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CSE427: Computational methods for biology at
different scales
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Gene Protein complexes (function) Cell

Tissue Complex organism
(I'nm) (10-100nm ) (1-10 pm) (100 um 0 100 mm ) >l

A rich hierarchy of biological subsystems at multiple scales: genotypic variations in
nucleotides (I nm scale) -> proteins (1—-10 nm) -> protein complexes (10—100

nm), cellular processes (100 nm) -> phenotypic behaviors of cells (1-10 um),
tissues (100 pm to 100 mm), -> complex organisms (>1 m).

source: Yu, Michael Ku, et al. "Translation of genotype to phenotype by a hierarchy of cell subsystems.” Cell
systems 2.2 (2016): 77-38.



How a computer scientist study comp bio!
Understand the input and output first
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Biologists: which input should | use for this problem? Gene
expression?! Tissue Images!

Computer scientists: Given the input we have, which
method should we use to solve this problem!?



Data structure for each scale: protein

Gene Protein complexes (function) Cell Tissue Complex organism
t t

A sequence of amino acids/nucleic acids -> A sequence of word/character
NLP methods (edit distance, LSTM, BERT)

Computational challenge: modeling the order in the sequence
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Data structure for each scale: network

Gene Protein complexes (function) Cell Tissue Complex organism
A

A network of proteins/genes -> Social network
Graph analysis methods (random walk, pagerank, graph neural network)

Computational challenge: interaction, synergistic effect



Data structure for each scale: cell

ﬁ§§ = q S

Gene Protein complexes (function) Cell Tissue Complex organism
A

A cell by gene matrix -> vector/matrix (high-dimensional, no spatial information)
Dimensionality reduction methods (PCA, t-SNE, variety of embedding methods)

High-dimensional, noisy, large-scale



Data structure for each scale: tissue

Gene Protein complexes (function) Cell Tissue Complex organism
(I nm) (10-100nm ) (I=10um) (100 pm to 100 mm ) (>1cm)
A

Tissue image -> image analysis
Image analysis (segmentation, detection, CNN)

Image analysis, lack of high-quality annotations



Data structure for each scale: organism

Gene Protein complexes (function) Cell Tissue Complex organism
A

Disease mechanisms -> Multimodality

Integration of information from sequences, networks,
images and matrixes

Multi-modality and heterogeneous



How did they do this!?

Name A~ Size

q B 26455-P 2.fastq 25.84 GB

Your entire genome sequence
* fastq file

DNA sample

Sequencing machine
~2000 dollars

Our job as a computer scientist: analyze *.fastq file



What does a fastq file look like?

@QERROOO®589.41 EAS139_45:5:1:2:111/1
CTTTCCTCCCTGCTTTCCTGGCCCCACCATTTCCAGGGAACATCTTGTCAT
+
SITIITIIIITIIIII>1IITIIFFOBGOSBEOOIRIG+&?(4)%00646.C1#&(
@QERROO®589.42 EAS139_45:5:1:2:1293/1
AGTTGTTAAAATCCAAGCCAATTAAGATAGTCTTATCTTTTTAAAAGAAAT
+

ITIITIGITI.AIIII=?1I9G-/1II=+1=47761BA2C9I+5A711+&>1%/1

OO Ui WN -

Very large! ~300000000 lines
Quality: ASCII chars

What should we do? Map each short sequence (we call it read) to the entire human genome
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What does a fastq file look like?

Reference genome: “average" human genome.
Most widely used human genome GRCh38: derived from | 3 thirteen anonymous volunteers

Set of Reads Reference Genome
[:—:—_] [_ se 0 _]
Mapping

GATC GCAACGTACCGCCAGATACCGGGAACATACCATACGA

TCGGCGACGTA | GAACATACCA
Read 1 GCCAGATACC Read 3

Read 2

11

Image from Nebula Genomics



Processed data

countData colData

ctrl_1 |ctrl_2 |exp_1|exp_1 treatment sex
geneA| 10 11 56 45 ctrl_1 control male
geneB| O 0 128 54 ctrl_2 control | female
geneC| 42 41 59 41 exp_1 |treatment| male
geneD| 103 | 122 1 23 exp_2 |treatment| female
genekE| 10 23 14 56
gener| O 1 2 0 Sample names:

ctrl_1, ctrl_2, exp_1, exp_2

source: https://bioconnector.github.io/bims8382/r-rnaseg-airway.htmi



Finding alignments: trace back

Arrows = (ties for) max in F(i,j); 3 LR-to-UL paths = 3 optimal alignments
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Global Alignment VS. Local alignment
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Needleman-Wunsch algorithm Smith-Waterman algorithm
Initialization: F(0,0)=0 Initialization: F(0,j)=F(i,0)=0
Iteration: Iteration: ,

f i 0
Fi—1,j)—d . F(i, j) = max . Fii—1,j)—d
FG,j)=max < F(,j—1)-d i FGi,j—1)—-d
Fi—1,j—1)+s(x,y) | F(i—1,j—1)+s(x, y)
\ i \

