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Biological graphs
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Any dataset can be represented as a graph

• Step 1: how to build the graph from a dataset

- How to calculate the similarity between two entities?

- How to define the graph structure based on the similarity

• Step 2: what graph-based methods should be used for downstream 
applications

- Guilt-by-association

- Random walk, random walk with restart

- network embedding, graph neural network

- Interpretation (which edge or node is important)
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A patient network of 1000 nodes
• Each node is a patient
• No edge between two patients if the similarity 

score is too low
• Edge weight is the patient similarity

• How to calculate the similarity? Cosine or Euclidean
• ML models use Euclidean distance in the loss function

How to define the graph structure: kNN graph or a threshold graph
Use patient graph for drug response prediction
• Nearby patients have similar drug response



kNN graph or Threshold graph?
kNN graph Threshold graph

kNN graph: each node is connected to k neighbors that have the largest edge 
weights
• k is a hyperparameter
Threshold graph: each node is connected to neighbors that have an edge weight 
larger than x
• x is the hyper parameter

Source: Efficient small-world and scale-free functional brain networks at rest using k-nearest neighbors thresholding



Drug graph

Source: Molecular topology in QSAR and drug design studies

Node type



Protein graph
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Source: A-Alpha Bio



Use drug and protein graph for side effect prediction
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Source:Modeling polypharmacy side effects with graph convolutional networks



Why do we need to use graph?

• Use patient by gene matrix or patient by patient network?

- Use the original data is like operating on a fully connected network

- Transformer is like a fully connected graph neural network

• Advantage of using networks:

- Reduce noise in the data 

- Less computationally intensive

- Visualization and interpretation



Different types of graphs

Graphs from co-citation network

▪ Co-citation is defined as the frequency 
with which two documents  are 
cited together by other documents

▪ Undirected graph.

Graphs from citation network
▪ An edge represents a citation from the current publication to 

another. 

▪ Directed graph.
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Different types of graphs

Graphs from social network

▪ Nodes are users and edges 
indicates they are friends.
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Different types of graphs

Graphs 
in Cancer

Comprehensive genomic characterization of head and neck squamous cell carcinomas, Nature, 
2015
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How to build a graph from data ?

• What are nodes and edges?
• In what way nodes interact with each other?
• Directed or Undirected?
• Self-loop?
• Weighted or Unweighted?
• Signed or Unsigned?
• What are node attributes? 
• What are edge attributes?
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Some examples

▪ Facebook friendships: undirected, unweighted


▪ Co-citation networks: undirected, weighted


▪ Citation networks: directed, unweighted/weighted


▪ City subway networks: undirected, weighted


▪ Protein physical networks: undirected, weighted


▪ Genetic interaction networks: undirected, weighted, 
signed


▪ Gene regulatory networks: directed, unweighted, signed
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Representing graphs 

Adjacent matrix

1: 2

2: 3

Adjacent list


0 1 0
0 0 1
0 0 0

1

2

3

Edge set

(1, 2)

(2, 3)
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Basic concepts of graph

Degree distribution

▪ Probability that a randomly chosen 
node has degree k.

Diameter

▪ The maximum (shortest path) 
distance between any pair of 
nodes in a graph.

Paths

▪ A path is a sequence of nodes in 
which each node is linked to the 
next one.

Clustering coefficient
▪ For each node, what is the portion of its 

neighbors are connected. 

Largest connected component

▪ Largest node set where any two nodes 
are connected to each other.
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source: Encyclopedia of Systems Biology

Graph diameter
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Basic concepts of graph
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source: Encyclopedia of Systems Biology 18
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source: https://www.geeksforgeeks.org/connected-components-in-an-undirected-graph/

Connected component
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Analysis of networks: Protein-protein 
interaction network

Degree distribution

Diameter

▪ 5487 nodes, 141,347 edges

Clustering coefficient
▪ 0.2485

Largest connected component
▪ 5481

▪ Diameter: 8

Download the data
▪ Infinity (disconnected)
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Real networks vs. Random graph ?

