
Five Futures with AI Coding Agents
Steven L. Tanimoto
tanimoto@uw.edu

Paul G. Allen School of Computer Science and Engineering
Seattle, Washington, USA

Figure 1: How will software development change?

ABSTRACT
Many computer programmers are beginning to use computational
agents to help them develop software. This article raises questions
about the nature of programmer-to-agent relationships. The au-
thor’s intent is to foster thought that will help human program-
mers best prepare for such relationships and perhaps design the
relationships, ultimately keeping their jobs and improving their
programming experience.

CCS CONCEPTS
• Software and its engineering; • Social and professional top-
ics → Computational thinking; Computing profession; Intellec-
tual property; • Computing methodologies → Artificial intelli-
gence; • Human-centered computing → Collaborative and social
computing;

KEYWORDS
programming experience, artificial intelligence, coding agents, Copi-
lot, ChatGPT, liveness, flow, future, software development, live cod-
ing, code golf, trust, verification, pair programming, interactive
intelligent development environment, coding service, collaboration,
soloing

This work is licensed under a Creative Commons Attribution International
4.0 License.

<Programming>’23 Companion, March 13–17, 2023, Tokyo, Japan
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0755-1/23/03.
https://doi.org/10.1145/3594671.3594685

ACM Reference Format:
Steven L. Tanimoto. 2023. Five Futures with AI Coding Agents. In Compan-
ion Proceedings of the 7th International Conference on the Art, Science, and
Engineering of Programming (<Programming>’23 Companion), March 13–17,
2023, Tokyo, Japan. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3594671.3594685

1 INTRODUCTION
Since the arrival of Copilot[4] in 2021 and ChatGPT in 2022, im-
pressive demonstrations of agents writing computer source code
to a user’s specifications have been viewed by a wider and wider
audience. These demos beg the question of whether agents will
replace human programmers any time soon. This paper does not
attempt to answer that question, at least not directly. Rather, it
considers another one: how will the existence of agents like these
and ones even more powerful than these change the experiences of
programming from what they are today?

This paper approaches the question by considering the basic
nature of possible relationships between a human programmer and
a computer agent. These particular kinds of potential relationships
are then described in terms of characteristics commonly discussed
in PX/nn workshops, such as flow and liveness.

1.1 Criteria for Comparisons
In any possible relationship between a computer agent and a human
programmer, there are some basic questions that we can ask. The
answers to these can help to map out a sort of landscape of the
possible future experiences.

Balance of Work: How much of the programming process
will be done by the human, and how much by the agent(s)?

32

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3594671.3594685
https://doi.org/10.1145/3594671.3594685
https://doi.org/10.1145/3594671.3594685
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3594671.3594685&domain=pdf&date_stamp=2023-09-12


<Programming>’23 Companion, March 13–17, 2023, Tokyo, Japan Tanimoto

Balance of Expertise: What knowledge and skills will be re-
quired of and exercised by each participant, human and
computer?

Initiative: Which – human or agent – will typically be the
initiator of sub-projects? Always the human, always the
agent, or will there be a kind of mixed-initiative character
to the collaborations?

Affect: Is it likely that the human will enjoy, appreciate, or
look forward to participation in the collaboration – or not?

Power: Will the human or the agent have the upper hand in
making design or other project decisions when they dis-
agree?

Viability: Does some particular human-agent relationship seem
to make sense in a particular context, such as the economics
of software product development, the effective learning of
computational thinking, or the exploration of a scientific hy-
pothesis? This criterion is a meta-criterion, as it doesn’t per-
tain directly to the nature of the human-agent relationship
but rather to a judgment about whether a given relationship
seems actually plausible, realistic, or defensible.

1.2 Disclaimer
This paper is primarily the result of some brainstorming. It’s neither
theoretical nor empirical. In a sense, it is science fiction, anticipating
possible futures based on the premise that intelligent agents are
becoming more capable and more ubiquitous in the experiences
of human computer programmers. An in-depth survey of how
programmers have already been using automated services and large
language models in software development was recently published
by Sarkar et al[10]. The present paper attempts to draw a somewhat
wider circle around possible future styles of programming in aworld
with agents, and it does not present a wide review, but it is intended
to stimulate discussion.