Termination: Bottom right Termination: Anywhere




What is protein function prediction?
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Goal: classify each protein into its protein functions (multi-label)

Solution: find proteins with similar sequences
15



Problem setting for protein function prediction

Feature extraction
F--------------II
Protein 1 T :
MAEAPQVVEIDP...... RPRSGTWPLP .

Protein 2
SVLLRSGLGPLG...... VVAGFELAWQ

|
|
Protein 3 :
MAEAPQVVEIDP...... TWPLPRPEFS 1|

Classifier

» Known association

> Unknown association

—»

Label modeling
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process
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. T

small m ole‘cule
metabolic
process

C0O:0044238

primary
metabolic
process

CO:0071704

organic
substange
metabolic

CO:0009058

biosynthetic
process

CO:0005975

metabolic

carbohydrate

C0O:1901576

organic
substance
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Converting proteins to humeral features

———————————————————————————————————————————— —

Amino Acid Sequence One-hot
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source: Deep learning for drug repurposing: methods, databases, and applications



Protein protein network
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ONTOLOGICAL CLASSIFICATION
OF UNSEEN ANIMALS

$0O

Ontology of great cats




ONTOLOGICAL CLASSIFICATION
OF UNSEEN ANIMALS

$0O

Ontology of great cats
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ONTOLOGICAL CLASSIFICATION
OF UNSEEN ANIMALS

$0O

Ontology of great cats
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ONTOLOGICAL CLASSIFICATION
OF UNSEEN ANIMALS
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Ontology of great cats
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ONTOLOGICAL CLASSIFICATION
OF UNSEEN ANIMALS

$0O

Ontology of great cats
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ONTOLOGICAL CLASSIFICATION
OF UNSEEN ANIMALS

$0O

Ontology of great cats

aguar
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ONTOLOGICAL CLASSIFICATION
OF UNSEEN ANIMALS

:Ontology of great cats




solution: use gene ontology as side information

General ‘ |S a I”e\atIOﬂShlp

Fach node s a function. 23k functions In total.

Specific



solution: use gene ontology as side information

Seen functions
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solution: use gene ontology as side information

Protein embedding space
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solution: use gene ontology as side information

Protein embedding space
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solution: use gene ontology as side information

Protein embedding space
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Exact Subgraph Enumeration

K=3

8 9 Root
G \3/
/\ ¥ ¥ ¥
/1 2\ 7 l l l ({4}, 0) l ({6}, 0) l ({8}, 0) l
5 6 ({1}’{2,3,4v5}) ({2},{3a6’7}) ({3}a{8’9}) ({5}’0) ({7},@) ({9},0)
| | |
y l v | v
({1, 2}, {3,4,5,6,7}) ({2,3},{6,7,8,9}) | ({3, 8}, {9})
({1, 3}, {4,5,8,9}) ({2, 6}, {7}) | ({3, 9}, 0)
({1,4},{5}) v

({1,5},0)

({2, 7}, 0)
{ J i J } { VR ¥ v ¢ ¥ ¥ ! v I
2 3

3 1 1 2 2 1 1 3 3 1 2 2 3 3

/N /N /\. /N /N /N /\ /\ /\ /N /N /N /\ /\ /" /\
1-2 2 4 2 5 1 6 1 7 3 4 3 5 1 8 1 9 4 5 3 6 3 7 2 8 2 9 6 7 9 8
Node set (currently in the motif)
Candidate set (neighbors of node set)
Nodes in the candidate set must have larger node id than nodes in the

node set to avoid duplicate computing 31



Graph Isomorphism

= If you ignore the node types/features and edge types/features, you will find some
subgraphs are topologically equivalent.

A 4
OA 10 20 B 7
G H 3
Bo C 1
D
< E F \ ; E ;
5
AN ) ’ F 8
‘G
G 2
I It | 6

= Graphs G and H are isomorphic if there exists a bijection f: V(G) — V(H) such

that: Any two nodes u and v of G are adjacent in G iff f(u) and f(v) are adjacent in
H.

