CSE 427 Computational Biology

Lecture 8
Graph diffusion



| st-order proximity only models local structure
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Q:Which node is topologically similar to the S
red node!

----

Direct neighbors: two nodes are considered similar if they share an edge



2nd-order proximity only models local structure

Q:Which node is topologically similar to the
red node!

--.
- 'S

----

Neighbors' neighbors: two nodes are considered similar if they share many
neighboring/adjacent nodes



Key idea:
high-order (nth-order) proximity models global structure
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Q:Which node is topologically similar to the ~ /-._.-
red node!

--.
- 'S

----

All nodes in the graph: two nodes are considered similar if their distances to all
other nodes are similar



The Math:

use diffusion model on each node to calculate topological similarity

Input: adjacency matrix
of the hierarchy (undirected)

l

S*'=01-p)S'B+p.l




The Math:

use diffusion model on each node to calculate topological similarity

Input: adjacency matrix
of the hierarchy (undirected)

l

S*'=01-p)S'B+p.l

T |

Random walk to Restart to the original
neighbors node

Node i and node j are topologically similar if s; is similar to s;



The Math:

use diffusion model on each node to calculate topological similarity

Input: adjacency matrix
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Output: equilibrium distribution s; starting from node : 1 l
1 _
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The Math:

use diffusion model on each node to calculate topological similarity

Input: adjacency matrix

lterate £ = {0,1,...} until S+ ~ S' . of the hierarchy (undirected)

Output: equilibrium distribution s; starting from node : 1 l
1 _
8% = (1-p)S'B+p,l

T |

Random walk to Restart to the original
neighbors node




Motivation

= Given a set of web pages with links between them, we would like to rank
the pages in order of importance.

= We can model this as a graph problem where web pages are vertices
and links are edges.

Important Page 6 Unimportant 1. A link from an important

node node edge is more significant than
a link from an unimportant
web page.

Page 3 significant than being linked from

2. Being linked from a page with
many outgoing links is less

a page with few outgoing




Random walk

Every node votes for its neighbors and gets votes from

neighbors . . ,
» Each link’s vote is proportional to the

importance of its source node

= If node i with importance r; has d; out-
links, each link gets r;/ d; votes

= node i’s own importance r; is the sum of
the votes on its in-links

rl- =r2/d2+l‘3/d3+r4/d4

]"4/ d4
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Random walk

Every node votes for its neighbors and gets votes from
neighbors

How can you solve so
many equations together?

I’4/ d4

ri=72/d2+r3/d3+r4/d4
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What is a Random Walk

Given a graph and a starting node, we select a neighbor of it at
random, and move to this neighbor

Source: Ahmed Hassan Random Walks on Graphs Classification, Clustering, and Ranking
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What is a Random Walk

We select a neighbor of it at random, and move to this neighbor

Source: Ahmed Hassan Random Walks on Graphs Classification, Clustering, and Ranking
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What is a Random Walk

Then we select a neighbor of this node and move to it,and so on.

Source: Ahmed Hassan Random Walks on Graphs Classification, Clustering, and Ranking
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What is a Random Walk

The (random) sequence of nodes selected this way is a random walk on the graph

Source: Ahmed Hassan Random Walks on Graphs Classification, Clustering, and Ranking
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Adjacency Matrix vs. Transition Matrix

* A transition matrix 1s a stochastic matrix where each
element a; represents the probability of moving from i to
J, with each row summing to 1.

