CSE 427 Computational Biology

Biological graphs



Any dataset can be represented as a graph

e Step |:how to build the graph from a dataset
- How to calculate the similarity between two entities?
- How to define the graph structure based on the similarity

e Step 2: what graph-based methods should be used for downstream
applications

- Guilt-by-association
- Random walk, random walk with restart

- network embedding, graph neural network

Interpretation (which edge or node Is important)



Patient graph

20k genes

| 000 patients

A patient network of 1000 nodes

e Fach node is a patient

e No edge between two patients if the similarity
score Is too low

e [dge weight Is the patient similarity

e How to calculate the similarity? Cosine or Euclidean

e ML models use Euclidean distance in the loss function
How to define the graph structure: kNN graph or a threshold graph
Use patient graph for drug response prediction

e Nearby patients have similar drug response



kNN graph or Threshold graph?

KNN graph Threshold graph
- &~ i :“.‘;T'.:. .'
B

KNN graph: each node Is connected to k neighbors that have the largest edge

welghts
® ks a hyperparameter
Threshold graph: each node Is connected to neighbors that have an edge weight

larger than x
® X Is the hyper parameter

Source: Efficient small-world and scale-free functional brain networks at rest using k-nearest neighbors thresholding



Drug graph
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Molecule Graph

Source: Molecular topology in QSAR and drug design studies
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Source: A-Alpha Bio

Protein graph
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Use drug and protein graph for side effect prediction

Polypharmacy

Doxycycline A side effects /A Simvastatin

r1——A Mupirocin

Ciprofloxacin

A Drug O Protein Node feature vector
r1 Gastrointestinal bleed side effect &—O Drug-protein interaction
' Bradycardia side effect O—O Protein-protein interaction

Source:Modeling polypharmacy side effects with graph convolutional networks



Why do we need to use graph?

e Use patient by gene matrix or patient by patient network!?
- Use the original data is like operating on a fully connected network
- Transformer is like a fully connected graph neural network
e Advantage of using networks:
- Reduce noise In the data
- Less computationally intensive

- Visualization and interpretation



Different types of graphs

Graphs from co-citation network

» Co-citation is defined as the frequency
with which two documents are
cited together by other documents
» Undirected graph. ik

Yy

Doc A

cited

= An edge represents a citation from the current publication to

another.
= Directed graph.

cites

YVy

Doc B

cited



Different types of graphs

Graphs from social network

= Nodes are users and edges
indicates they are friends.
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Different types of graphs

Graphs
in Cancer
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2015



How to build a graph from data ?

What are nodes and edges!

n what way nodes interact with each other?
Directed or Undirected?

Self-loop!?
Weighted or Unwelighted!

Sig
W
W

ned or Unsigned!
Na

- are node attributes!?

d

- are edge attributes!
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Some examples

= Facebook friendships: undirected, unweighted

= Co-citation networks: undirected, weighted

= Citation networks: directed, unweighted/weighted

= City subway networks: undirected, weighted

= Protein physical networks: undirected, weighted

= Genetic interaction networks: undirected, weighted,
signed

= Gene regulatory networks: directed, unweighted, signed
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Representing graphs

Adjacent matrix
0 1

0
0 0 1
0 0 0

1: 2
2: 3

(1, 2)
(2, 3)

14

A



Basic concepts of graph

Degree distribution Clustering coefficient
= Probability that a randomly chosen = For each node, what is the portion of its
node has degree k. neighbors are connected.
{ejk : vj,vr € Ni,ep € E}
Go = ki(k; — 1) '
Paths |

= A path is a sequence of nodes in Largest connected component

which each node is linked to the
next one. » Largest node set where any two nodes

are connected to each other.

Diameter

= The maximum (shortest path) (A) 9 e
distance between any pair of
nodes in a graph.



Graph diameter
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source: Encyclopedia of Systems Biology
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Basic concepts of graph

Degree distribution Clustering coefficient
= Probability that a randomly chosen = For each node, what is the portion of its
node has degree k. neighbors are connected.
{ejk : vj,vr € Ni,ep € E}
Go = ki(k; — 1) '
Paths |

= A path is a sequence of nodes in Largest connected component

which each node is linked to the
next one. » Largest node set where any two nodes

are connected to each other.

Diameter

= The maximum (shortest path) (A) 9 e
distance between any pair of
nodes in a graph.



