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CSE427: Computational methods for biology at 
different scales
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A rich hierarchy of biological subsystems at multiple scales: genotypic variations in 
nucleotides (1 nm scale) -> proteins (1–10 nm) -> protein complexes (10–100 
nm), cellular processes (100 nm) -> phenotypic behaviors of cells (1–10 μm), 
tissues (100 μm to 100 mm), -> complex organisms (>1 m).

source: Yu, Michael Ku, et al. "Translation of genotype to phenotype by a hierarchy of cell subsystems." Cell 
systems 2.2 (2016): 77-88.



How a computer scientist study comp bio? 
Understand the input and output first
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Biologists: which input should I use for this problem? Gene 
expression? Tissue images? 
Computer scientists: Given the input we have, which 
method should we use to solve this problem?



Data structure for each scale: protein
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A sequence of amino acids/nucleic acids -> A sequence of word/character
NLP methods (edit distance, LSTM, BERT)

Complex organism
(>1cm)

Computational challenge: modeling the order in the sequence



Data structure for each scale: network
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Cell
(1–10 μm )
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(10-100nm )

A network of proteins/genes -> Social network 
Graph analysis methods (random walk, pagerank, graph neural network)

Complex organism
(>1cm)

Computational challenge: interaction, synergistic effect

Gene
(1 nm )
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Cell
(1–10 μm )

Tissue
(100 μm to 100 mm )

Protein complexes (function)
(10-100nm )

A cell by gene matrix -> vector/matrix (high-dimensional, no spatial information) 
Dimensionality reduction methods (PCA, t-SNE, variety of embedding methods)

Complex organism
(>1cm)

High-dimensional, noisy, large-scale

Data structure for each scale: cell

Gene
(1 nm )
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Cell
(1–10 μm )

Tissue
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Protein complexes (function)
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Tissue image -> image analysis
Image analysis (segmentation, detection, CNN)

Complex organism
(>1cm)

Image analysis, lack of high-quality annotations

Data structure for each scale: tissue

Gene
(1 nm )
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Cell
(1–10 μm )

Tissue
(100 μm to 100 mm )

Protein complexes (function)
(10-100nm )

Disease mechanisms -> Multimodality
Integration of information from sequences, networks, 
images and matrixes

Complex organism
(>1cm)

Multi-modality and heterogeneous

Data structure for each scale: organism

Gene
(1 nm )



How did they do this?

9

DNA sample
Sequencing machine

~2000 dollars

Your entire genome sequence
*.fastq file

Our job as a computer scientist: analyze *.fastq file



What does a fastq file look like?
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Very large! ~300000000 lines
Quality: ASCII chars

Quality Sequence Header

What should we do? Map each short sequence (we call it read) to the entire human genome



What does a fastq file look like?

11Image from Nebula Genomics

Reference genome: “average" human genome. 
Most widely used human genome GRCh38: derived from 13 thirteen anonymous volunteers



12source: https://bioconnector.github.io/bims8382/r-rnaseq-airway.html

Processed data



Finding alignments: trace back

j 0 1 2 3 4 5

i C A T G T     ¬Y
0 0 -1 -2 -3 -4 -5

1 A -1 -1 1 0 -1 -2

2 C -2 1 0 0 -1 -2

3 G -3 0 0 -1 2 1

4 C -4 -1 -1 -1 1 1

5 T -5 -2 -2 1 0 3

6 G -6 -3 -3 0 3 2
­
X

Arrows = (ties for) max in F(i,j); 3 LR-to-UL paths = 3 optimal alignments





What is protein function prediction?
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Human body = country

Single cell = town

Protein function = 
fireproof, soundproof, etc.

Solution: find proteins with similar sequences

Goal: classify each protein into its protein functions  (multi-label)

Protein = brick, window, 
carpet, etc.



Problem setting for protein function prediction
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MAEAPQVVEIDP……RPRSGTWPLP

SVLLRSGLGPLG……VVAGFELAWQ

MAEAPQVVEIDP……TWPLPRPEFS

Protein 1

Protein 2

Protein 3

Known association
Unknown association

Feature extraction

Label modeling

Classifier



Converting proteins to numeral features

source: Deep learning for drug repurposing: methods, databases, and applications



Protein protein network
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General

Specific

“is_a” relationship

Each node is a function. 23k functions in total.

solution: use gene ontology as side information
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Seen functions

solution: use gene ontology as side information
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Machine learning 
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Input Predict

Protein embedding space
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Exact Subgraph Enumeration

K=3
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Node set (currently in the motif)

Candidate set (neighbors of node set)

Nodes in the candidate set must have larger node id than nodes in the 
node set to avoid duplicate computing



Graph Isomorphism

▪ If you ignore the node types/features and edge types/features, you will find some 
subgraphs are topologically equivalent.  

