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Abstract—Recently there has been a trend toward online 
collaborative problem-solving. However, many systems either 
lack enough structure for participants to know where they can 
contribute or are too restrictive to allow collaborative solving. In 
this paper, we present our research prototype, CoSolve, a website 
that helps users cooperatively solve problems in a novel manner: 
solving sessions are represented visually as state-space search 
trees which solvers collaboratively generate, traverse and interact 
with online. We describe the problem-posing and problem-
solving processes in our system, and present the affordances we 
designed for encouraging self-reflection and collaboration in the 
problem-solving process. Finally, we present observations from a 
user study conducted with teams of solvers who used CoSolve to 
solve a city-building problem. Users found CoSolve easy to use 
and helpful in problem solving. In addition, the study provides 
evidence that the state-space-search organization of problem-
solving activity can serve effectively as the framework for human 
interaction in a computer-supported collaborative problem-
solving system. 

Keywords-computer-supported collaborative work, problem-
solving, collaboration 

I.  INTRODUCTION 
The rise of social technologies for the web has led to the 

creation of new tools for collaboration. The idea of 
crowdsourcing problem-solving has gained momentum in the 
past decade, both commercially, e.g. Amazon’s Mechanical 
Turk (MTurk) [1] and Innocentive [2], and in academia, e.g. 
Polymath Project [3].  MTurk allows users to hire remote 
workers on the web for small jobs. This structured approach 
has the advantage of providing huge numbers of workers with 
well-defined tasks; however more open-ended, creative, 
problem-solving tasks are less appropriate in this system. 
Additionally, many crowdsourcing systems are not directly 
collaborative; solvers either have no contact with one another, 
as in MTurk, or solvers compete with each other, as in 
Innocentive, rather than work together. 

At the other extreme are loosely organized, very creative, 
problem-solving projects such as those found in Substepr [4], 
or in Tim Gowers’ successful Polymath project [5] [6], which 
has gathered mathematicians together to cooperatively solve 
research problems in their field through blog entries, threaded 
online comments, and wiki pages. However, new participants 

have to wade through a lot of past discussion, and it may be 
difficult for them to understand what state the project is in, and 
where one can best contribute. 

Is there a middle ground where collaborative problem-
solving can occur, while allowing a structured process and 
manageable, defined tasks? To explore this idea, we developed 
CoSolve, a web-based collaborative problem-solving 
environment, which uses state-space search to provide structure 
while offering tools to enhance collaboration. CoSolve was 
briefly described in [7] and [8], but additional collaboration 
features have been added, and this paper covers the first formal 
user study of the system.  

CoSolve draws on Herbert Simon’s idea of design as state-
space search [9] by visualizing problem-solving with state-
space search trees that problem solvers collaboratively generate 
and explore, eventually finding possible solution states to their 
problem as they construct branches of the tree. While there has 
been much past work on the theory of problem-solving (for 
example, [10]) and on problem-solving environments, such as 
work by Vass [11], Berry et al. [12], Brodie [13], Jonassen 
[13], Dewan [14], CoSolve is novel in its use of the state-
space-search paradigm to structure the collaborative problem 
solving process. CoSolve allows solvers to see an overview of 
the solutions others have tried, and to work towards solutions 
collaboratively. The tree-based interface provides an easy way 
to delve down and work on a specific solution in a manner that 
is easy for others to follow. Additionally, CoSolve’s interface 
allows the possibility of humans and computer agents solving 
problems together, because the tree-based representation can be 
both visualized for human understanding and processed by a 
computer agent. 

To test this notion of computationally visualizing state-
space search, we created a prototype called TStar (described in 
[15], [16], [17]), a desktop program for visualizing a state-
space search as a tree that users could generate. However, 
TStar was not easily usable for synchronous groupwork. As a 
result, CoSolve was then developed as a web application, and 
problems can be both posed and solved through its web 
interface.  