Local clustering coefficient

S

k,= ky= ky=
ny(v)=0 Nng(v)=1 Nng(v)=0 ny(v)=1 ny(v)=5
Cy= Gy =1 Oy C,=0.33 G, =1

emmm» EDGES CONNECTED TO v; e EDGES BETWEEN NEIGHBORS OF v, s OTHER EDGES
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Basic concepts of graph

Degree distribution Clustering coefficient
= Probability that a randomly chosen = For each node, what is the portion of its
node has degree k. neighbors are connected.
{ejk : vj,vr € Ni,ep € E}
Go = ki(k; — 1) '
Paths |

= A path is a sequence of nodes in Largest connected component

which each node is linked to the
next one. » Largest node set where any two nodes

are connected to each other.

Diameter

= The maximum (shortest path) (A) 9 e
distance between any pair of
nodes in a graph.



Connected component

012
34

There are two connected components in above undirected graph

source: https://www.geeksforgeeks.org/connected-components-in-an-undirected-graph/
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Analysis of networks: Protein-protein
interaction network

Download the data Diameter
Y tN tQ » Infinity (disconnected)
“m_ — Oe—'e a— Clustering coefficient
= 5487 nodes, 141,347 edges » 0.2485

Degree distribution Largest connected component

= 5481
= Diameter: 8

550 Degree Histogram
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Real networks vs. Random graph !

Are real networks like random graphs!?

550 Degree Histogram

200
150

(@]

Y 100
50

o N e -~ P PR ~—
100 200 300 400 500 600
Degree

Random graph PPl networks
Degree distribution Binomial Power law
Clustering coefficient P=0.0093 0.2485
Diameter Infinity 8

There are local structures
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How to understand this biological network?

Network motif
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Network motifs

Network motifs were first
systematically defined in
Escherichia coli (E. coli)
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Network motifs

Network motifs are defined as patterns of interconnections that recur in many
different parts of a network at frequencies much higher than those found in

randomized networks.
Another definition: Network motifs are statistically overrepresented sub-graph.

Another definition: Network motifs are the building blocks of networks which can
be used to characterize and discriminate networks.

A network motif has to be a connected subgraph.
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Compare with random network

randomized networks

real network
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Significance of different sub-graphs

Gene regulation _ Network significance profile
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Not only sub-graph frequency

Need to consider B. Instances
node properties Gene 1 Gene 4 Gene 7
o ® = ® = @

Gene2 Gene3 Gened Gene6 Gened Geneo
| II i

In every life cycle there
are predators and plants

Every company there are
managers and employees
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Network motif detection algorithm

Timeline

ESU :
FPF Grochow G-Iries

Kashtan NeMoFinder MODA

Sequential

Algorithms  Mfinder Fanmod Kavosh

I
|
—————— sa 2002 >2003 >2004 »>2005 »2006 »2007 2008}2009}201(|)§>...

Parallel ‘
Algorithms Wang Schatz Par-GTries
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Motif Detection Algorithm

» Finding size-k motifs requires two step:
— Enumerating all size-k connected subgraphs

— Counting #(occurrences of each subgraph type)

« Given two subgraph, we want to tell whether they are
isomorphism (NP-complete)

= Exact subgraph enumeration (ESU) [ Wernicke 2006 ]
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Exact Subgraph Enumeration

K=3

8 9 Root
G \3/
S Lo ooy @0 T T ]
/N 1}, {2,3,4,5}) ({2},{3,6,7}) ({3}, {8,9}) Kt S ik, (18}, 9)
5 6 ({1}, {2, 3,4, L9y O . ({5}, 0) ({7}, 0) ({9}, 0)

Next, you want to count all these subgraphs
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Exact Subgraph Enumeration

K=3

8 9 Root
G \3/ ‘
/ \ ¥ ¥ ¥
4 /1 2\ 7 l l l ({4}, 0) 1 ({6}, 0) 1 ({8}, 0) l
5 6 ({1}’{2a3)4a5}) ({2}’{3’6’7}) ({3}3{8’9}) ({5},Q) ({7}’@) ({9}’0)
| | |
V l v | Y
({1, 2}, {3,4,5,6,7}) ({2,3},1{6,7,8,9}) ) ({3,8},{9})
({1, 3}, {4,5,8,9}) ({2, 6}, {7}) | ({3, 9}, 0)
({1,4},{5}) v ({2,7}, 0)

| ({1,5},0)

