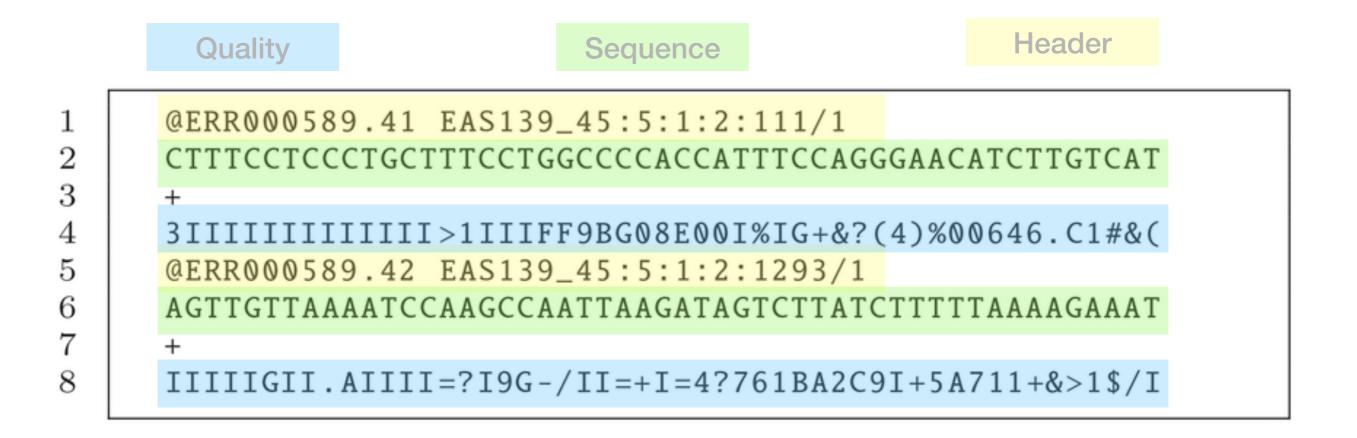
 $p(S|M) = 0.1 \times 0.6 \times 0.7 \times 1.0 \times 1.0 \times 0.6 \times 0.7 \times 0.2 \times 0.2 = 0.0007056.$

https://en.wikipedia.org/wiki/Position_weight_matrix#:~:text=A%20position%20weight%20matrix%20(PWM,represented%20graphically%20as%20sequence%20logos.

Computational methods for biology at different scales



What does a fastq file look like?



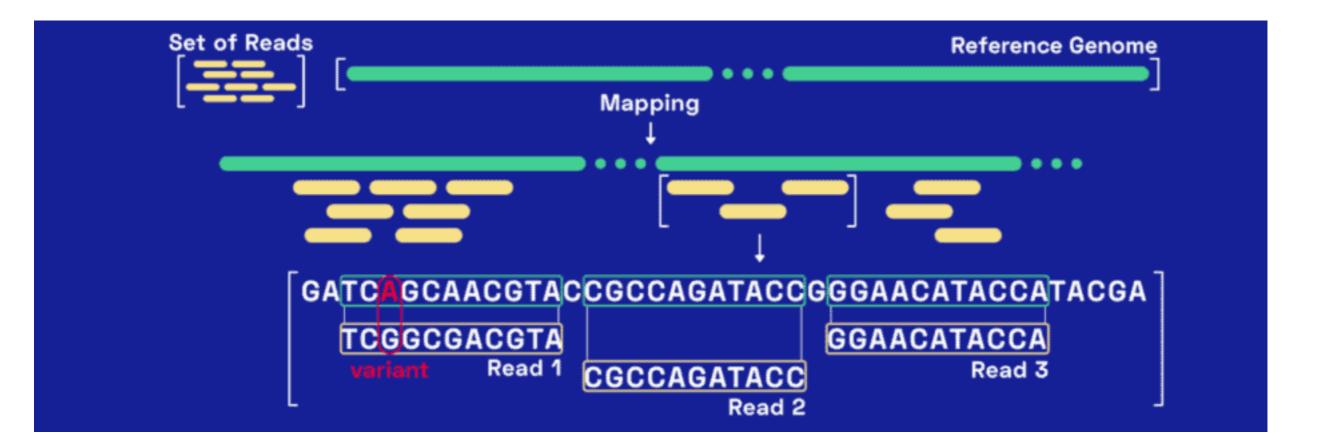
Very large! ~30000000 lines Quality: ASCII chars

What should we do? Map each short sequence (we call it read) to the entire human genome

What does a fastq file look like?