Adjacency Matrix Transition Matrix

0 1/2 1/2 0
/3 0 1/3 1/3
0O 0 0 1

Source: Ahmed Hassan Random Walks on Graphs Classification, Clustering, and Ranking 16



Markov chains

*A Markov chain describes a discrete time stochastic process
over a set of states
S={s;, S,, ... S}

according to a transition probability matrix
P={P,}
P, = probability of moving to state j when at state

* Markov Chains are memoryless: The next state of the chain
depends only at the current state

Source: Ahmed Hassan Random Walks on Graphs Classification, Clustering, and Ranking 17



Stationary Distribution

* x,(i) = probability that the surfer is at node i at time ¢

* X () = 2 X(1) - Py

* X, =x,P=x,PP=x,P
* What happens when the surfer keeps walking for a

long time?
— We get a stationary distribution

Source: Ahmed Hassan Random Walks on Graphs Classification, Clustering, and Ranking 18



Stationary Distribution

* The stationary distribution at a node 1s related to the
amount of time a random walker spends visiting that node

* When the surfer keeps walking for a long time, the
distribution does not change any more: x,, (i) = x,(i)

* For “well-behaved” graphs this does not depend on
the start distribution

Source: Ahmed Hassan Random Walks on Graphs Classification, Clustering, and Ranking 19



Hitting Time

* How long does 1t take to hit node b 1n a random
walk starting at node a ?

* Hitting time from node 1 to node ]

* Expected number of hops
to hit node j starting at node i.

* Not symmetric
* h(ij) =1+ 24 ¢agie) POLK) h(kj)

Source: Ahmed Hassan Random Walks on Graphs Classification, Clustering, and Ranking 20



Commute Time

* How long does i1t take to hit node b 1n a random
walk starting at node a and come back to a?

* Commute time from node i to node j

* Expected number of hops
to hit node j starting at node i
and come back to i.

* Symmetric

* c(ij) = h(ij) T h(.1)

Source: Ahmed Hassan Random Walks on Graphs Classification, Clustering, and Ranking 21



e Random walk

 Starting from different node results in the same probability
distribution

e Random walk with restart
 Starting from different node results in different probability distribution

Input: adjacency matrix

|terate f = {O 1 } Until Sl‘+1 ~ St Of the hierarchy (undirected)

Output: equilibrium distribution s; starting from node l
+1 __ [
ST ={0-p)S'B+p,l1

T |

Random walk to Restart to the original
neighbors node

Source: Network-based stratification of tumor mutations 22



Random Walk

Then we select a neighbor of this node and move to it, and so on.

Source: Ahmed Hassan Random Walks on Graphs Classification, Clustering, and Ranking
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Random walk

The flow equations can be written:

r = Mr

Fq _ l/dl O , 1/dN &

r

2 1/d,| 1/d, 0 2

5 i b Fj
0 I7d, I7dy

ry : ry

M is a Markov matrix since each column sums equal to 1

24



How to solve this ?

Power lteration method

Y 1 1
Initialize: ¥ =1

While ||/ — ||, > 0.0001:

rktl = Mk

1
N’ N"“’W]

T

1/d,
1/d,

0

)

)

)

0
1/d,

1/d,
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Random walk interpretation

The vector r can be reinterpreted as a probability vector to visit
each website

® |magine a random web surfer
— At any time k, surfer has a probability vector
r* to visit a web page following the out-link.
— Process repeats indefinitely

rl — O ) 1/d2 ) eee ) l/dN rl
ry 0 F -
S B - r=Mr
r; : : E r;
lrdy , Vdy - Ldy



Problem of random walk

Dead ends
(1)
0—0 /-3

! i di Dead-ends are a problem

because the matrix is not

Example: column stochastic so our

Iteration: O, 1, 2, 3... o )
initial assumptions are not
r, 0 1 0 10



Random walk has stationary distribution when the graph is irreducible and aperiodic

* Irreducible: There is a path from every node to every

other node.
/ ® 4 °
Irreducible Not irreducible

28

Source: Random walk on graphs: an overview



" Aperiodic: The GCD of all cycle lengths is 1. The GCD
is also called period.

@
o/ 0/

Periodicity is 3 Aperiodic

The greatest common divisor of a set of whole numbers 1s the largest
integer which divides them all.

Example: The greatest common divisor of 12 and 15.
ged(12, 15).