Our system has been informed by much previous work in 
the field of user interfaces for collaboration. Dourish and 
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Bellotti’s work on CSCW systems identified the need for group 
awareness [18] which informed our evolution from TStar to 
CoSolve. CoSolve users engage in mixed-focus collaboration, 
as discussed in [19] and [21], when they move between 
working on their own branches of the tree to evaluating their 
group’s work on the entire tree; Section IV discusses their 
mixed-focus usage in more detail. Park et al. [23] and Heldal et 
al. [20] stress the importance of supporting an individual’s 
ability to work independently when engaged in collaboration. 
To keep users’ tree views in sync without disturbing each 
individual’s work, we queued up their teammates’ changes, 
similar to work done by Suthers et al. [22], but we empowered 
users by displaying a “Refresh” indicator (discussed in Section 
IV) that showed how many updates from teammates were in 
the queue, and allowing the user to click the indicator to update 
his or her view to include new changes when desired. There 
also exists previous work involving collaborative graph 
representations (e.g. [19], [22]). However, no system to date 
has explored using a state-space-search model for collaborative 
problem-solving visualization. 

CoSolve’s key premise is that the state-space-search 
problem-solving methodology can serve as the framework for 
human interaction within a collaborative problem-solving 
system. The main question then is whether human users are 
able to understand and successfully use state-space-search for 
problem solving or, on the contrary, they find such a 
representation too confusing or cumbersome to use. Secondly, 
how could such a framework aid solvers’ understanding of 
their own collaborative problem-solving processes, and as a 
result, improve their collaborative efforts? 

To answer these research questions, we conducted a user 
study with small teams of users collaborating to solve a city-
simulation problem we formulated called CitySim. To address 
the issue of users’ understanding of their collaborative process, 
we also tested the CoSolve Consultant, a specific set of tools 
we built within CoSolve for enhancing group awareness and 
metacognition during the collaborative problem-solving 
process. In the following sections, we describe CoSolve’s 
problem-solving process and user interface. Then, we briefly 
explain CoSolve’s problem-posing process and provide a short 
technical description of the CoSolve system. Finally, we 

discuss our user study and its results, and end with directions 
for future work in tree-based problem-solving interfaces. 

II. COSOLVE DESCRIPTION 
In CoSolve, a user can perform the role of a problem poser, 

a problem solver, or both.  A problem poser specifies problems 
by creating problem templates, and a problem solver initiates 
and participates in CoSolve solving sessions for a particular 
problem template. We first examine the problem-solving 
process. Then we describe the CoSolve Consultant, a tool 
which provides metacognitive prompts to the solvers in the 
form of additional views and the presentation of metrics that 
allow users to understand the dynamics of their problem-
solving process. Finally we briefly discuss the problem-posing 
process.  

A. Problem Solving in CoSolve 
In a solving session, a team of solvers generates a state-

space search tree that explores the solution space for a problem, 
typically with the goal of finding a state in the tree that 
represents an acceptable solution. Figure 1 shows an example 
of a solving session tree for the Towers of Hanoi problem. 
Towers of Hanoi is a simple puzzle with pegs and differently-
sized disks. The goal is to move all the disks on the left peg 
onto the far right peg, moving only one disk onto a peg at a 
time, and never placing a larger disk on top of a smaller disk. 

To solve this problem in CoSolve, a first member of a team 
of solvers uses the web interface to initialize a new solving 
session from the Towers of Hanoi problem template in 
CoSolve. The team is then presented with a single node, the 
root node, at the top of the tree. This node represents the initial 
state of the puzzle--all the disks on the first peg.  Then any 
solver on the team clicks on the node to select and apply an 
operator to transform this state into another. For example, the 
solver might select the operator “Move smallest disk to far 
right peg.” When the solver does so, CoSolve generates the 
next state, showing the disk moved to the right, and displays it 
to the user as a child of the root node, with a line connecting 
the two. From there, solvers can either continue to create 
children of the most recently created nodes, or they can 
backtrack to create new branches. Figure 1 shows several 
nodes that have been created by users, with multiple branches.  
Solvers can view all branches of nodes and can apply operators 
to nodes they created or nodes other solvers have created.  The 
goal is to eventually find a state or path to a state that satisfies 
the criteria to solve the problem. 

