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Abstract 
 
We explore modeling problem solving and design 
using state-space-search methodology by engaging in 
the design of an educational game. We also explore 
how online communication tools (OCTs) could be used 
to support collaborative design using two online tools: 
1) CoSolve, a collaborative problem-solving 
environment we developed, and 2) INFACT, a 
discussion forum that we built for use in education. We 
used these tools to design GoAtom, a chemistry game. 
Using our game design experience as an example, we 
present a method for modeling design processes using 
state-space-search, and reflect on our use of OCTs. 
 
 
1. Introduction 

We expect the role of online communication tools 
(OCTs) in collaborative problem solving to grow in 
importance as new affordances make OCTs more 
effective and participatory. Hence, we seek better and 
more novel ways that this technology can be used to 
support online collaborative problem solving and 
design.  

We used OCTs to collaboratively design a face-to-
face educational children’s game: GoAtom. For the 
design we used our own INFACT system [5] as an 
OCT for GoAtom. We took a state-space-search 
approach to modeling the design process, inspired by 
the classical AI theory of problem solving, and used 
our own online CoSolve environment for modeling the 
problem state-space. 

We first describe existing OCTs and the state-space-
search design methodology.  Then we describe our 
specific design experience creating this game.  Next, 
we describe our state-space model of design as applied 
to our creation of this game, and present results of our 
analysis.  Finally, we briefly report on our usage of the 
tools and offer suggestions for improving the design 
process we engaged in. 

2. Background 

There are many systems that address improving 
online communication for collaboration. These include 
CSILE and Knowledge Forum (for collaborative 
learning), HyperNews (a general threaded discussion 
forum tool), instant messaging and chat programs, and 
wikis.  Strengths and weaknesses of such systems as 
representational affordances for collaborative learners 
are discussed in [4].  

One OCT we used, INFACT, offers a threaded 
asynchronous discussion forum. The second tool, 
CoSolve, is a web-based system for collaborative 
problem solving, inspired by applying classical AI 
state-space-search theory to design [3].  State spaces 
are commonly taught in artificial intelligence courses 
as a means to automatically solve puzzles and play 
games. We use state-spaces at a “meta” level; each 
state of the design space represents a description of a 
possible design (e.g., a game), rather than a snapshot in 
the process of solving a puzzle.  We then apply 
operators to a state to introduce new axes (state 
variables) of a design, or specify their formal types. 

A design step means adding or removing a state 
variable from an existing state, changing its formal 
type, or changing its value.  The formal type might be 
Boolean, or Enumeration over a set of n elements. A 
design iteration consists of one or more design steps. 

CoSolve provides affordances for both posing and 
solving problems. When posing, users perform a kind 
of end-user-programming to create problem templates.  
A poser expresses a template by defining an initial 
state, and a set of operators. Next, to solve a problem, 
users instantiate a template and explore solution paths 
during a solving session. In this sense, CoSolve shares 
some of the goals of Meta-Design in that users not only 
solve problems, but are able to create and modify the 
very descriptions of the problems they are trying to 
solve [2].  For this activity, we created a problem 
template with a set of operators that manipulate 
parameters specially selected to model game design. 

2010 IEEE Symposium on Visual Languages and Human-Centric Computing

978-0-7695-4206-5/10 $26.00 © 2010 IEEE

DOI 

75

2010 IEEE Symposium on Visual Languages and Human-Centric Computing

978-0-7695-4206-5/10 $26.00 © 2010 IEEE

DOI 10.1109/VLHCC.2010.19

75

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 16,2024 at 18:27:59 UTC from IEEE Xplore.  Restrictions apply. 



 
3. The Game Design Process 

 
Figure 1. Example of a GoAtom game in progress. 
In the photo on the right, groups of atoms that form 
a functional group are circled by the player that 
won points for that group. 

Our design team consisted of four graduate students 
(computer science) and two faculty (architecture and 
computer science), participating in a 10-week seminar 
on the study of problem solving and design. We 
engaged in the design of the GoAtom game to explore 
our ideas about design and OCTs.  

GoAtom involves basic organic chemistry concepts. 
Players are dealt a “hand” of Carbon, Oxygen, 
Hydrogen and Nitrogen atoms. An initial Carbon atom 
begins play. In turn, each player bonds an atom, from 
his own hand, to an atom currently in play, creating a 
molecule consistent with chemistry bonding rules.  
Players gain points for each atom or bond they add to 
the structure, and the game ends when no more bonds 
or atoms can be added that follow these chemistry 
bonding rules. The player who ends the game gets to 
“claim” the molecule, and may receive points for it. 

The team also designed an additional card game 
called Eco-avelli. Eco-avelli is a card game meant to 
model the political processes related to global 
warming; we used Google Wave and CoSolve for 
communication in this design. Due to space constraints, 
more details can instead be found in [1].  