Divisorsof 12: 1, 2, 3, 4, 6, 12.

Divisors of 15: 1, 3, 5, 15.

Common divisors: 1, 3.

Greatest common divisor 1s 3.

. .. ged(12, 15) =3.

Source: Random walk on graphs: an overview
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Solution: jump to a random node

At each time step, the random surfer has two options

= With prob. g, follow a link at random
= With prob. 1 -, jump to a random page
= Common values for g are in the range 0.8 to 0.9

r; 1
r= Zﬂz+(1—ﬁ)F
i—j !

1/d1 O rl
.
1/d, 1/d,
= | RO )
= J
o , Ve, .
: : Fn

30



Difference from random walk

Random walk

ryo 1/d, 0
. 1/d, 1/d,
') o | UV
Random walk with restart
. 1/d, 1/d,
. : :
: 0 1/d,

(1 =5)

31



Matrix representation v.s. vector representation

Input: adjacency matrix

lterate £ = {0,1,...} until S+ =~ S of the hierarchy (undirected)

Output: equilibrium distribution s; starting from node : 1 l
1 _
8% = (1-p)S'B+p,l

T |

Random walk to Restart to the original
neighbors node

Node i and node j are topologically similar if s; is similar to s;
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Random walk with restart

® Random walk with restart is the same as random walk other than the fact that jumps are
back to one of a given set of starting vertices.

® |n a way, the walk in Random walk with restart is biased towards (or personalized for)
this set of starting vertices and is more localized compared to the random walk.

33



Functions of random walk

|. Smooth the whole graphs

2.Assign importance score
3. Quantify the distance of two nodes

4.Want to integrate information beyond the neighbors

34



Guilt-by-association rule

® Assign a label to a node using its neighbor’s labels

O
© Qo ° 1 o
N e
O O A _— \
o/ \/OB—@/O
O
O / O
O & O~

(O Unstudied protein

@® Protein associated with ageing

~— Protein-protein interaction

Source: Aging research in the post-genome era: New technologies for an old problem



Guilt-by-association rule

® [ast and scalable to large networks
e But only utilize information of | st-order neighbors

Rank all genes
by weighted sum of
links to seed set

o 00 o0 Q
. (&) > (6}
o® oo 4
© | 0 o
66 \ Gg
‘Seed’ genes that Top-ranked candidates for
exhibit phenotype showing phenotype

of interest

Source: Broad network-based predictability of Saccharomyces cerevisiae gene loss-of-function phenotypes



Drug target identification using guilt-by-
association

. Target

Source: Drug repositioning by integrating target information through a heterogeneous network model



Network embedding and graph
neural network



SimCLR: Contrastive Learning using data
augmentation

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering

39



Using network is like data augmentation

Maximize agreement
Z; -

g(’)I

h; +— Representation —»
A

f()
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The Math:

use diffusion model on each node to calculate topological similarity

Input: adjacency matrix
of the hierarchy (undirected)

l

S*'=01-p)S'B+p.l
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The Math:

use diffusion model on each node to calculate topological similarity

Input: adjacency matrix
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| |

Random walk to Restart to the original
neighbors node

Node i and node j are topologically similar if s; is similar to s;
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The Math:

use diffusion model on each node to calculate topological similarity
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The Math:

use diffusion model on each node to calculate topological similarity

Input: adjacency matrix

lterate £ = {0,1,...} until S+ ~ S' . of the hierarchy (undirected)

Output: equilibrium distribution s; starting from node : 1 l
1 _
8% = (1-p)S'B+p,l

| |

Random walk to Restart to the original
neighbors node
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From advanced matrix to random walk probability matrix

Probability similarity

Adjacency matrix matrix (sim..) Embeddings
G
(110--- 10) (71502 .1 .01) (125 35 27 \
101---10 09 .7 .05--- .12 .03 52 1.6 .7
010---00 01 .11 .7 --- .05 .04 : 1.1 3.67 4.7
N S Embeddmg
110---00 .05 .02 .08 --- .7 .01 222 8 14
\OOO--- 00) \_02 04 01 --- 01 .7) \4.1 0.78 3.51/
V] 4 d<|V]|

Image adapted from MultiVERSE: a multiplex and multiplex-heterogeneous network embedding approach



Network embedding: decomposing diffusion matrix

Optimization goal: find class embedding {xi} and context embedding {ul}
so that {§l} s close to {Si}.