CoSolve can be used to solve a variety of different classes 
of problems. Obviously, it can be used for any well-defined 
problems with explicit, discrete moves that are applied in 
sequence, and that have clearly specified winning criteria, like 
chess or Towers of Hanoi. When we used CoSolve in class 
projects for undergraduate computer science courses, students 
have created problem templates for this class of problems, e.g., 
problem templates for sudoku, checkers, poker, stratego and 
other games, or puzzles like pentominoes or the 15-puzzle. 
Students have also created tools such as a class scheduler or 
transistor schematics diagramming tool. Other such templates 
created by undergraduate researchers in our lab have included 

 
Figure 1. An example of a CoSolve tree, from a solving session for the 
Towers of Hanoi problem, with the problem’s initial state shown at top. 
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minesweeper, a simple fantasy role-playing game, and two 
ecological/environmental simulation problems.  

We have also explored CoSolve problem templates in a 
mathematics education context. A plane geometry construction 
template allows students to apply operators to draw a circle, 
draw a line, etc. to solve geometry problems. Another template 
allows students to visually explore functional composition.  
When used for education, CoSolve allows a teacher to see all 
the paths that students have explored and inspect their work at 
any step, allowing discovery of misconceptions and assessment 
of each student’s contribution. 

CoSolve can also be used in a very different manner: for 
creative problems that require subjective, human evaluation, 
such as design problems. For example, if a team is designing a 
playground, CoSolve states can be used to represent alternative 
layouts of the playground, and examples of problem operators 
might be “place a jungle gym in the northwest corner of the 
playground” and “use sand under the swing set.” Another 
example is the Color Swatch problem template. A website 
designer and his client could use CoSolve to explore color 
palette possibilities. Each state is a palette of colors, and 
solvers can use operators to change RGB and HSV values of 
individual colors, or the whole set (e.g. “select complementary 
colors”).  Users can explore, and the entire history of their 
exploration is saved. Here, there are no clearly specified goal 
criteria. Instead, CoSolve becomes a tool to aid discussion, 
brainstorming and consensus. We have also used CoSolve to 
aid in designing educational card games, as described in [7]. 
Each state is a game description, and designers apply operators 
to change game rules, for example, to change the number of 
cards allowed in a starting hand.  Used in this manner, CoSolve 
becomes a way for human solvers to explore the space of 

possibilities in a visual way, and it provides a record that 
facilitates revisiting the many different ideas they may have 
developed. 

 Figure 2 depicts a solving session for the CitySim problem 
(described later in Section III.A). The tree is displayed in the 
main area of the viewport, and a variety of user controls are 
available on the left. In the upper left corner are controls for 
zooming, switching to different tree layouts, and switching 

 
Figure 2. Close-up of a node in a solving-session tree for the CitySim 
problem. The node operations menu below the state image, and the buttons 
and information above, are hidden by default and displayed on mouse-over. 

 

 
Figure 3. A CoSolve solving session, with the Full CoSolve Consultant. Pan and zoom controls are in the upper left, the Annotations List is in the bottom left.  

207
Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 16,2024 at 18:18:14 UTC from IEEE Xplore.  Restrictions apply. 



between different state views (e.g. perhaps the solver wants to 
view a pie chart of the costs of playground equipment, or 
maybe a birds-eye view instead, etc.).  

Figure 3 shows a close-up of a single node in a CitySim 
solving session tree. Underneath the node representation is a 
menu of node operations. Solvers select an operator to apply to 
the state, highlight the node for reference, or textually annotate 
the node as a form of communication with other solvers. There 
are three types of annotations: “positive” (thumbs-up), 
“neutral” (thumbs-sideways), and “negative” (thumbs-down). 
Solvers can use these to indicate whether they believe the node 
to be on the path to a good solution or not.  All annotations 
created anywhere in the tree are immediately displayed in the 
Annotations List, a box in the lower-left corner of the user 
interface (Figure 2).  Clicking on an annotation in the 
Annotations List will pan and zoom the user’s tree view to 
display the associated node. 