The team met face-to-face over several roughly 
hour-long design sessions; we also used OCTs between 
sessions and during sessions. In each session, we 
completed one or two design iterations, beginning with 
discussion of problems in the current version of the 
design, brainstorming and deciding on a modified set 
of game rules, playing the game, and analyzing how 
well the new rules enhanced or detracted from the 
game. The design process began with initial game ideas 
posted as messages to INFACT; there were nine such 
messages.  Once we decided on the GoAtom idea, 40 
additional messages were posted to INFACT under 

nine different threads. We held two face-to-face design 
sessions and played four design iterations: Iteration 1 
and Iterations 2A & 2B (simultaneous iterations 
involving half the group in each iteration) during 
Session 1, and Iteration 3 during Session 2. Nineteen 
messages were posted before Session 1, three during 
Session 1, five between Sessions 1 & 2, and 13 
messages during Session 2. 

Before Session 1, a problem template was created in 
CoSolve to describe the state-space of the design, 
consisting of: (i) a scoring scheme of point values for 
each atom or bond, (ii) a scoring scheme for claiming 
different types of completed molecules, (iii) 
specification of the number and types of atoms in the 
initial hand of each player, (iv) whether or not the 
initial hand is random, (v) if random, minimum 
allocations of atoms in the initial hand. 

We tested our designs by playing the game on pen 
and paper.  Figure 1 shows two photographs from 
Iteration 3. Playing cards were used to randomly pick 
each player’s initial hand of atoms. On the right, a play 
number is shown depicting the order of moves for 
recording purposes.  

In designing this game, we explored how adjusting 
the rules affected game-play while maximizing the 
playability of the game (i.e., is it fun, easy-to-learn?), 
and teaching chemistry concepts. We hypothesized that 
by changing our scoring scheme, we could produce the 
right game-play dynamics to achieve this balance. 

Some iterations were devoted to fixing game-play 
issues, such as balancing scoring (e.g. Iteration 1).  
Others focused on the educational value of the game. 
For example, in Iteration 3, we brainstormed ideas to 
increase the chemistry content in the game. We decided 
on a Scrabble-like version of GoAtom, with points 
awarded for building molecules that were real chemical 
compounds, rather than simply any that fit the basic 
bonding rules.  We tested this idea by adding a small 
“dictionary” of functional groups from organic 
chemistry, and awarded extra points for building or 
identifying these groups. We found that this did 
increase our ability to identify functional groups, so we 
further discussed ways a more general “dictionary” of 
molecules could be developed for the game. This is an 
example of a design decision could not be accounted 
for in the initial state space; it required adding 
additional variables to the state space. 
 
4. State Space Analysis / Iterations 

We used CoSolve’s state space representation to 
explicitly model the current state of our design and the 
space of all alternatives under consideration, allowing 
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us to study the evolution of our design.  We will now 
use two simple metrics to quantify these states to help 
us understand the extent to which typical design 
decisions can be understood as state space 
explorations.  The simplicity of these measurements 
may seem crude, but is offset by the advantage that it is 
easy to understand any artifacts they introduce.  

Formally, our design process consisted of a set of 
iterations, I, and a relation predecessor(η1, η2 ),  ηi∈ I. 
that indicates when the iteration η1 is the direct 
predecessor of iteration η2 .  In all cases we considered, 
the predecessor relation induced a directed tree 
structure on the set of iterations.  

Each iteration ηi∈ I  is specified by the set of state 
variables and their values at that iteration.  Given a 
state variable v, we denote the value of that state 
variable at iteration η  by η(v).  If v is not in the set of 
state variables forη , define η(v) = ⊥.  We will need to 
refer to the set of state variables used in an iteration, 
and denote this by vars(η).  In our application, each 
state variable was either boolean, integer with a fixed 
number of bits, or a finite enumeration of options.  
Thus each state variable v can be assigned a size s(v) 
which is the number of bits needed to specify the value 
of v. 

 When moving from one iteration to another, the 
following elementary design operations changes may 
be applied: 

1. The value of a state variable may change.  
2. A new state variable may be added.  
3. An existing state variable may be removed.  
4. An existing state variable may be refined (split 

into multiple, new state variables).  
5. Multiple existing state variables may be 

combined into a new, single state variable.  
6. The domain of an existing state variable may 

be changed.  
Changes of type 1 can be explored using standard 

state space exploration, as CoSolve was designed to 
support.  Changes of type 2-6 involve modifications of 
the underlying state space and must be explored in a 
broader framework.  
 
4.1 Design Process Metrics 

At each design iteration, we measure the size of the 
state space under consideration and the size of the 
design change from the previous iteration.  In particular 
we have: 

Definition 1. The effective state space size, Size(η), of 
an iteration η ∈ I is the number of bits needed to 

specify the state of the design to the design team at that 
iteration.  Formally: 

Size(η)  =   Σ   s(v) 
         v ∈ vars(η) 

We can also measure the size of the change in an 
iteration by counting the number of state variables that 
changed to produce this iteration: 

Definition 2.  At an iteration η let 
 
∆(η) = { v | η′(v) ≠η(v) ∧ predecessor(η′,η) } 

 
denote the set of changes state variables.  We will call 
|∆(η)| the iteration magnitude at η.   It is the number of 
state variables that have different values in η than in its 
predecessors.  