Next, you want to count all these subgraphs
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Exact Subgraph Enumeration

K=3

8 9 Root
G \3/ ‘
/\ ¥ ¥ ¥
4 /1 2\ 7 l l l ({4}, 0) 1 ({6}, 0) 1 ({8}, 0) l
5 6 ({1}’{2’3’4a5}) ({2}’{3’6’7}) ({3}3{8’9}) ({5}’@) ({7}’@) ({9}’0)
| | |
¢ l ¢ ' ¢
({1, 2}, {3,4,5,6,7}) ({2,3},16,7,8,9}) | ({3,8}, {9})
({1,3},{4,5,8,9}) ({2, 6}, {7}) | ({3, 9}, 0)
({1,4},{5}) v

({1,5},0)

({2, 7}, 0)
{ J i J } { VR } ! ¢ ¥ ¥ ¥ v I
2 3

3 | 1 | 2 2 1 1 3 3 1 2 2 3 3
/\. /\ {\5 /N /\ /\ /\ /N /N /\ /N /N /\ /\ /\ /\
Next, you want to count all these subgraphs
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Enumerate size-k Subgraph Enumeration

= Two sets:
s Ve CUrrently constructed subgraphs.

m V  onsion SEL Of candidate nodes to extend the subgraphs.

= Intuition: Starting with a node v, add those nodes u to v, with two

properties of u:
= u's node id must be larger than that of v

= U may only be neighbored to some newly added node w but not of
any node already in v,

Xtension

ubgraph

= ESU is implemented as a recursive function:

= The running of this function can be displayed as a tree-like structure
of depth k, called the ESU-Tree
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Exact Subgraph Enumeration

Algorithm: ENUMERATESUBGRAPHS(G, k) (ESU)
Input: A graph G = (V, E) and an integer 1 < k < |V/|.
Output: All size-k subgraphs in G.

01 for each vertex v € V do

02 VEstension — {¢ € N({v}) : u > v}

03 call EXTENDSUBGRAPH ({v}, VEstension, V)
04/ return

EXTENDSUBGRAPH (Vsubgraph, VEztension, V)
E1 if |Vsubgrapn| = k then output G|Vsupgmpr] and return
E2 while Vigension 7 0 do
E3 Remove an arbitrarily chosen vertex w from Viggension
EY Vlfl':ctension L VE:L'tension U {u eN ezcl(wa VSubgra.ph) L u > ’U}
E5 call EXTENDSUBGRAPH(Vsybgraph U {W}, Virtensions V)
E6 return
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Graph Isomorphism

= If you ignore the node types/features and edge types/features, you will find some
subgraphs are topologically equivalent.

A 4
OA 10 20 B 7
G H 3
Bo C 1
D
< E F \ ; E ;
5
AN ) ’ F 8
‘G
G 2
I It | 6

= Graphs G and H are isomorphic if there exists a bijection f: V(G) — V(H) such

that: Any two nodes u and v of G are adjacent in G iff f(u) and f(v) are adjacent in
H.
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Graph Isomorphism Detection Algorithm

McKay’s Canonical Graph Labeling Algorithm: Nauty, Trace, Bliss all have
their own implementations of Mckay’s algorithm. [McKay 1981]

Time complexity exp(O(n2/3))

Intuition: First hash two graphs as two strings and then compare two strings.
Label each node according to their degrees first. Iterate over each edge.

Put a “1” if there is an edge between those two nodes, a "0" if not.

(1,2) (1,3) (1,4) (1,5) (1,6) 00100

" 2,3) (2,4) (2,5) (2,6) 0001
(3,4) (3,5) (3,6) 010
\ 6 3 (4,5) (4,6) 01
\ “ (5,6) 1
> N node: N * (N-1)/2 edges
S 001000001010011 5 node: 15 edges
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Graph Isomorphism Detection Algorithm

= But the order of the edge matters in this hash coding. To solve that problem we

want to enumerate all the orderings.
= We first sort the all the nodes according to their degrees.
= Within each degree bin, we enumerate all the orderings.

A,B,Ch D, Ef | {F}

{A,B,C} | {D, E} | {F} {A,C,B} | {D, E} | {F} {B,A,C} | {D, E} | {F} {B,C, A} | {D, E} | {F}

{A,B,C3 | {D, E} | {F} {A,B,C} | {E, D} | {F}

001000001010011 000100101000011 1

This hash code matches the previous one!
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