Observed s; T

xlu,
A _ e / ~ xTu
bl Y= o
Zk eri Tk Drop the partition function for
Minimize fast approximation
Difference
u Loss function: min C(S, S) = x u; — log s;)?
Model s; 7 Z Z / /

i=1 j=1

46



Network embedding for network integration

Network 1 Network 2 Network K
@II . .ll .})IIHII.II
: : N N N\ \ RN\ NI
Diffusion state %) ////.« ) ), O),/ / /N
¥ 1 =

Probability
\\O// /
Qy, y
o

Node v

Observed s;

bl

Minimize
Difference

Lkl

Model s;
T, A} O O (iiIIl(.’L’i) =d<&n

ok
8;; oc exp{x;

Global vector - L Network-specific vector

Compact Integration of Multi-Network Topology for Functional Analysis of Genes



Network embedding for heterogenous network integration

- § .‘A Interaction, association Interaction, association k-0
L 2B - and simiarity matrices and similarity matrices N
| 2 A u| (I
Drug—drug Drug—disease - Protein—protein

- R

e A

Drug side-effect  Drug similarities

&!‘.&.‘A A

Protein-disease Protein similanties

| O I I |
] r—r—t—t

Compact feature Compact .feature
leaming learning
‘V' -
Matrix representation Maltrix representation - r
of drug features Projection matrix of protein features Pi=x2y',
4 A A 1 4
f f T = £
X, X X o f Y P Na
ERAEN N
<+« N v ' - - - |
Low-dimensional vector ' I . N,
representation of drug features ' Y Badalion soaia of
“ : > drug-protein interactions
d N
® ........ Low-dimensional vector l
-= = L] representation of protein features
N, : number of drugs nPEEN
N, : number of proteins L L
{.: di CU L
s+ dimension of drug features 5 EEE N
f,: dimension of protein features N Analysis and validation

Known drug-protein interactions

A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information



Recap

® Guilt-by-association
® Only use |st-order neighbors’ information
® A good baseline that works very well in many applications.
® Random walk
® Find the most important node. Consider all nodes in the graph.
® Might not converge due to dead end issue
® Random walk with restart
® Solved dead end issue.
® Does not have node features. Only one importance score for each node.
® Network embedding
¢ Reduce RWR matrix to low-dimensional

® Better for large and noisy network



Goal

* [umor stratification: to divide a heterogeneous

population i

o clinically and biologica

meaningful su

btypes based on molecu

Y
ar profiles
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Somatic mutation profile

o Compare the mutations of tumors
* Sparse

Supplementary Figure 1
a c
350 N . .. o . ..’. . o . . o ’ s O
300 - i e Sl apsa ]
o 250} i e LTRSS 20
$ 200}
i3 - 40
a 150}
50} ) S
50 100 150 200 250 300 350 400 450 500 8 80
b Chr17 mutations -
S 100
12000 E
S MR Froquensy | |
10000 TP53 302 84.12% S
TTN 90 25.07% 5
MUC17 29 8.08%
€ 450 USHA 27 752% £ 140
3 MUC16 26 7.24% 5
S 400 CSMD3 25 6.96% Z
c 350 DST 24 6.69% 160
£ 300 HMCN1 23 6.41%
s FAT3 22 6.13%
S 250 RYR2 22 6.13% 180
= 200 FLG 21 5.85%
150 POB 30 S8
100 | 00 j
50
0 . — . . . — ‘ 220 P S S S S
0 50 100 150 _ 200 A 250 300 350 5 10 15 20 25 30
Number of patients per mutation Patient count