With this framework in place, it is straightforward to 
define other more sophisticated metrics of design 
evolution. We propose these two as a simple first 
glance of the design process. 

 
5. Results & Discussion 

The effective state space size and iteration 
magnitude were computed per design iteration of 
GoAtom. First we observe the evolution of the state 
space size for the game (Figure 2). 
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Figure 2. Evolution of State Space Size 

We see that the state space grew at each iteration. In 
particular this means we never saw an iteration 
characterized entirely by Type 1 changes. Thus pure 
state space search would not have been effective at this 
phase of the design process, a fact that became clear to 
us as we saw our CoSolve state space specifications 
become obsolete after a few minutes of discussion in 
each round.  This suggests that early stage design will 
better benefit from a more general state space designer, 
based on the elementary design operations 1-6.  We 
also measured each iteration’s magnitude (Figure 3), 
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but found that this slight increase does not seem to be 
correlated with increasing state size (see [1]). 
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Figure 3. Iteration Magnitude 

We also note that the state space encoding of an 
iteration is not unique—variables may be given 
different names, enumerated variables may be factored 
into Cartesian products of smaller variables, and 
unused variables may be added or removed.  While 
these factors will not affect the qualitative nature of the 
results, inconsistent state space design will exaggerate 
the importance of some changes while understating 
others.  Because of this, consistent state space design is 
important for effective quantification of design 
evolution.  

In regards to our other OCT, INFACT, we used it 
primarily to record specific goals for each face-to-face 
meeting, to summarize the rule set played in each 
iteration, as well as capture comments about game play 
during that iteration. Given a chance to design another 
game, we would have made several changes. For 
example, it would have been useful to store online 
collaborative documents such as an overall design 
criteria specification—so that we can keep track of our 
larger goals, or keep a brainstorming list of new ideas 
to try. As it was, we occasionally forgot good game 
mechanisms proposed but not used in previous 
iterations. We also found it would have helped to tag 
design steps with a label indicating the purpose of the 
change.  Finally, we would also have collected hidden-
response surveys after each iteration, to obtain 
unbiased feedback regarding that iteration from each 
member. This type of data could also serve as a 
quantitative measure of progress; over time, do the 
designers feel the game design is meeting its goals 
better than in previous iterations?  If enough designers 
rate an iteration poorly, the design path could revert to 
a previous iteration.  

 

6. Conclusion 

Our analysis of the use of the OCTs INFACT and 
CoSolve provided us with many new ideas for ways to 
support collaborative design. We found that the state-
space-search model, as provided by CoSolve, not only 
gave us a way to communicate and think about the 
design process explicitly, but we were able to quantify 
our design changes in a concrete way through analysis 
of the state space variables of a design.  In this 
analysis, we found that in almost all iterations the state 
space grew.  This suggests that in this early stage of 
design we engaged in, a simple state space search is not 
enough; rather, the construction of the state space 
through elementary design operations such as adding 
new state variables plays a bigger role. 

While this work in still in its preliminary stages, we 
hope our observations will help spur the creation of 
more efficient tools for communication and 
collaborative design. 

 
Acknowledgments 

Partial support for this research by the National 
Science Foundation under grant 0613550 is gratefully 
acknowledged. 
 
7. References    

[1] Fan, S., Johnson, B., Liu, Y., Robison, T., Schmidt, R., 
Tanimoto, S. 2010. Analyzing a Process of Collaborative 
Game Design Involving Online Tools (long version). 
http://www.cs.washington.edu/ole/collab-design-long-
2010.pdf 
 
[2] Fischer, G., and Giaccardi, E., 2004. Meta-Design: A 
Framework for the Future of End-User Development. In 
Lieberman, H., Paternò, F., Wulf, V. (Eds): End User 
Development - Empowering People to Flexibly Employ 
Advanced Information and Communication Technology, 
Kluwer Academic Publishers, Dordrecht, The Netherlands.  
 
[3] Simon, H. 1996. The Sciences of the Artificial, 3rd ed. 
Cambridge: MA: MIT Press.  
 
[4] Suthers, D., Vatrapu, R., Medina, R., Joseph, S., and 
Dwyer, N. 2008.  Beyond threaded discussion: 
Representational guidance in asynchronous collaborative 
learning environments. Computers & Education, Vol. 50, 
No. 4, pp. 1103-1127.  
 
[5] Tanimoto, S., Carlson, A., Husted, J., Hunt, E., Larsson, 
J., Madigan, D., and Minstrell, J. 2002. Text Forum Features 
for Small Group Discussions with Facet-Based Pedagogy, 
presented at CSCL 2002, Boulder, CO.  

 

7878

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 16,2024 at 18:27:59 UTC from IEEE Xplore.  Restrictions apply. 


