
Analyzing a Process of Collaborative Game Design Involving Online Tools

Sandra B. Fan1, Brian R. Johnson2, Yun-En Liu1, Tyler S. Robison1, Rolfe R. Schmidt1,
Steven L. Tanimoto1

1. Department of Computer Science and Engineering
2. Department of Architecture

University of Washington, Seattle, WA 98195, USA
1: {sbfan, yunliu, trobison, rolfe, tanimoto}@cs.uw.edu; 2: brj@uw.edu

Abstract

We explore modeling problem solving and design
using state-space-search methodology by engaging in
the design of an educational game. We also explore
how online communication tools (OCTs) could be used
to support collaborative design using two online tools:
1) CoSolve, a collaborative problem-solving
environment we developed, and 2) INFACT, a
discussion forum that we built for use in education. We
used these tools to design GoAtom, a chemistry game.
Using our game design experience as an example, we
present a method for modeling design processes using
state-space-search, and reflect on our use of OCTs.

1. Introduction

We expect the role of online communication tools
(OCTs) in collaborative problem solving to grow in
importance as new affordances make OCTs more
effective and participatory. Hence, we seek better and
more novel ways that this technology can be used to
support online collaborative problem solving and
design.

We used OCTs to collaboratively design a face-to-
face educational children’s game: GoAtom. For the
design we used our own INFACT system [5] as an
OCT for GoAtom. We took a state-space-search
approach to modeling the design process, inspired by
the classical AI theory of problem solving, and used
our own online CoSolve environment for modeling the
problem state-space.

We first describe existing OCTs and the state-space-
search design methodology. Then we describe our
specific design experience creating this game. Next,
we describe our state-space model of design as applied
to our creation of this game, and present results of our
analysis. Finally, we briefly report on our usage of the
tools and offer suggestions for improving the design
process we engaged in.

2. Background

There are many systems that address improving
online communication for collaboration. These include
CSILE and Knowledge Forum (for collaborative
learning), HyperNews (a general threaded discussion
forum tool), instant messaging and chat programs, and
wikis. Strengths and weaknesses of such systems as
representational affordances for collaborative learners
are discussed in [4].

One OCT we used, INFACT, offers a threaded
asynchronous discussion forum. The second tool,
CoSolve, is a web-based system for collaborative
problem solving, inspired by applying classical AI
state-space-search theory to design [3]. State spaces
are commonly taught in artificial intelligence courses
as a means to automatically solve puzzles and play
games. We use state-spaces at a “meta” level; each
state of the design space represents a description of a
possible design (e.g., a game), rather than a snapshot in
the process of solving a puzzle. We then apply
operators to a state to introduce new axes (state
variables) of a design, or specify their formal types.

A design step means adding or removing a state
variable from an existing state, changing its formal
type, or changing its value. The formal type might be
Boolean, or Enumeration over a set of n elements. A
design iteration consists of one or more design steps.

CoSolve provides affordances for both posing and
solving problems. When posing, users perform a kind
of end-user-programming to create problem templates.
A poser expresses a template by defining an initial
state, and a set of operators. Next, to solve a problem,
users instantiate a template and explore solution paths
during a solving session. In this sense, CoSolve shares
some of the goals of Meta-Design in that users not only
solve problems, but are able to create and modify the
very descriptions of the problems they are trying to
solve [2]. For this activity, we created a problem
template with a set of operators that manipulate
parameters specially selected to model game design.

2010 IEEE Symposium on Visual Languages and Human-Centric Computing

978-0-7695-4206-5/10 $26.00 © 2010 IEEE

DOI

75

2010 IEEE Symposium on Visual Languages and Human-Centric Computing

978-0-7695-4206-5/10 $26.00 © 2010 IEEE

DOI 10.1109/VLHCC.2010.19

75

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 16,2024 at 18:27:59 UTC from IEEE Xplore. Restrictions apply.

3. The Game Design Process

Figure 1. Example of a GoAtom game in progress.
In the photo on the right, groups of atoms that form
a functional group are circled by the player that
won points for that group.

Our design team consisted of four graduate students
(computer science) and two faculty (architecture and
computer science), participating in a 10-week seminar
on the study of problem solving and design. We
engaged in the design of the GoAtom game to explore
our ideas about design and OCTs.

GoAtom involves basic organic chemistry concepts.
Players are dealt a “hand” of Carbon, Oxygen,
Hydrogen and Nitrogen atoms. An initial Carbon atom
begins play. In turn, each player bonds an atom, from
his own hand, to an atom currently in play, creating a
molecule consistent with chemistry bonding rules.
Players gain points for each atom or bond they add to
the structure, and the game ends when no more bonds
or atoms can be added that follow these chemistry
bonding rules. The player who ends the game gets to
“claim” the molecule, and may receive points for it.

The team also designed an additional card game
called Eco-avelli. Eco-avelli is a card game meant to
model the political processes related to global
warming; we used Google Wave and CoSolve for
communication in this design. Due to space constraints,
more details can instead be found in [1].