B. The CoSolve Consultant 
To help users understand their own collaborative problem-

solving process, and thereby possibly collaborate better, we 
developed the CoSolve Consultant for solvers to use within 
CoSolve while solving. We created this after the initial 
development of CoSolve. The Consultant interface can be seen 
on the left of the image in Figure 2, between the Visual 
Controls and the Annotations List. Some of the more important 
features include: 

Highlighting.  One of the most important features of 
CoSolve is being able to zoom out and view the entire solving 
session at once and thus reason about the session’s history and 
what can be done next.  In the early versions, it was difficult to 
show individual node details, such as node creator, and the 
presence of annotations, at a high-level view. We addressed 
this issue by allowing users to select automatic color 
highlighting of nodes. For example, highlighting by creator sets 
the highlight surrounding a node to be a different color based 
on who created that node. Solution-path highlighting applies 
one color to all the nodes in the tree that are along the path to 
the best solution found so far, and another color to the rest. 
Other types of highlighting include highlighting by number of 
annotations: the more annotations a node has, the darker the 

color. Other metrics that are highlighted in this manner are 
creation time (recency), node score, and annotation type 
balance (lighter color if node has more positive than negative 
annotations). These types of views encourage users to take a 
high-level view of their problem-solving process. 

Session and solver statistics.  In order to keep solvers 
informed about the progress of their team and contributions of 
their teammates, the Consultant offers a number of metrics that 
provide statistics about the work done so far.  These include 
simple counts such as the total number of nodes and 
annotations, as well as richer measures that describe the shape 
of the tree, and the contributions of individual solvers.  

High-level guidance.  To most new solvers, CoSolve 
presents a new approach to problem-solving.  As such, solvers 
are often unsure of how to proceed, and are unaware of high-
level strategies that may make their task easier.  These can, of 
course, be acquired through experience, but to speed up the 
process, the Consultant includes metrics intended to get solvers 
to think about the possibilities and implications of their actions, 
and it places judgments on some in order to hint at ‘good’ 
solving behavior.  For instance, CitySim allows solvers to place 
six different types of buildings, and the profile computed for 
each solver displays the number that solver has tried, and is 
designed to encourage experimentation in this area. 

Solvers access the last two features, statistics and high-level 
guidance, by clicking on the corresponding menu items in the 
Consultant interface. This brings up information windows as 
seen in Figure 4, and these information windows have links to 
additional information. 

C. Problem Posing in CoSolve 
To use CoSolve for problem solving, a description of the 

problem must first be programmatically represented within 
CoSolve as a problem template. This is done through a web 
form where problem posers enter scaffolded Python code 
fragments. CoSolve combines the fragments and applies them 
as needed during the subsequent solving activities. 

A poser must specify two parts of a problem: (1) the state 
representation, or structure, of a problem, and (2) a set of 
operators for transforming each state into a resulting new child 
state.  To specify the state structure to be used in a problem, 
posers enter key-value pairs into a special Python dictionary 
state variable that CoSolve provides.  The keys represent a 
state’s fields. The keys for Towers of Hanoi might be peg1, 
peg2, and peg3, and the values would be which disks are on 
that peg; if our disks are numbered 1, 2, and 3, then the initial 
state for the Towers of Hanoi problem might be: 
{"peg1":[1,2,3], "peg2":[], " peg3":[]}.  

Optionally, when specifying the state variable, the poser 
may also provide a visualization method for the problem’s 
states using scaffolded Python code; otherwise, a default 
representation outputting the key-value pairs of a state will be 
displayed to the user. 

Next, to create operators, posers specify two things: the 
precondition code and the state transformation code. The state 
transformation code is Python code that alters the values in the 
current state. For instance, if the solver applies the “move 

 
Figure 4. This figure shows some of the statistics and other information 

made available to solvers via the CoSolve Consultant.
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smallest disk to far right peg” operator on the initial state, the 
Python code that the poser wrote for this operator would 
change the values of the first-peg and third-peg keys 
appropriately, and the resulting state would be represented as: 
{" peg1":[2,3], "peg2":[], "peg3":[1]}. The 
precondition code checks whether the operator can validly be 
applied to a state; for instance, if a solver tries to place a larger 
disk on top of a smaller disk, this would cause a precondition to 
fail and the solver will be unable to execute that operation. 

In part because problem posing does involve some minimal 
coding, we decided to separate it from problem solving, so that 
it would be easier for non-programmers to solve problems with 
CoSolve.  At the same time, posers with different levels of 
technical background have been able to create problem 
templates. For example, the CoSolve posing interface has been 
successfully used in undergraduate classes, both for computer 
science majors and non-majors, to create a range of problem 
template projects, as mentioned in Section II.A. 