Source: Network-based stratification of tumor mutations 51



Overview of network-based stratification

a Binary (1,0) b
Somatic mutation matrix Network smoothing:
(patients x genes)
Draw a sample of genes : =
il O~ Gene-gene
and patients v imeracuon
Network smoothing:
for each patient, project mutations |
onto a network and propagate 7
Public Interaction AL
network X
Network clustering: !
cluster smoothed (patients x genes) O
matrix using network NMF o Patient X
genotype 1 U
Repeat N times &iPalicai O
genotype 2

Aggregate consensus matrix
(patient x patient) ® Co-occurrence of
genotype 1 and 2

Source: Network-based stratification of tumor mutations
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C  Network NMF: minllF - WHII + y1IW LIl
W.H>0

Genes

Patients k

d Network-based stratification

Source: Network-based stratification of tumor mutations

HI=cluster)(
U g K
assignments

Patients

L = network influence
constraint

Patients

sjusned

53



Network smoothing

* P = ARA + (1-0)F
Fo: patients * genes matrix

A: adjacency matrix of the gene interaction network
(STRING, HumanNet and PathwayCommons)

Q: tuning factor that determines how far a mutation
signal can diffuse

Source: Network-based stratification of tumor mutations
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Algorithm

Performing random walk with restart for each patient

Gene Gene Gene
o+ )
C
o 0 v
H "r_c; O
o o )

The new mutation

status for patient 1, gene ] Then consider all the
neighbors of gene j

First consider the mutations
for all the genes of patient 1

Source: Network-based stratification of tumor mutations

Gene

Patient

The original patient
mutation matrix

55



Results- NBS of somatic tumor mutations

d
NBS
Standard
consensus
clustering
—~ - NBS - Permuted NBS
% 150 .~ Standard consensus clustering 100 ¢
= 90 | | m High grade, serous type
[ | High grade,
B | Endomeérioid type
- c 70} @ Low grade,
2 100} 2 ool endometrioid type
75 Q @ Other
? S5 50}
S 8 40/
o 50 E a0}
= z
)
g 10}
% 0 e e 0
T 12345678 9101112 123
: Number of subtypes (k) Subtype

Source: Network-based stratification of tumor mutations



10

Overall survival (log-rank statistic) Q.

Overall survival (log-rank statistic) ==

30

25t

20}

15}

Ovarian

| '

50
45t
40t
35t
30t
25t
20t
15¢
10¢

2 3 4 5 6 7 8
Number of subtypes (k)

123456789101112
Number of subtypes (k)

Source: Network-based stratification of tumor mutations

e Ovarian Hazard

1.0 subtype n R.vs.2
—_ 1 64 217

0.9} —2 231 -
08l — 3 "4 066

5 . 4 21 0.40

= 071! Log-rank P = 1.59 x 107

Q + At + +

S o6}

g 0.

a 05

%’ 04|

— 0

@ ey
0.2} "y
01} o+

0 20 40 60 80 100 120
Time (months)

Lung Hazard

0Q

subtype n R.vs.3
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-2 24 1.60
— 345 -
> -4 10 14.9
= 540 0.96
o -— 6 10 3.45
8 Log-rank
g ;P: 1.95 x 12'6
2 =
E |
=
(7]

0 10 20 30 40 50 60 70 80
Time (months)
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Network view of genes with high network-smoothed mutation scores in HumanNet
ovarian cancer type |

HumanNet interaction score

Lower Higher
confidence confidence

Importance to ovarian cancer, subtype 1

o £ )

_ Lesser Greater AHD1
importance importance

Cancer gene status

Validated
cancer genes

O Unknown

Functional categories , Hg
@ Protein transport ' ‘ 8 S
@ Fibroblast growth factor
® Cytoskeletal
Caspase pathway
® pB-catenin signaling