The team met face-to-face over several roughly
hour-long design sessions; we also used OCTs between
sessions and during sessions. In each session, we
completed one or two design iterations, beginning with
discussion of problems in the current version of the
design, brainstorming and deciding on a modified set
of game rules, playing the game, and analyzing how
well the new rules enhanced or detracted from the
game. The design process began with initial game ideas
posted as messages to INFACT; there were nine such
messages. Once we decided on the GoAtom idea, 40
additional messages were posted to INFACT under

nine different threads. We held two face-to-face design
sessions and played four design iterations: Iteration 1
and Iterations 2A & 2B (simultaneous iterations
involving half the group in each iteration) during
Session 1, and Iteration 3 during Session 2. Nineteen
messages were posted before Session 1, three during
Session 1, five between Sessions 1 & 2, and 13
messages during Session 2.

Before Session 1, a problem template was created in
CoSolve to describe the state-space of the design,
consisting of: (i) a scoring scheme of point values for
each atom or bond, (ii) a scoring scheme for claiming
different types of completed molecules, (iii)
specification of the number and types of atoms in the
initial hand of each player, (iv) whether or not the
initial hand is random, (v) if random, minimum
allocations of atoms in the initial hand.

We tested our designs by playing the game on pen
and paper. Figure 1 shows two photographs from
Iteration 3. Playing cards were used to randomly pick
each player’s initial hand of atoms. On the right, a play
number is shown depicting the order of moves for
recording purposes.

In designing this game, we explored how adjusting
the rules affected game-play while maximizing the
playability of the game (i.e., is it fun, easy-to-learn?),
and teaching chemistry concepts. We hypothesized that
by changing our scoring scheme, we could produce the
right game-play dynamics to achieve this balance.

Some iterations were devoted to fixing game-play
issues, such as balancing scoring (e.g. Iteration 1).
Others focused on the educational value of the game.
For example, in Iteration 3, we brainstormed ideas to
increase the chemistry content in the game. We decided
on a Scrabble-like version of GoAtom, with points
awarded for building molecules that were real chemical
compounds, rather than simply any that fit the basic
bonding rules. We tested this idea by adding a small
“dictionary” of functional groups from organic
chemistry, and awarded extra points for building or
identifying these groups. We found that this did
increase our ability to identify functional groups, so we
further discussed ways a more general “dictionary” of
molecules could be developed for the game. This is an
example of a design decision could not be accounted
for in the initial state space; it required adding
additional variables to the state space.

4. State Space Analysis / Iterations

We used CoSolve’s state space representation to
explicitly model the current state of our design and the
space of all alternatives under consideration, allowing

7676

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 16,2024 at 18:27:59 UTC from IEEE Xplore. Restrictions apply.

us to study the evolution of our design. We will now
use two simple metrics to quantify these states to help
us understand the extent to which typical design
decisions can be understood as state space
explorations. The simplicity of these measurements
may seem crude, but is offset by the advantage that it is
easy to understand any artifacts they introduce.

Formally, our design process consisted of a set of
iterations, I, and a relation predecessor(η1, η2), ηi∈ I.
that indicates when the iteration η1 is the direct
predecessor of iteration η2 . In all cases we considered,
the predecessor relation induced a directed tree
structure on the set of iterations.

Each iteration ηi∈ I is specified by the set of state
variables and their values at that iteration. Given a
state variable v, we denote the value of that state
variable at iteration η by η(v). If v is not in the set of
state variables forη , define η(v) = ⊥. We will need to
refer to the set of state variables used in an iteration,
and denote this by vars(η). In our application, each
state variable was either boolean, integer with a fixed
number of bits, or a finite enumeration of options.
Thus each state variable v can be assigned a size s(v)
which is the number of bits needed to specify the value
of v.

 When moving from one iteration to another, the
following elementary design operations changes may
be applied:

1. The value of a state variable may change.
2. A new state variable may be added.
3. An existing state variable may be removed.
4. An existing state variable may be refined (split

into multiple, new state variables).
5. Multiple existing state variables may be

combined into a new, single state variable.
6. The domain of an existing state variable may

be changed.
Changes of type 1 can be explored using standard

state space exploration, as CoSolve was designed to
support. Changes of type 2-6 involve modifications of
the underlying state space and must be explored in a
broader framework.

4.1 Design Process Metrics

At each design iteration, we measure the size of the
state space under consideration and the size of the
design change from the previous iteration. In particular
we have:

Definition 1. The effective state space size, Size(η), of
an iteration η ∈ I is the number of bits needed to

specify the state of the design to the design team at that
iteration. Formally:

Size(η) = Σ s(v)
 v ∈ vars(η)

We can also measure the size of the change in an
iteration by counting the number of state variables that
changed to produce this iteration:

Definition 2. At an iteration η let

∆(η) = { v | η′(v) ≠η(v) ∧ predecessor(η′,η) }

denote the set of changes state variables. We will call
|∆(η)| the iteration magnitude at η. It is the number of
state variables that have different values in η than in its
predecessors.