1.3 Spoiler
Here is the conclusion of the paper, if one can call it a conclusion
at all. In the end, we can only conclude that there will be changes
to the experiences of many programmers, and that we are likely
to see quite a variety of evolutionary threads in experiences of
programming.

2 SOLOING
Soloing is about human programmers acting alone and intentionally
ignoring or rejecting the kinds of advanced tools and agents that
might get in the way of free will, ownership, credit, or that might
otherwise cramp the style of a human bent on being a purist.

There are cultures of programming today in which programmers
accept tight constraints such as maximum length of source code,
amount of memory used at runtime, or (commonly) maximum
coding time. The practice of “code golfing” has a following in which
programmers try to minimize the length of their source code, or
try to fit the most sophisticated code into, say, a 140-character
(early-format) Twitter message[3].

The metaphor implicit in “code golf” is that programming can
be a sort of sport. As such, the activity is shielded from the market

forces on the general profession of programming. When the au-
tomobile replaced horse-drawn carriages and riders on horseback
as predominant means of transportation, the sports of horseback
riding, jumping, racing, and polo did not disappear. In a way, they
became more exotic and perhaps their participants are regarded to-
day with more awe than in the past. Similarly, the future of soloing
may become intensified in communities that react to the presence
of coding agents by doubling down on their human abilities and
their pride in exercising and displaying them.

In hackathons[6], programmers are typically given between one
and two days to start and complete a programming project. Thus
a 48-hour time limit is a good example of a tight time constraint
for the coding. In programming contests, such as the International
Collegiate Programming Contest, students must adhere to strict
rules on what tools are to be used, as well as time limits[7].

In a typical livecoding performance[1], a human programmer
sits on a stage in front of an audience and uses a laptop computer
connected to a data projector and an audio amplification system and
edits source code that is run continuously (even as the source code
changes) to generate synthesized music. The audience experiences
both the music and the display of the source code as it is edited. As
an art form, livecoding is thus at least somewhat protected from
agent-caused elimination.

For programmers who are practicing for or participating in these
types of activities, software-creation agents such as Copilot may be
irrelevant. Of course it is also possible that new games and contests
arise in which such agents are permitted to be used as tools or
as part of a controlled programming environment for the human
participants. If agents are used as partners or teammates in these
constrained activities, then “soloing” would not be the best term
for such a future human role.

There is another argument and context for the persistence of
soloing. We humans have a right and a need to express ourselves
with languages, including with code. Programming is a means not
only of producing software or of doing artistic or musical perfor-
mances, but also of testing and realizing ideas, crafting expressions
that have meaning and perhaps elegance, and of providing an alter-
native means of communication that may best suit any particular
person whether by reason of ability, disability, convenience, or per-
sonal preference. Most programming languages such as Python,
for example, have been designed for human coders, not for AI
agents. (An exception might be Postscript, which although acces-
sible to many human programmers, was primarily intended for
word-processing back-end processors to create instructions for
laser-printer engines.) As a legitimate form of human communi-
cation (e.g., storytelling by coding or live-coding animations), it
seems inhumane to suggest that people shouldn’t code anymore
in an age of coding agents. Just because agents such as Alexa and
Siri can talk, we don’t expect that human speaking will go out of
fashion.

We humans arguably have a right and at times, a need to express
ourselves with code. The soloing modality is the dominant one for
programmers today. The future for the existence of solo human
programming looks good, and soloing in various forms is likely to
persist regardless of how powerful AI agents get.

In terms of the criteria listed earlier, the balance of work, knowl-
edge, initiative, and power are all on the side of the human in this

33



Five Futures with AI Coding Agents <Programming>’23 Companion, March 13–17, 2023, Tokyo, Japan

future. Presumably, affect is at an extreme because live coding (for
example) is so much fun. If we quantify most fun as 0 and most
annoying as, say, 10 on this same scale, then we can imagine the
soloing future as being located at the origin of a space of futures
spanned by the ranges of values for the answers to each of the
criteria.