D. Implementation 
CoSolve is a website built on top of Drupal (a PHP/SQL 

content management system) [24], and therefore uses many of 
its existing and add-on functionalities, such as user accounts 
and profiles, user groups, and so on. To implement CoSolve’s 
backend, we wrote Drupal modules to create the problem-
posing interface, and to generate and store solving-session trees 
and Consultant information. These are all independent of the 
solving session interface. 

There are a number of alternative user interfaces for 
interacting with a solving-session tree. We have developed an 
HTML/Ajax interface and a Flash interface for the CoSolve 
website; there is also a separate Java interface. These all 
interact with CoSolve through a web service API. In this paper, 
we focus on the Flash interface, which is shown in all our 
screenshots. 

III. USER STUDY 

A. CitySim Problem Description 
As mentioned in Section II.A, for the purposes of this user 

study, we created a problem template entitled CitySim, a turn-
based city-simulation, for our subjects to solve.  It was inspired 
by Maxis’s SimCity game [25],[26]. A close-up of a CitySim 
state can be seen in Figure 3. A CitySim state consists of a 
10x10 grid of a “city,” upon which different types of buildings 
can be placed.  Each building costs the city money to place, and 
each placed building has a different type of effect on its cell 
and the cells around it; some buildings provide employment, 

residential buildings provide population, other buildings 
provide or reduce happiness, which affects employment, some 
buildings increase taxes which generates income for the city. 
The goal of CitySim is to find a way to place 30 buildings in 
the grid such that the city earns the most money; the money 
value at a state is the “score” for that state, and the final, overall 
score for a solving session is the highest score achieved over 
the entire session. 

B. Study Design 
 Eighteen subjects (11 male, 7 female, ranging from 18 to 

31 years of age) were divided into six teams of three subjects 
each. They were recruited via the Internet and with flyers on a 
university campus, and by word of mouth, and were 
compensated with $20 gift cards. One team at a time was 
scheduled to come into the lab for the session together, with 
each subject seated at a separate computer. 

After filling out consent forms, pretests on their knowledge 
of graphs and trees, and background questionnaires on their 
experience with collaboration tools, approximately 25 minutes 
were spent in a tutorial on how to use CoSolve, explaining 
CitySim rules, and on sample tasks in the problem. Then the 
participants began their task. They were told that they needed 
to achieve the highest overall score among the teams in the 
study, and that the winning team would receive an additional 
$20 gift card per person.  

The task was divided into three 25-minute phases with a 
five minute break in between each, for a total of 75 minutes on 
the task. During all three phases, a team worked using the same 
solving session tree.  Due to a scheduling issue, Team 1 only 
worked for two 25-minute phases, but we have included them 
in our data.  While working on the task, subjects were asked to 
communicate with each other only through CoSolve, not 
verbally out loud, despite being co-located.  To test whether the 
CoSolve Consultant was helpful, three teams used the Full 
Consultant (FC) version of the interface [Figure 2], whereas the 
other three teams saw only a stripped-down interface called the 
Minimal Consultant (MC), which did not have any of the 
exploration score, collaboration score, session overview, or 
user profile menu items, and only the default highlighting 
option (highlight tree by creator) was available to them.  

After the activity, we conducted one-on-one post-activity 
interviews with each subject, looking over his or her solving 
session tree and asking them to describe their problem-solving 
processes. They also filled out a post-test and a wrap-up 
questionnaire on their impressions of CoSolve and their 
attitudes toward collaboration after having done their activity. 

TABLE 1. TEAM RESULTS

Minimal Consultant (MC) Full Consultant (FC) 
Team 1 Team 3 Team 5 Team 2 Team 4 Team 6 

CitySim score 33087 26576 26865 31314 14848 20352 

Number of Nodes in Tree 178 399 320 264 392 101 

Total number of Annotations 38 25 5 21 22 55 

- Positive Annotations 17 18 4 7 7 5 

- Neutral Annotations 20 7 0 12 15 48 

- Negative Annotations 1 0 1 2 0 2 
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C. Study Results 
 shows each team’s CitySim scores, number of nodes 

created, and number of annotations created, by type. The teams 
did well in terms of score; when we were developing the 
CitySim template, we did not achieve more than 30,000 points 
in a solving session, but two teams were able exceed that score. 
Also of note is that the teams varied greatly in terms of 
numbers of nodes created, with Teams 3 and 4 creating almost 
400 nodes, while Team 6 only created 101 nodes, and Team 1, 
who had less time, created 178. 