With this framework in place, it is straightforward to
define other more sophisticated metrics of design
evolution. We propose these two as a simple first
glance of the design process.

5. Results & Discussion

The effective state space size and iteration
magnitude were computed per design iteration of
GoAtom. First we observe the evolution of the state
space size for the game (Figure 2).

17

18

19

20

21

22

23

24

1 2A 2B 3
Design Iteration

S
ta

te
 S

pa
ce

 S
iz

e
(b

its
)

Figure 2. Evolution of State Space Size

We see that the state space grew at each iteration. In
particular this means we never saw an iteration
characterized entirely by Type 1 changes. Thus pure
state space search would not have been effective at this
phase of the design process, a fact that became clear to
us as we saw our CoSolve state space specifications
become obsolete after a few minutes of discussion in
each round. This suggests that early stage design will
better benefit from a more general state space designer,
based on the elementary design operations 1-6. We
also measured each iteration’s magnitude (Figure 3),

7777

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 16,2024 at 18:27:59 UTC from IEEE Xplore. Restrictions apply.

but found that this slight increase does not seem to be
correlated with increasing state size (see [1]).

6

7

8

9

10

2A 2B 3
Design Iteration

Ite
ra

tio
n

M
ag

ni
tu

de

Figure 3. Iteration Magnitude

We also note that the state space encoding of an
iteration is not unique—variables may be given
different names, enumerated variables may be factored
into Cartesian products of smaller variables, and
unused variables may be added or removed. While
these factors will not affect the qualitative nature of the
results, inconsistent state space design will exaggerate
the importance of some changes while understating
others. Because of this, consistent state space design is
important for effective quantification of design
evolution.

In regards to our other OCT, INFACT, we used it
primarily to record specific goals for each face-to-face
meeting, to summarize the rule set played in each
iteration, as well as capture comments about game play
during that iteration. Given a chance to design another
game, we would have made several changes. For
example, it would have been useful to store online
collaborative documents such as an overall design
criteria specification—so that we can keep track of our
larger goals, or keep a brainstorming list of new ideas
to try. As it was, we occasionally forgot good game
mechanisms proposed but not used in previous
iterations. We also found it would have helped to tag
design steps with a label indicating the purpose of the
change. Finally, we would also have collected hidden-
response surveys after each iteration, to obtain
unbiased feedback regarding that iteration from each
member. This type of data could also serve as a
quantitative measure of progress; over time, do the
designers feel the game design is meeting its goals
better than in previous iterations? If enough designers
rate an iteration poorly, the design path could revert to
a previous iteration.

6. Conclusion

Our analysis of the use of the OCTs INFACT and
CoSolve provided us with many new ideas for ways to
support collaborative design. We found that the state-
space-search model, as provided by CoSolve, not only
gave us a way to communicate and think about the
design process explicitly, but we were able to quantify
our design changes in a concrete way through analysis
of the state space variables of a design. In this
analysis, we found that in almost all iterations the state
space grew. This suggests that in this early stage of
design we engaged in, a simple state space search is not
enough; rather, the construction of the state space
through elementary design operations such as adding
new state variables plays a bigger role.

While this work in still in its preliminary stages, we
hope our observations will help spur the creation of
more efficient tools for communication and
collaborative design.

Acknowledgments

Partial support for this research by the National
Science Foundation under grant 0613550 is gratefully
acknowledged.

7. References

[1] Fan, S., Johnson, B., Liu, Y., Robison, T., Schmidt, R.,
Tanimoto, S. 2010. Analyzing a Process of Collaborative
Game Design Involving Online Tools (long version).
http://www.cs.washington.edu/ole/collab-design-long-
2010.pdf

[2] Fischer, G., and Giaccardi, E., 2004. Meta-Design: A
Framework for the Future of End-User Development. In
Lieberman, H., Paternò, F., Wulf, V. (Eds): End User
Development - Empowering People to Flexibly Employ
Advanced Information and Communication Technology,
Kluwer Academic Publishers, Dordrecht, The Netherlands.

[3] Simon, H. 1996. The Sciences of the Artificial, 3rd ed.
Cambridge: MA: MIT Press.

[4] Suthers, D., Vatrapu, R., Medina, R., Joseph, S., and
Dwyer, N. 2008. Beyond threaded discussion:
Representational guidance in asynchronous collaborative
learning environments. Computers & Education, Vol. 50,
No. 4, pp. 1103-1127.

[5] Tanimoto, S., Carlson, A., Husted, J., Hunt, E., Larsson,
J., Madigan, D., and Minstrell, J. 2002. Text Forum Features
for Small Group Discussions with Facet-Based Pedagogy,
presented at CSCL 2002, Boulder, CO.

7878

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 16,2024 at 18:27:59 UTC from IEEE Xplore. Restrictions apply.