Are real networks like random graphs?

Random graph PPI networks

Degree distribution Binomial Power law 

Clustering coefficient P=0.0093 0.2485

Diameter Infinity 8

There are local structures
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How to understand this biological network?

Network motif
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Network  motifs

Network motifs were first 
systematically defined in 
Escherichia coli (E. coli)

24



Network motifs

▪ Network motifs are defined as patterns of interconnections that recur in many 
different parts of a network at frequencies much higher than those found in 
randomized networks. 

▪ Another definition: Network motifs are statistically overrepresented sub-graph. 

▪ Another definition: Network motifs are the building blocks of networks which can 
be used to characterize and discriminate networks.


▪ A network motif has to be a connected subgraph.
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Compare with random network
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Significance of different sub-graphs

From Jure Leskovec slides
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Not only sub-graph frequency

Need to consider 
node properties

In every life cycle there 

are predators and plants

Every company there are 

managers and employees
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Network motif detection algorithm

Timeline

ESU
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Motif Detection Algorithm

▪ Finding size-k motifs requires two step:

– Enumerating all size-k connected subgraphs

– Counting #(occurrences of each subgraph type)


• Given two subgraph, we want to tell whether they are 
isomorphism (NP-complete) 

▪ Exact subgraph enumeration (ESU) [ Wernicke 2006 ]
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Exact Subgraph Enumeration

K=3

Next, you want to count all these subgraphs
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Exact Subgraph Enumeration

K=3

Next, you want to count all these subgraphs
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Exact Subgraph Enumeration

K=3

Next, you want to count all these subgraphs
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Enumerate size-k Subgraph Enumeration

▪ Two sets: 

▪  currently constructed subgraphs.

▪  set of candidate nodes to extend the subgraphs.


▪ Intuition: Starting with a node v, add those nodes u to  with two 
properties of u: 

▪ u’s node_id must be larger than that of v

▪ u may only be neighbored to some newly added node w but not of 

any node already in  


▪ ESU is implemented as a recursive function: 

▪ The running of this function can be displayed as a tree-like structure 

of depth k, called the ESU-Tree

𝑉𝑠𝑢𝑏𝑔𝑟𝑎𝑝h

𝑉𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛

𝑉𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛

𝑉𝑠𝑢𝑏𝑔𝑟𝑎𝑝h 
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Exact Subgraph Enumeration
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Graph Isomorphism

▪ If you ignore the node types/features and edge types/features, you will find some 
subgraphs are topologically equivalent.  

▪ Graphs G and H are isomorphic if there exists a bijection f: V(G) → V(H) such 
that: Any two nodes u and v of G are adjacent in G iff f(u) and f(v) are adjacent in 
H.

f
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▪ McKay’s Canonical Graph Labeling Algorithm: Nauty, Trace, Bliss all have 
their own implementations of Mckay’s algorithm. [McKay 1981]


▪ Time complexity exp(O(n2/3))

▪ Intuition: First hash two graphs as two strings and then compare two strings. 

▪ Label each node according to their degrees first. Iterate over each edge.

▪ Put a “1” if there is an edge between those two nodes, a "0" if not.

Graph Isomorphism Detection Algorithm
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▪ But the order of the edge matters in this hash coding. To solve that problem we 
want to enumerate all the orderings.


▪ We first sort the all the nodes according to their degrees.

▪ Within each degree bin, we enumerate all the orderings. 

Graph Isomorphism Detection Algorithm

D

F

E

A

B

C

{A,B,C} | {D, E} | {F}

{A,B,C} | {D, E} | {F} {A,C,B} | {D, E} | {F} {B,A,C} | {D, E} | {F}

{A,B,C} | {D, E} | {F} {A,B,C} | {E, D} | {F}

001000001010011 000100101000011

This hash code matches the previous one!

{B,C, A} | {D, E} | {F}
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