3 “ON THE SHOULDERS OF AGENTS” OR
FLOW

I expect that most programmers will want to leverage the agents.
Considering the agents to be tools will allow the programmer’s
IDE to be not just an interactive development environment but an
interactive intelligent development environment. The IDE (or IIDE)
will continue to be driven by the human programmer. However, the
nature of services provided by the environment will be at a higher
level than, say, what we have today in terms of code completion
and code refactoring.

Programmers will use the new intelligent tools to take their
creativity and productivity to the next level. Achieving the cog-
nitive experience of “flow”[5] at a new, higher level of creative
activity is a hope that today’s programmers can adopt and aspire
to achieve. Whereas flow for a programmer today may manifest
itself in activities of writing assignment statements, fixing bugs
due to uninitialized object references, and off-by-one loop index
errors, flow for a future programmer might involve steps at the
level of integrating a new code library, trying out an alternative
user interface to product in beta, or inventing and coding up a new
matchmaking algorithm in a supply-demand application scenario.
What takes days today might take only minutes a couple of years
from now.

Personally, I would like my programming environment to be
“live” at level six[11]. At this level, the environment can anticipate
my strategic programming goals, inferring my likely intentions as
I work, offering me working components that I might need (either
existing, newly customized or synthesized for the occasion) and
then integrate them into my project as I give the go-ahead. I expect
that such agents would help me both in achieving high-level goals
and a personal state of cognitive flow.

Thus, the new agents might enable programmers to achieve
flow at a highly creative functionality level rather than just at an
implementational level. If the resulting flow enhances the humans’
creativity, then there is hope for our society’s future as a whole, if
one believes David Brooks, columnist for The Atlantic [2].

If a society is good at unlocking creativity, at nur-
turing the abilities of its people, then its ills can be
surmounted.

If there are many agents helping out, the programmer’s role
could be that of a director of development. Like the conductor of
an orchestra, who does not bow the violins or blow the horns, the
director would not enter the assignment statements and type the
semicolons but would use design terminology, gestures, and new
protocols to control how code is built by agents to achieve the
overall goal.

Where in the space of futures is this one? It could be almost
anywhere. It’s not at the origin, because then the agents wouldn’t
be helping out at all, and our human would be only achieving flow,

if at all, at the conventional level. It’s important for the human’s
affect to be near zero – more fun and less frustration. It seems
important for the human to have decision-making power most of
the time, because being consistently overridden would probably
weigh heavily on the human’s motivation and affect and contribute
towards breaking or preventing flow.

4 COASTING OR “LET THEM DO IT”
When programmers let agents do most of today’s work of soft-
ware development, they might be “coasting” and thereby having
an easier time of the job than they would have had before. Each
of the phases of software development might or might not be per-
formed by agents: requirements gathering and analysis, system
design, detailed specification, selection of software frameworks and
existing components, coding of new functionality, debugging, test-
ing, performance analysis, documentation, and gathering beta-test
feedback, release, post-release maintenance, etc. Whatever agents
cannot do effectively or more economically than humans, will be
left to the humans. However, at first glance, it looks like the humans
will have a lot of help, and that they might therefore have an easier
time.

4.1 They’ll Do the Work, But then What?
Yet of course, when the agents get that good, the humans will be
asked to up their game or do new tasks. What might these be, in
addition to filling the gaps left by the agents? One answer is that
the humans could “go meta” and become responsible for software
development projects at a more abstract level, perhaps acting as
managers, but performing tasks such as the following:

• Articulate the need for a product.
• Articulate the need to invest in the product.
• Integrate the product/project within the ongoing business of
the organization in terms of balancing budgets and achieving
consistency of corporate policy or image.

• Shop for the latest and greatest new agents and software
engineering services.

So the “coasting” is on the programming side. The human just
gets a new job to do – being a meta-developer. Matt Welsh argues
that this will be the most likely future for programmers within 3-5
years[12].

4.2 Do You Trust Them?
A big question today for programmers getting help from unknown
contributors and agents is how much to trust these “helpers” and
the content they provide. Agents such as ChatGPT have often an-
swered questions with convincing-sounding, but incorrect answers.
If tomorrow’s agents continue to be unreliable, a lot of work should
go into methods (new or dressed-up though old) of detecting prob-
lems, validating code, analyzing provenance of code and gauging
levels of trust in the agents themselves.