There was no significant difference in score and solution 
outcomes between the FC and MC groups, though there were 
differences in the collaborative process. FC users tended to 
create more neutral annotations than the MC users; on average, 
76.5% of a FC user's annotations were neutral compared to 
26.8% in the MC condition (two-tailed t-test, p=0.00041, 
significant). At the same time, the FC users had a lower 

percentage of positive annotations (19.7% versus 60.3%, 
p=0.00251, significant).  There was no significant difference in 
negative annotations; both groups created very few of these.  

We found that FC users did collaborate more actively with 
each other in creating a solution than MC users.  To 
quantitatively capture the nature of each team's collaboration, 
we calculated metrics such as turn-taking and solution path 
inequality.  Turn-taking is defined as the percentage of nodes a 
user created that were the children of nodes created by other 
teammates, rather than by the user himself. FC condition users 
had a higher rate of turn-taking than MC condition users 
(14.6% vs 6.0%, p=0.03, significant).  

Solution path inequality (SPI) measures each team’s users’ 
contributions on the solution path from the root of the tree to 
the leaf node containing the final highest-scoring state in the 
tree. Since each solution path contains 30 nodes, one per 
CitySim building, a perfectly equal path would have ten nodes 
from each of the three teammates, hence SPI is calculated 

TABLE 2. SUBJECTS’ LIKERT-SCALE RESPONSES REGARDING THE COSOLVE CONSULTANT.  

 Control (Minimal Consultant, n=9) Experimental (Full Consultant, n=9) 

Question Strongly 
Disagree

Disagree Neutral Agree Strongly 
Agree 

Strongly 
Disagree 

Disagree Neutral Agree Strongly 
Agree 

Q1. The CoSolve Consultant was difficult to use 22.2% 44.4% 22.2% 11.1% 0.0% 22.2% 44.4% 33.3% 0.0% 0.0% 

Q2. The CoSolve Consultant was helpful in playing the 
game 

33.3% 11.1% 44.4% 11.1% 0.0% 0.0% 0.0% 22.2% 66.7% 11.1% 

Q3. The CoSolve Consultant was difficult to learn 22.2% 44.4% 33.3% 0.0% 0.0% 22.2% 66.7% 11.1% 0.0% 0.0% 

Q4. The CoSolve Consultant was helpful in 
understanding my team’s problem-solving process 

22.2% 33.3% 22.2% 22.2% 0.0% 11.1% 33.3% 22.2% 33.3% 0.0% 

Q5. The CoSolve Consultant helped my team collaborate 11.1% 33.3% 44.4% 11.1% 0.0% 0.0% 33.3% 33.3% 33.3% 0.0% 

Q6. The highlighting features of the CoSolve Consultant 
were not useful 

44.4% 33.3% 22.2% 0.0% 0.0% 66.7% 11.1% 22.2% 0.0% 0.0% 

Half of the teams were assigned to use the Full Consultant, and the other half to use the Minimal Consultant (as a control) but they all answered the same set of questions regarding the Consultant.

TABLE 3.  SUBJECTS’ POST-ACTIVITY QUESTIONNAIRE RESPONSES, AS PERCENTAGES OF TOTAL NUMBER OF RESPONSES (N=18)

Question Strongly 
Disagree 

Disagree Neutral Agree Strongly 
Agree 

Q1. The tree visualization of the problem-solving space was confusing 33.3% 55.6% 11.1% 0.0% 0.0%

Q2. The tree visualization of the problem-solving space was helpful 0.0% 11.1% 11.1% 50.0% 27.8%

Q3. The tree visualization of the problem-solving space was difficult to navigate 0.0% 11.1% 38.9% 44.4% 5.6%

Q4. The tree visualization of the problem-solving space helped encourage collaboration 0.0% 11.1% 44.4% 44.4% 0.0%

Q5. Regarding navigation of the tree, I was often lost or disoriented 5.6% 38.9% 27.8% 22.2% 5.6%

Q6. The CoSolve Interface was difficult to use 11.1% 44.4% 16.7% 22.2% 5.6%

Q7. The CoSolve Interface was helpful in playing the game 0.0% 5.6% 11.1% 77.8% 5.6%