Source: Network-based stratification of tumor mutations
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From mutation-derived subtypes to
expression signatures

a 1o b C
>
S - 1.0-
g :-c; 0.8 g L Log-rank P=1.04 x 10—3 = Log-fank P=6.0x 10_3
- = ©
S & 06} S g % 0.8-
c 2 o =
- 2 =S
8@ 04 G 06 - S 0.6-
5O 1----F4- 2 =
b7 b - + .+ I
o O2F T 0.4- 2 0.4-
O g %% — subtype 1(77) € "1 — Subtype 1 (100)
o4 , . > — Subtype 2 (125) g ,| — Subtype 2 (157)
S s S0 S B 021 — Subtype 3 (27) & 921 — subtype 3 (6)
@,\0 & &P 4 — Subtype 4 (57) O — Subtype 4 (1)
0\\ m ' | 1§ | | 1 1] ] ] L] 1] )
e R~ 0O 10 20 30 40 50 60 0O 10 20 30 40 50 60
Time (months) Time (months)

Source: Network-based stratification of tumor mutations 59



Biological significance

Different clusters of patients have different survival rates !

— 1.0 -3 1.01 -3

= Log-rank P=1.04 x10 " ~ Log-rank P =6.0 x 10

= ©

2 0.8 - ‘;:» 0.8 -

g % 0.6

O 06 . t =22

b + 4+ 4+ §

® - 'S 0.4+

g 041 — Subtype 1 (77) ; — Subtype 1 (100)

3 —— Subtype 2 (125) g ool Subtype 2 (157)

5 0214 — Subtype 3 (27) ?>’~ ' - Subtype 3 (6)

2 Subtype 4 (57) To Subtype 4 (1)

lO ) | I |l | 1 ] ] I I I 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Time (months) Time (months)

Source: Network-based stratification of tumor mutations



Random walk with restart for drug response prediction

rs | Drug response
(e.g. 1C50)

Cell lines

Gene expressions

Perform Network Identify response correlated
transformation of genes (RCG) and use them as the
gene expressions restart set for a RWR

Network

Knowledge-guided gene prioritization reveals new insights into the mechanisms of chemoresistance



Algorithm

Performing random walk with restart for each patient

Gene Gene Gene
o+ )
C
o 0 v
H "r_c; O
o o )

The new mutation

status for patient 1, gene ] Then consider all the
neighbors of gene j

First consider the mutations
for all the genes of patient 1

Source: Network-based stratification of tumor mutations

Gene

Patient

The original patient
mutation matrix
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How to incorporate node features into RVWR

* T[he restart probability on each node Is a vector now
e k., =arA + (I-OQ)F,
Fo: patients * genes matrix

A: normalized adjacency matrix of the gene interaction network

Q: restart probability

Question: what is the limitation of incorporating node features in this way!?



How to incorporate node features into RVWR

* The restart probability on each node Is a vector now

« F, = aFA+ (I-O)F,

Fo: patients * genes matrix

A: normalized adjacency matrix of the gene interaction network

Q: restart probability

Question: what is the limitation of incorporating node features in this way!?

Different node features are modeled independently.

This is why we need graph neural network which will model the dependency between
features
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Deep Learning on Graphs

s Each node has its own features
= The embedding of each node is a
function of its own features and its

neighbors’ features.

node vector
— RN
fru—->R* - J

Rd
Feature representation,
embedding



Stack multiple layers

node vector

N First layer
_ J

~
]Rd
Feature representation,
embedding

fiu—- R4

node vector

’\------j For the second layer, the
e

feature is the hidden output

d .
R by the first layer
Feature representation,

embedding

f:u—- R?




One common mistake: Graphs are not Images

Adjacent matrix of a Graph



But Images can be modeled as Graphs

Graphical
Neural Network