The existence of untrusted agents providing software is not new.
The open-source community has been dealing with it from its early
days. (The agents in this case have been human contributors.) Yet,
the prospect of dealing with huge quantities of new auto-generated
code from agents based on machine-learned language models calls
for more research and development into validation and code-fixing

34



<Programming>’23 Companion, March 13–17, 2023, Tokyo, Japan Tanimoto

tools that can keep up with the onslaught. (Sarkar et al discuss this
in sections 5 and 7.2 of their survey[10].)

Perhaps there will be future coding agents that always produce
clean code, free of many kinds of problems such as syntax errors,
security holes, malware, and dense or overly complex expressions
and structures. Perhaps the trust issue will go away then. Then
human programmers might be able to coast a little longer, if they
don’t want to be just testers and fixers.

5 “TEACH ME”
Human coders might need to and/or like to learn from AI agents.
The premise for this future is that a human-agent relationship can
be based on learning activities in which the agent is the source or
purveyor of the knowledge or skills being transferred. Two key
aspects of such a relationship are the form of interaction and the
subject matter being taught. The interaction may be modeled after
existing tutee-tutor structures in pedagogy, or perhaps some new
structure involving new settings (e.g., virtual reality, or code visual-
ization environments), communication modalities (new languages,
metalanguages, types of diagrams, speech-text-effects mixes, etc.).
The content being taught might be from the domain of software
engineering and programming languages, or it might be lessons
about how the AI works and performs its role in facilitating soft-
ware development. Or perhaps the content is irrelevant to software
engineering and is communicated solely to provide a break from
the main slog of getting real work done or to build a form of cama-
raderie between human and agent. Of course a relationship such
as this need not exclude other modes of interaction between the
human and the agent. However, there seems to be a paradigm here
in which a programmer’s experience is enhanced by interaction
with an agent.

Where is this future in the abstract space mentioned earlier? It
could be in a lot of places. Today, even human tutors use alternative
methodologies in tutoring their pupils: the initiative within a ses-
sion maybe mostly the tutor’s or mostly the tutee’s. The knowledge
balance is presumably that the tutor knows more than the tutee in
the subject being taught, but it could be that the tutor knows a little
more, a lot more, or actually a lot less, except in the very specific
topic area for the session. Perhaps depending on the manners of
the tutor and the degree to which is considerate towards the tutee,
the tutee’s experience may be positive or negative. Affect for the
human thus is likely to depend on a combination of design features
of the agent as well as the personality and individual needs of the
human.

6 “TEACH THEM” OR HELP THEM SAVE
YOURWORLD

Our world has a lot of big problems, such as a climate that is getting
less hospitable to human beings, growing pollution of the air, water
and land with health-threatening substances, and the strong possi-
bility of catastrophic wars. What will it take to solve these problems
(if they are solvable)? If they are not really solvable, what are the
best policies for reducing the risks or mitigating their effects?

For a problem such as fixing the climate, when one takes into
account many of the relevant factors, the problem is so complex
in terms of information, prediction, and identifying best possible

decisions at all levels, that it would seem crazy not to be considering
getting help from those powerful information-processing engines
called computers. Then which computers? What software? Where
do we start?

One answer is to find some good AI agents that can not only
help keep track of all the relevant information, but integrate it into
models that can lead to decision-making that consistently optimizes
the prospects for humanity. Do such agents exist? Maybe not, or
at least not yet. This is where human programmers might come in
and teach some existing agents to become better at studying possi-
ble solutions to “wicked problems”[9]. Human programmers could
help agents with both implementational techniques (e.g., how to
integrate certain types of data into a general database) and strategic
methods (ways to organize the overall structure of a possible solu-
tion, in terms of major enabling steps, policy components, and clear
vision). Programmers would not be the only humans involved, of
course. Human experts in science, engineering, policy, psychology,
and other fields, no doubt, would be needed, especially if the agents
we are talking about are like today’s ChatGPT — good at chatting
in a natural-seeming way, but unable to synthesize solutions to
messy problems.

