CSE 427 Computational Biology

Biological graphs

Any dataset can be represented as a graph

- Step I: how to build the graph from a dataset
 - How to calculate the similarity between two entities?
 - How to define the graph structure based on the similarity
- Step 2: what graph-based methods should be used for downstream applications
 - Guilt-by-association
 - Random walk, random walk with restart
 - network embedding, graph neural network
 - Interpretation (which edge or node is important)

Patient graph

A patient network of 1000 nodes

- Each node is a patient
- No edge between two patients if the similarity score is too low
- Edge weight is the patient similarity
- How to calculate the similarity? Cosine or Euclidean
 - ML models use Euclidean distance in the loss function

How to define the graph structure: kNN graph or a threshold graph

Use patient graph for drug response prediction

000 patients

• Nearby patients have similar drug response

kNN graph: each node is connected to k neighbors that have the largest edge weights

• k is a hyperparameter

Threshold graph: each node is connected to neighbors that have an edge weight larger than \boldsymbol{x}

• x is the hyper parameter

Drug graph

Source: Molecular topology in QSAR and drug design studies

Protein graph

Use drug and protein graph for side effect prediction

Why do we need to use graph?

- Use patient by gene matrix or patient by patient network?
 - Use the original data is like operating on a fully connected network
 - Transformer is like a fully connected graph neural network
- Advantage of using networks:
 - Reduce noise in the data
 - Less computationally intensive
 - Visualization and interpretation

Different types of graphs

Graphs from co-citation network

- Co-citation is defined as the frequency with which two documents are cited together by other documents
- Undirected graph.

Graphs from citation network

- An edge represents a citation from the current publication to another.
- Directed graph.

Different types of graphs

Graphs from social network

 Nodes are users and edges indicates they are friends.

Different types of graphs

Comprehensive genomic characterization of head and neck squamous cell carcinomas, Nature, 2015

How to build a graph from data ?

- What are nodes and edges?
- In what way nodes interact with each other?
- Directed or Undirected?
- Self-loop?
- Weighted or Unweighted?
- Signed or Unsigned?
- What are node attributes?
- What are edge attributes?

Some examples

- Facebook friendships: undirected, unweighted
- Co-citation networks: undirected, weighted
- Citation networks: directed, unweighted/weighted
- City subway networks: undirected, weighted
- Protein physical networks: undirected, weighted
- Genetic interaction networks: undirected, weighted, signed
- Gene regulatory networks: directed, unweighted, signed

Representing graphs

Adjacent matrix

 $\begin{array}{ccccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$

Adjacent list

1: 2 2: 3

Edge set

(1, 2) (2, 3)

Basic concepts of graph

Degree distribution

 Probability that a randomly chosen node has degree k.

Paths

 A path is a sequence of nodes in which each node is linked to the next one.

Diameter

 The maximum (shortest path) distance between any pair of nodes in a graph.

Clustering coefficient

• For each node, what is the portion of its neighbors are connected.

 $C_i = rac{|\{e_{jk}: v_j, v_k \in N_i, e_{jk} \in E\}|}{k_i(k_i-1)}.$

Largest connected component

 Largest node set where any two nodes are connected to each other.

Graph diameter

Basic concepts of graph

Degree distribution

 Probability that a randomly chosen node has degree k.

Paths

 A path is a sequence of nodes in which each node is linked to the next one.

Diameter

 The maximum (shortest path) distance between any pair of nodes in a graph.

Clustering coefficient

• For each node, what is the portion of its neighbors are connected.

 $C_i = rac{|\{e_{jk}: v_j, v_k \in N_i, e_{jk} \in E\}|}{k_i(k_i-1)}.$

Largest connected component

 Largest node set where any two nodes are connected to each other.

source: Encyclopedia of Systems Biology

Basic concepts of graph

Degree distribution

 Probability that a randomly chosen node has degree k.

Paths

 A path is a sequence of nodes in which each node is linked to the next one.

Diameter

 The maximum (shortest path) distance between any pair of nodes in a graph.

Clustering coefficient

• For each node, what is the portion of its neighbors are connected.

 $C_i = rac{|\{e_{jk}: v_j, v_k \in N_i, e_{jk} \in E\}|}{k_i(k_i-1)}.$

Largest connected component

 Largest node set where any two nodes are connected to each other.

Connected component

There are two connected components in above undirected graph 0 1 2 3 4 Analysis of networks: Protein-protein interaction network

Download the data

• 5487 nodes, 141,347 edges

Degree distribution

Diameter

Infinity (disconnected)

Clustering coefficient

• 0.2485

Largest connected component

- **5481**
- Diameter: 8

Real networks vs. Random graph ?