32



Graph Isomorphism Detection Algorithm

McKay’s Canonical Graph Labeling Algorithm: Nauty, Trace, Bliss all have
their own implementations of Mckay’s algorithm. [McKay 1981]

Time complexity exp(O(n2/3))

Intuition: First hash two graphs as two strings and then compare two strings.
Label each node according to their degrees first. Iterate over each edge.

Put a “1” if there is an edge between those two nodes, a "0" if not.

(1,2) (1,3) (1,4) (1,5) (1,6) 00100

" 2,3) (2,4) (2,5) (2,6) 0001
(3,4) (3,5) (3,6) 010
\ 6 3 (4,5) (4,6) 01
\ “ (5,6) 1
> N node: N * (N-1)/2 edges
S 001000001010011 5 node: 15 edges

33



Graph Isomorphism Detection Algorithm

= But the order of the edge matters in this hash coding. To solve that problem we

want to enumerate all the orderings.
= We first sort the all the nodes according to their degrees.
= Within each degree bin, we enumerate all the orderings.

A,B,Ch D, Ef | {F}

{A,B,C} | {D, E} | {F} {A,C,B} | {D, E} | {F} {B,A,C} | {D, E} | {F} {B,C, A} | {D, E} | {F}

{A,B,C3 | {D, E} | {F} {A,B,C} | {E, D} | {F}

001000001010011 000100101000011 1

This hash code matches the previous one!

34



Random walk interpretation

The vector r can be reinterpreted as a probability vector to visit
each website

® |magine a random web surfer
— At any time k, surfer has a probability vector
r* to visit a web page following the out-link.
— Process repeats indefinitely

rl — O ) 1/d2 ) eee ) l/dN rl
ry 0 F -
S B - r=Mr
r; : : E r;
lrdy , Vdy - Ldy



Overview of network-based stratification

a Binary (1,0) b
Somatic mutation matrix Network smoothing:
(patients x genes)
Draw a sample of genes : =
il O~ Gene-gene
and patients v imeracuon
Network smoothing:
for each patient, project mutations |
onto a network and propagate 7
Public Interaction AL
network X
Network clustering: !
cluster smoothed (patients x genes) O
matrix using network NMF o Patient X
genotype 1 U
Repeat N times &iPalicai O
genotype 2

Aggregate consensus matrix
(patient x patient) ® Co-occurrence of
genotype 1 and 2

Source: Network-based stratification of tumor mutations

36



Algorithm

Performing random walk with restart for each patient

Gene Gene Gene
o+ )
C
o 0 v
H "r_c; O
o o )

The new mutation

status for patient 1, gene ] Then consider all the
neighbors of gene j

First consider the mutations
for all the genes of patient 1

Source: Network-based stratification of tumor mutations

Gene

Patient

The original patient
mutation matrix

37



Random walk has stationary distribution when the graph is irreducible and aperiodic

* Irreducible: There is a path from every node to every

other node.
/ ® 4 °
Irreducible Not irreducible

38

Source: Random walk on graphs: an overview



" Aperiodic: The GCD of all cycle lengths is 1. The GCD
is also called period.

@
o/ 0/

Periodicity is 3 Aperiodic

The greatest common divisor of a set of whole numbers 1s the largest
integer which divides them all.

Example: The greatest common divisor of 12 and 15.
ged(12, 15).

Divisorsof 12: 1, 2, 3, 4, 6, 12.

Divisors of 15: 1, 3, 5, 15.

Common divisors: 1, 3.

Greatest common divisor 1s 3.

. .. ged(12, 15) =3.

Source: Random walk on graphs: an overview
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Solution: jump to a random node

At each time step, the random surfer has two options

= With prob. g, follow a link at random
= With prob. 1 -, jump to a random page
= Common values for g are in the range 0.8 to 0.9

r; 1
r= Zﬂz+(1—ﬁ)F
i—j !

1/d1 O rl
.
1/d, 1/d,
= | RO )
= J
o , Ve, .
: : Fn

40



Difference from random walk

Random walk

ryo 1/d, 0
. 1/d, 1/d,
') o | UV
Random walk with restart
. 1/d, 1/d,
. : :
: 0 1/d,

(1 =5)

41



From advanced matrix to random walk probability matrix

Probability similarity

Adjacency matrix matrix (sim..) Embeddings
G
(110--- 10) (71502 .1 .01) (125 35 27 \
101---10 09 .7 .05--- .12 .03 52 1.6 .7
010---00 01 .11 .7 --- .05 .04 : 1.1 3.67 4.7
N S Embeddmg
110---00 .05 .02 .08 --- .7 .01 222 8 14
\OOO--- 00) \_02 04 01 --- 01 .7) \4.1 0.78 3.51/
V] 4 d<|V]|