To refuse the help of advanced information technology in work-
ing to save the world does not sound like a road to success. Com-
puters are needed. Of course, we’ll need to be able to trust this
technology or find ways to turn its recommended policies into safe
and likely effective ones, but that is part of helping them help us
save the world.

7 COMPARING THE FUTURES
Figure 2 shows a map intended to suggest one view of the space of
possible futures. The map is based on two of the criteria mentioned
in section 1: (on the horizontal axis) balance of work and (on the
vertical axis) balance of power. These two criteria appear to be
relatively independent of each other, although likely correlated
with the others.

Figure 3 provides a matrix with a cell for each (relationship-
attribute) pair. In each cell, a code is provided as a possible char-
acterization of the relationship (or placeholder for such) in terms
of that attribute. While there could be a discussion for each entry
of the matrix and/or a discussion of each future compared with
each other, let us use the matrix to focus here on two particular
comparisons: (a) Flow vs. Coasting, and (b) Teach Me vs. Teach
Them. One can argue that since Coasting may be an inherently
unstable relationship, with the human vulnerable to being let go,
we should, if we wish to protect humans from that fate, attempt
to influence designs of programming tools and practices to favor
the achievement of Flow. This should involve a reasonable balance
of work between human and agent, a balance of expertise, and
either a balance of initiative or a weighting of the initiative towards
the human. Combining those with the human having the power
to decide contentious issues, we can expect a positive affect for
the human. Achieving flow will not only require these aspects but
basic usability and reliability of the tools or services provided by
the agent. The survey by Sarkar et al[10] covers studies of pro-
grammers using intelligent tools, and these lessons learned should
influence the design of IIDEs.

35



Five Futures with AI Coding Agents <Programming>’23 Companion, March 13–17, 2023, Tokyo, Japan

Figure 2: Amap of the space spanned by two of the criteria in
the introduction, showing the rough regions in which each
of the five futures lie.

The Teach-Me future and Teach-Them future each involve the
basic teacher-student or tutor-tutee relationship. The human pro-
grammer takes on the role of tutee in the first future, and the role
of the tutor in the second. For a positive affect in the Teach-Me
future, the human must be motivated to learn, and then satisfied by
the learning that takes place. In the Teach-Them future, the human
must be motivated to teach and then satisfied that the computer
agent has learned the intended lessons. In the former case, the
programmer may wish to be taught about an algorithm proposed
by either party in the session, or about some other aspect of the
software under construction or being considered for inclusion. The
material to be learned should normally be relevant to the project
being tackled. If irrelevant material is taught, it should be either
to help keep the human-agent relationship effective, or serve as
part of a break from the more demanding work of learning tough
stuff that IS relevant. A human programmer might be motivated
to pass on knowledge to an agent for the same reason an elder
is motivated to teach younger people or to write books for them:
to pass knowledge on to succeeding generations of people. The
agent learning here is a proxy or a vehicle for the transmission of
knowledge. A human might also be motivated to teach something
to an agent if the agent might then be likely to be able to help with
something important. Over time, we might expect agents to learn
so much that the opportunities for humans to teach them things
they don’t already know may become rare. That may be true, but
it probably will take some time to settle out. Even after that, the
humans may wish to teach agents about their own preferences and
personalities, so that the partnerships can be optimized.

The work in a teaching/learning relationship should be shared.
Learning is easier when material is presented at an appropriate
level and when questions can be well answered. Actual teaching is

impossible if the learner fails to engage. On the other hand, balance
of expertise, initiative, and power may vary in these relationships
without necessarily killing them. The Teach-Me future seems com-
paratively viable; humans will need the ability to seek help within
an IIDE, and the more complex the material, the more important
it is to have an intelligent tutor, rather than simply a help-search
mechanism. The viability of the Teach-Them future can be ques-
tioned, particularly if agents are primarily designed to perform
specific services rather than learn new ones from their human IIDE
partners. On the other hand, there is only a fuzzy boundary between
instructing a system (i.e., providing a specification of behavior) and
teaching it a skill or piece of knowledge. A feature of the latter is
the likely persistence of the learned content across projects, i.e.,
its generality. Past research on intelligent tutoring systems can in-
form the design of IIDEs that support these teaching-and-learning
futures. The systems could include learner models and advanced
pedagogical capabilities[8].