Reference genome: "average" human genome.

Most widely used human genome GRCh38: derived from 13 thirteen anonymous volunteers



Processed data

countData

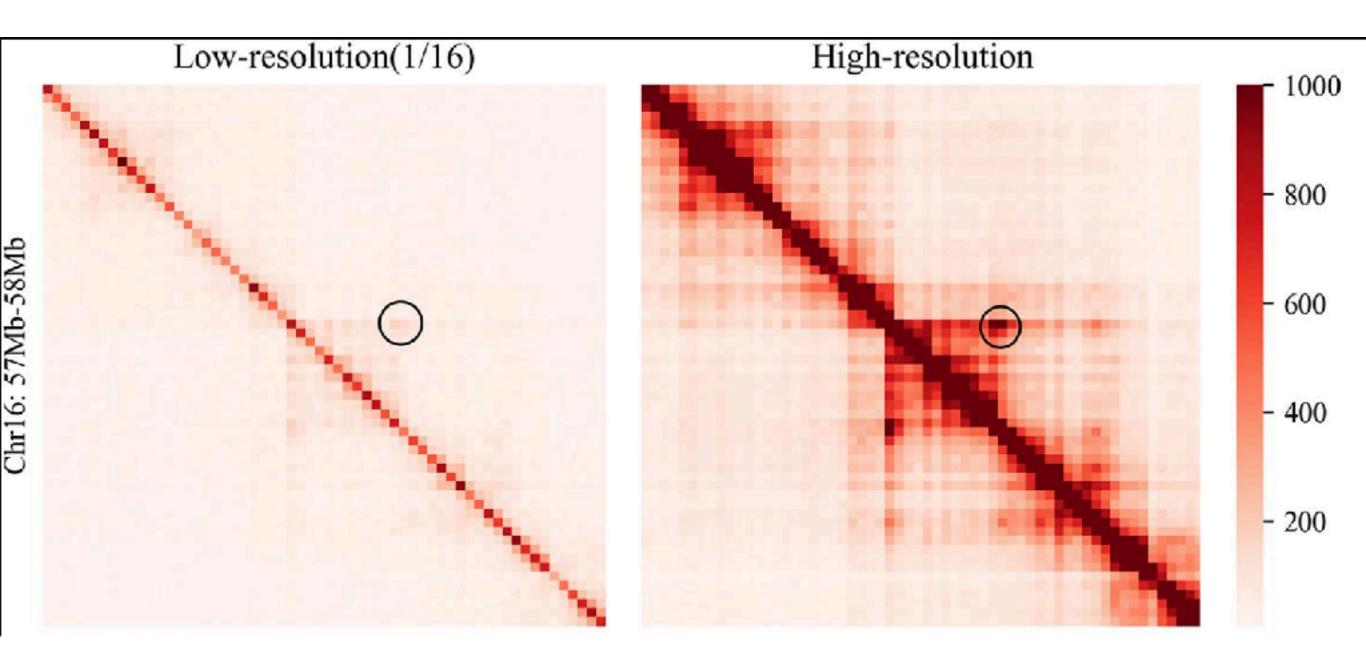
	ctrl_1	ctrl_2	exp_1	exp_1
geneA	10	11	56	45
geneB	0	0	128	54
geneC	42	41	59	41
geneD	103	122	1	23
geneE	10	23	14	56
geneF	0	1	2	0

colData

	treatment	sex
ctrl_1	control	male
ctrl_2	control	female
exp_1	treatment	male
exp_2	treatment	female

Sample names: ctrl_1, ctrl_2, exp_1, exp_2

Data structure and computational problem



source: SRHiC: A Deep Learning Model to Enhance the Resolution of Hi-C Data

Finding alignments: trace back

Arrows = (ties for) max in F(i,j); 3 LR-to-UL paths = 3 optimal alignments