Image adapted from MultiVERSE: a multiplex and multiplex-heterogeneous network embedding approach



Somatic mutation profile

* Compare the mutations of tumors
* Sparse

Supplementary Figure 1
a c
350 N . .. o . ..’. . o . . o ’ s O
300 - i e Sl apsa ]
o 250} i e LTRSS 20
$ 200}
i3 - 40
a 150}
50} ) S
50 100 150 200 250 300 350 400 450 500 8 80
b Chr17 mutations -
S 100
12000 E
S MR Froquensy | |
10000 TP53 302 84.12% S
TTN 90 25.07% 5
MUC17 29 8.08%
€ 450 USHA 27 752% £ 140
3 MUC16 26 7.24% 5
S 400 CSMD3 25 6.96% Z
c 350 DST 24 6.69% 160
£ 300 HMCN1 23 6.41%
s FAT3 22 6.13%
S 250 RYR2 22 6.13% 180
= 200 FLG 21 5.85%
150 POB 30 S8
100 | 00 j
50
0 . — . . . — ‘ 220 P S S S S
0 50 100 150 _ 200 A 250 300 350 5 10 15 20 25 30
Number of patients per mutation Patient count

Source: Network-based stratification of tumor mutations 43



Precision medicine:

the right patient, the right drug, the right time, the right dose

One-size-fit-all

Medicine Stratified Medicine

» Demographics | W \Y L
« Socio-economic

» Clinical Features

« Biomarker

» Molecular sub-populations

Therapy
(Mainly Rx)

&

l" l rf\ .f,‘?”_l !'h | '['l

Benefit

pid

Adverse

Event Benef t

Frost and Sullivan: new paradigm shift in treatment.

Precision medicine ensures delivery
of the rightintervention to the right
patientat the righttime.

Precision Medicine

Patlents are grouped by: Individual patient level: : (V]
Disease Subtypes » Genomics and Omics
+ Risk Profiles A s « Lifestyle

O

« Preferences

« Health History

» Medical Records

« Compliance

« Exogenous Factors

#2572
ORaS
Companion Diagnostic (CDx)

Biomarker

Therapy
(Rx + Dx = CDx)

Each Patient Benefits From Individualized
Treatment




We don’t have so many “drugs”

e Discovery new drug!?
- Often not in the scope of precision medicine
- New patient cannot wait for a new drug
® Drug repurposing
- Drug A, which is used to treat disease X, is later used to treat disease Y
- Well-documented side effects and less restriction from FDA
® Drug combination

- DrugA is not effective. Drug B is not effective. Durg A and B used together
is effective.

® Personalized dosage

- Widely used in clinics. Use genomics data to determine dosage (regression).



Use gene expression after treatment

Drugs target on similar proteins or have similar Mode of Actions have similar (after

treatment) expression.

A Drug Pairwise Distance Community Identification B
= ®
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lorio et al. Discovery of drug mode of action and drug repositioning from transcriptional responses



Synthetic lethality: Gene A OR Gene B

@ Translation & RNA processing » N Ty o7 Gene A :
@ Chromatic modification S ‘ ~ ; 212
j —_—d NS
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. . N N g , A
@ Angiogenesis o 4 : toy
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viable lethal

Question: how to leverage SL in drug combination discovery?

Source: wikipedia, Jerby-Arnon et al. Predicting Cancer-Specific Vulnerability via Data-Driven Detection of Synthetic
Lethalrty



Drug treatment based on synthetic lethality

BRCA deficient
Normal cells
cancer cells
QIQ WI@V\ OI@)
(= oo o@
DNA damage @
@/ \ @/ *
Repair Repair Repair Repair
A\ J

AN J

1 © o1 o)
©, L
0" o

Survival Cell death

Goal: We want to make normal cells survive and kill cancer cells (BRCA deficient cancer cells)

Prior knowledge: PARP| (off) + BRCAI (off) -> cell death
Solution: Turn off PARPI using Olaparib
Results:

® Normal cells: PARPI (off) + BRCAI (on) -> cell survive
® Cancer cells: PARPI (off) + BRCAI (off) -> cell death

O = Olaparib

Gilad et al. Drug Combination in Cancer Treatment—From Cocktails to Conjugated Combinations



Drug combination prediction

@ )

Drug B

—

Classification
task

Regression
task

EaB< EA+ EB
Eas=EA+ EB
Eas> EA+ EB

123
Drug A

E(A) is the efficacy of using drug A (e.g., IC50)

VWu et al. Machine learning methods, databases and tools for drug combination prediction

Loewe
Bliss
HSA
ZIP