Q8. The CoSolve Interface was easy to learn 0.0% 0.0% 16.7% 77.8% 5.6%

Q9. The CoSolve interface made collaboration more difficult 16.7% 44.4% 33.3% 5.6% 0.0%

Q10. The CoSolve interface was helpful in understanding my team’s problem-solving process 0.0% 5.6% 38.9% 50.0% 5.6%

Q11. I was always well aware of what my teammates had done 5.6% 61.1% 22.2% 11.1% 0.0%

Q12. It was easy to collaborate with my teammates. 0.0% 50.0% 33.3% 16.7% 0.0%

Q13. I was aware of what my team-mates were doing most of the time. 5.6% 50.0% 22.2% 11.1% 11.1%
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as:෍ |10 െ ௨௦௘௥೔|௡௜ୀଵݐ݊ݑ݋ܿ , where n is the number of users on 

a team, and ܿݐ݊ݑ݋௨௦௘௥೔  is the number of nodes useri created on 
the solution path. SPI=0 if all users contribute ten nodes. A 
completely unequal path would have all 30 nodes from one 
user, and 0 from each of the other two, and which gives the 
max SPI value of 40.  We found that the FC group had less 
inequality than the MC group (SPI=21.4/40 versus SPI=34/40, 
p=0.04, significant)  

Qualitatively, we found that the FC groups tended to work 
together more at the beginning than the MC group, though they 
quickly started splitting up. Figure 2 shows an example of this. 
On the left side of the tree, where the users began, we see more 
branching and turn-taking, but as time went on, on the right 
side we see long, straight paths consisting of mostly one user 
each. 

Subjects were given a 12-question pretest before the tutorial 
began to determine their familiarity with tree concepts, and 
then given a post-test after the activity. The tests had a multiple 
choice section testing graph-related vocabulary, and also had 
an abstract illustration of a tree and questions like “Find the 
root node of this tree” or “How many children does this node 
have?” etc. In the pre-test, subjects correctly answered a mean 
of 7.83 questions out of 12 total; the median score was 8. In the 
post-tests, we observed an increase in correct answers: 10.75 
mean, 12 median. (Note: this data is for the last four teams, i.e. 
12 subjects.  Data from the first two teams, 6 subjects total, are 
not included due to changes in the tests).  The FC subjects 
(n=6) showed a 3.67 increase in their mean scores compared to 
a 2.17 increase in mean scores for the MC (n=6), though the 
median score increase in both conditions is the same for both: a 
3-question improvement. 

In the post-activity Likert-scale questionnaire, subjects 
were asked to evaluate their usage of CoSolve’s features. Table 
3 shows some of these results (this data includes all 18 
subjects). As shown in the table, none of the subjects felt the 
tree visualization interface was confusing (Q1), and 77.8% 
agreed or strongly agreed that the visualization was helpful 
(Q2).  Our interviews with most of the subjects reflected this as 
well, e.g. one user said “Definitely the [tree] layout...that was 
great...if I had a couple good moves, and didn’t know which 
one was good, I’d do all of them, and see the actual numbers 
instead of doing it in my head, and that was great, because 
otherwise I’d have to start over.” 

Regarding the usability of the entire CoSolve user interface 
itself, e.g. annotations, UI for applying operators, etc. (as 
opposed to just the tree visualization of a solving session), 
83.4% of subjects agreed that the CoSolve interface was “easy 
to learn” (Q8), and the same percentage agreed that CoSolve 
was “helpful in playing the game” (Q7). Only 5.6% thought 
that CoSolve made collaboration more difficult (Q9). 

However, subjects had trouble with awareness of their 
teammates’ activity, with only 11.1% feeling they were 
“always well aware” (Q11) and 22.2% “aware...most of the 
time” (Q13) of what their teammates were doing, and although 
they did not think that CoSolve made collaboration more 

difficult (Q9), at the same time, 50% disagreed that it was 
“easy to collaborate with my teammates.” 