▪ Graphs G and H are isomorphic if there exists a bijection f: V(G) → V(H) such 
that: Any two nodes u and v of G are adjacent in G iff f(u) and f(v) are adjacent in 
H.

f

32



▪ McKay’s Canonical Graph Labeling Algorithm: Nauty, Trace, Bliss all have 
their own implementations of Mckay’s algorithm. [McKay 1981]


▪ Time complexity exp(O(n2/3))

▪ Intuition: First hash two graphs as two strings and then compare two strings. 

▪ Label each node according to their degrees first. Iterate over each edge.

▪ Put a “1” if there is an edge between those two nodes, a "0" if not.

Graph Isomorphism Detection Algorithm
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6

5

1

2

3

(1,2) (1,3) (1,4) (1,5) (1,6)

(2,3) (2,4) (2,5) (2,6)

(3,4) (3,5) (3,6)

(4,5) (4,6)

(5,6)

00100

0001

010

01

1

001000001010011
N node: N * (N-1)/2 edges


5 node: 15 edges
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▪ But the order of the edge matters in this hash coding. To solve that problem we 
want to enumerate all the orderings.


▪ We first sort the all the nodes according to their degrees.

▪ Within each degree bin, we enumerate all the orderings. 

Graph Isomorphism Detection Algorithm

D

F

E

A

B

C

{A,B,C} | {D, E} | {F}

{A,B,C} | {D, E} | {F} {A,C,B} | {D, E} | {F} {B,A,C} | {D, E} | {F}

{A,B,C} | {D, E} | {F} {A,B,C} | {E, D} | {F}

001000001010011 000100101000011

This hash code matches the previous one!

{B,C, A} | {D, E} | {F}
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Random walk interpretation

The vector r can be reinterpreted as a probability vector to visit 
each website

• Imagine a random web surfer
– At any time k, surfer has a probability vector 

 to visit a web page following the out-link.

– Process repeats indefinitely

𝑟𝑘
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Overview of network-based stratification
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Binary (1,0)

Public Interaction 
network

➔ ➔ ➔

Source: Network-based stratification of tumor mutations



Algorithm 

Performing random walk with restart for each patient
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The new mutation 

status for patient 1, gene j

First consider the mutations 
for all the genes of patient 1

Then consider all the 

neighbors of gene j 

The original patient 
mutation matrix

37Source: Network-based stratification of tumor mutations



38Source: Random walk on graphs: an overview

Random walk has stationary distribution when the graph is irreducible and aperiodic 



39Source: Random walk on graphs: an overview



Solution: jump to a random node

At each time step, the random surfer has two options
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▪ With prob. , follow a link at random 

▪ With prob. , jump to a random page 

▪ Common values for  are in the range 0.8 to 0.9
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Difference from random walk

Random walk
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From advanced matrix to random walk probability matrix

Image adapted from MultiVERSE: a multiplex and multiplex-heterogeneous network embedding approach

RWR Embedding



Somatic mutation profile

• Compare the mutations of tumors
• Sparse

43Source: Network-based stratification of tumor mutations



Precision medicine: 
the right patient, the right drug, the right time, the right dose

Frost and Sullivan: new paradigm shift in treatment.



We don’t have so many “drugs”

• Discovery new drug?

- Often not in the scope of precision medicine

- New patient cannot wait for a new drug

• Drug repurposing

- Drug A, which is used to treat disease X, is later used to treat disease Y

- Well-documented side effects and less restriction from FDA

• Drug combination

- Drug A is not effective. Drug B is not effective. Durg A and B used together 
is effective.

• Personalized dosage

- Widely used in clinics. Use genomics data to determine dosage (regression).



Use gene expression after treatment
Drugs target on similar proteins or have similar Mode of Actions have similar (after 
treatment) expression.

Iorio et al. Discovery of drug mode of action and drug repositioning from transcriptional responses



Synthetic lethality: Gene A OR Gene B

Source: wikipedia, Jerby-Arnon et al. Predicting Cancer-Specific Vulnerability via Data-Driven Detection of Synthetic 
Lethality

Question: how to leverage SL in drug combination discovery?



Drug treatment based on synthetic lethality

Gilad et al. Drug Combination in Cancer Treatment—From Cocktails to Conjugated Combinations

Goal: We want to make normal cells survive and kill cancer cells (BRCA deficient cancer cells)
Prior knowledge: PARP1 (off) + BRCA1 (off) -> cell death
Solution: Turn off PARP1 using Olaparib
Results: 
• Normal cells: PARP1 (off) + BRCA1 (on) -> cell survive
• Cancer cells: PARP1 (off) + BRCA1 (off) -> cell death



Wu et al. Machine learning methods, databases and tools for drug combination prediction

Drug combination prediction

E(A) is the efficacy of using drug A (e.g., IC50)