Are real networks like random graphs?

	Random graph	PPI networks
Degree distribution	Binomial	Power law
Clustering coefficient	P=0.0093	0.2485
Diameter	Infinity	8

There are local structures

How to understand this biological network?

Network motif

Network motifs

Network motifs were first systematically defined in Escherichia coli (E. coli)

Network motifs

- Network motifs are defined as patterns of interconnections that recur in many different parts of a network at frequencies much higher than those found in randomized networks.
- Another definition: Network motifs are statistically overrepresented sub-graph.
- Another definition: Network motifs are the building blocks of networks which can be used to characterize and discriminate networks.
- A network motif has to be a connected subgraph.

Compare with random network

Significance of different sub-graphs

From Jure Leskovec slides

Not only sub-graph frequency

are predators and plants

managers and employees

Network motif detection algorithm

Timeline

Motif Detection Algorithm

- Finding size-k motifs requires two step:
 - Enumerating all size-k connected subgraphs
 - Counting #(occurrences of each subgraph type)
 - Given two subgraph, we want to tell whether they are isomorphism (NP-complete)
- Exact subgraph enumeration (ESU) [Wernicke 2006]

K=3

Next, you want to count all these subgraphs

K=3

Next, you want to count all these subgraphs

K=3

Next, you want to count all these subgraphs

Enumerate size-k Subgraph Enumeration

- Two sets:
 - *V*_{subgraph} currently constructed subgraphs.
 - $V_{extension}$ set of candidate nodes to extend the subgraphs.
- Intuition: Starting with a node v, add those nodes u to V_{extension} with two properties of u:
 - u's node_id must be larger than that of v
 - *u* may only be neighbored to some newly added node w but not of any node already in V_{subgraph}
- ESU is implemented as a recursive function:
 - The running of this function can be displayed as a tree-like structure of depth k, called the ESU-Tree

Algorithm: ENUMERATESUBGRAPHS(G, k) (ESU) **Input:** A graph G = (V, E) and an integer $1 \le k \le |V|$. **Output:** All size-k subgraphs in G.

01 for each vertex
$$v \in V$$
 do

$$02 \qquad V_{Extension} \leftarrow \{u \in N(\{v\}) : u > v\}$$

03 **call** EXTENDSUBGRAPH(
$$\{v\}, V_{Extension}, v$$
)

EXTENDSUBGRAPH($V_{Subgraph}, V_{Extension}, v$)

E1 if
$$|V_{Subgraph}| = k$$
 then output $G[V_{Subgraph}]$ and return

E2 while
$$V_{Extension} \neq \emptyset$$
 do

E3 Remove an arbitrarily chosen vertex
$$w$$
 from $V_{Extension}$

$$E4 \qquad V'_{Extension} \leftarrow V_{Extension} \cup \{u \in N_{excl}(w, V_{Subgraph}) : u > v\}$$

E5 **call** EXTENDSUBGRAPH(
$$V_{Subgraph} \cup \{w\}, V'_{Extension}, v$$
)

$$E6$$
 return

Graph Isomorphism

 If you ignore the node types/features and edge types/features, you will find some subgraphs are topologically equivalent.

 Graphs G and H are isomorphic if there exists a bijection f: V(G) → V(H) such that: Any two nodes u and v of G are adjacent in G iff f(u) and f(v) are adjacent in H.

Graph Isomorphism Detection Algorithm

- McKay's Canonical Graph Labeling Algorithm: Nauty, Trace, Bliss all have their own implementations of Mckay's algorithm. [McKay 1981]
- Time complexity exp(O(n2/3))
- Intuition: First hash two graphs as two strings and then compare two strings.
- Label each node according to their degrees first. Iterate over each edge.
- Put a "1" if there is an edge between those two nodes, a "0" if not.

(1,2) (1,3) (1,4) (1,5) (1	,6) 00100
(2,3) (2,4) (2,5) (2,6)	0001
(3,4) (3,5) (3,6)	010
(4,5) (4,6)	01
(5,6)	1
00100001010011	N node: N * (N-1)/2 edges 5 node: 15 edges

5 node: 15 edges

Graph Isomorphism Detection Algorithm

- But the order of the edge matters in this hash coding. To solve that problem we want to enumerate all the orderings.
- We first sort the all the nodes according to their degrees.
- Within each degree bin, we enumerate all the orderings.

Acknowledgement

- Part of the slides are from
 - Dr. Jianzhu Ma's lecture on graphs in machine learning