Table 2 shows subjects’ responses to questions regarding 
the CoSolve Consultant specifically. The responses shown are 
divided between the subjects whose teams used the Full 
Consultant (FC), and those who saw the Minimal Consultant 
(MC). None of the FC subjects thought the Consultant was 
difficult to use, and only one MC subject thought so (Q1). 
77.8% of the FC subjects agreed or strongly agreed that the 
Consultant was helpful, versus only 11.1% of the MC subjects 
(Q2).  No one thought the Consultant was difficult to learn 
(Q3), and more FC subjects thought the Consultant was helpful 
for teamwork than the MC subjects (Q4, Q5). 

IV. DISCUSSION 
Overall, our results show that subjects were able to 

effectively use CoSolve to solve the CitySim problem, 
although teams’ performances varied greatly. Subjects found 
the tree-based solving interface helpful, and were able to learn 
about tree structures by using CoSolve. We can also see that 
the Full Consultant interface had a positive impact on users’ 
attitudes, though not their team’s actual solution scores.  Users 
who had access to the Consultant were more effective 
collaborators: in those teams, each user contributed more 
equally to the solution than in teams where the users did not 
have access to it. 

In our interviews, many subjects told us that the tree 
visualization was useful for collaborating because they could 
see the sequence of steps others took and learn from them. 
Very often, a subject would be working on his own branch, and 
notice that his nodes did not have the high score.  So he would 
review a teammate’s best branch to discern why she was able 
to get a higher score, and then apply the same technique to his 
own branches.  CoSolve’s ability to show everyone’s work at 
once enabled solvers to learn, which is important in cooperative 
learning contexts.  Another common occurrence we observed is 
when one solver would find a good technique or achieve a high 
score, and she would annotate that node with a thumbs-up 
“positive” annotation. Others would see that score, and then 
build branches from that node, perhaps applying their own 
techniques, enabling the team to get a higher score overall.  

However, there were still obstacles to collaboration when 
using an interface like CoSolve’s.  For example, users had a 
difficult time maintaining awareness of their teammates’ 
actions. One possible reason for this is that, as the tree grew 
larger and solvers started working on different parts of the tree, 
it became harder to navigate the tree.  Several subjects said 
they were reluctant to pan a very large tree for fear of losing 
their current working location; as a result, they did not look at 
their teammates’ work as often. Another reason may be that 
CoSolve’s “Refresh” indicator, while designed to avoid 
disrupting an individual user’s view, does so at the expense of 
some group awareness. Visually, a parent node’s children are 
equally spaced beneath the parent; as each child appeared, 
existing children are animated to spatially move to make room 
for the new child.  This can be jarring if nodes are moving as a 
user works on them, and so we implemented the “Refresh” 
indicator, located in the Consultant menu (Fig. 2) to allow users 
to update their views on demand, rather than automatically. 
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This prevents interruptions of users’ views, but may also 
decrease awareness of others’ actions. 

One possible solution to the problem of awareness, which 
was also suggested to us by some of our subjects in the 
interviews, is to have a “mini-map” view of the tree, in one 
corner of the interface. That way, solvers could work on one 
part of the tree in the main view, but still have an idea of what 
the structure of the tree is like, and navigate, using the smaller, 
corner view of the entire tree.  Another idea suggested by one 
subject was to allow users to split the screen to show different 
parts of the tree on different sides of the screen. This way, a 
solver could work on one part of the tree, while also following 
what a teammate is doing on a different part of the tree. 

Finally, many subjects brought up the need for a 
conventional chat messaging feature. In CoSolve, node 
annotations are currently the main means of communication, 
and many subjects used the node annotations like chat—asking 
questions, talking back and forth—and they wanted to be able 
to communicate textually without having to associate each 
comment with a node. 

V. CONCLUSION 
Online collaborative problem solving is a rich but difficult 

problem area for new models of computing and user interfaces. 
In this paper, we have described CoSolve, our novel, tree-based 
interface for problem solving structured around state-space 
search.  We have discussed the problem-posing and problem-
solving processes in our system, and then described the results 
of a user study which showed that subjects find this novel 
problem-solving interface helpful, easy to learn and easy to 
use. We found that the tree structure allowed solvers to explore 
and share solutions in ways they would not have been able to in 
a non-tree based interface. There are still improvements to be 
made, namely in improving tree navigation, awareness, and 
communication features in our system, but we believe CoSolve 
is a promising first step toward an effective framework for a 
computer-supported collaborative problem-solving system. 
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