Each of the many D entries in the matrix of Fig. 3 indicates not
only that the rating of a future relationship on the particular axis
“depends” on details of the relationship, but that an IIDE system
essentially has a design variable there.Whether or not the agent will
typically have most of the object-oriented programming expertise
in a partnership setting could specified as Yes when the system is
designed. Since there are many kinds of expertise, this would better
be specified with a vector or a richer means.

8 ANTICIPATING THE FUTURE
8.1 What’s Coming
The five futures suggested here are of course simply some of the
foreseeable types of scenarios. In actuality, not only is it likely that
human-agent relationships will differ in various ways from these,
but will also be dynamic – changing in character from one session
to another and even within a single work session. The agents may
come and go such that there could be many agents in a session at a
time, and some agents could play multiple roles at a time, acting
as helpers, tutors, bosses, confidants, and secretaries. Humans may
also be collaborating actively in teams with other humans, as well
as with the agents. Thus the pair-programming model for which
Copilot was designed is not the only human/agent structure we’re
likely to see.

8.2 Preparing to Live with Agents: Understand,
Cope, Adapt, and Exploit

A final question that should be asked, in the context of anticipated
changes in programming experiences is this: how should students
and current software professionals rethink their plans for learning
and working in programming and software development? There
are at least two kinds of answers: (a) try to anticipate the schedule
of new agent capabilities and services coming out and be ready to
do other parts of the software-engineering work at the appropriate
times, and (b) try to learn enough about agent technology itself
to be able to ride the waves of change by contributing, mediating,
anticipating, or knowing when to get out of the way.

Here is the author’s suggestion to all people who rely on their
own creativity in their lives, professionally or personally, including

36



<Programming>’23 Companion, March 13–17, 2023, Tokyo, Japan Tanimoto

Criteria for Comparisons

Ba
lan

ce
of
W
or
k

Ba
lan

ce
of
Ex
pe
rti
se

Ba
lan

ce
of
In
iti
ati
ve

Aff
ec
t

Ba
lan

ce
of
Po
we

r

Vi
ab
le?

Soloing H H H P H Y
Flow B B H/B P H Y
Coasting C B B D D D
Teach Me B D D D D Y

Fi
ve

Fu
tu
re
s

Teach Them B D D D D D

Key:
H -- Human
C -- Computer agent
B -- Both
D -- it Depends (on the design and the usage conditions)
P -- Positive
Y -- Yes

Figure 3: A matrix to help in considering how each of the five futures stacks up in terms of the six evaluation criteria.

computer programmers: first understand, then cope; next, adapt,
and finally, exploit.

A. Understand: What are large language models? They are
large information structures constructed through automated
training using information from the Internet. They are par-
ticularly well adapted to predicting the natural flow of words
in text and following associations among words. How are
they operationalized? These models can be used to generate
new text of several forms: poems, essays, computer source
code, and others. They can also work with image synthesis
methods such as Stable Diffusion to create intelligible ren-
derings of particular situations or objects described in text
– either real or imaginary. What are obvious applications?
DALL.E 2 is being used to create graphic art, greeting cards,
illustrations, cartoons, and more. ChatGPT is being used
to correct ESL students’ writing, compose essays, write or
rewrite computer source code, and generate fiction. Many
users are experimenting with new applications.

B. Cope Most people will not be directly affected immediately.
But in the longer term, it’s inevitable that AI-generated con-
tent of many kinds will be ubiquitous in the lives of all of
us in modern civilization. We have already been flooded by
bot-created news (and fake-news) stories, advertisements
and political messaging. As it becomes more in-our-face, and
as material becomes more honestly portrayed as artificial,
we must learn to deal with for whatever it is, and it will be
many things, including those already mentioned, such as
news stories. How should we cope? For one thing, we should
all hone our skills at estimating provenance. Is that a fact?
Where did it come from? This starts with thinking critically,
learning to seek out trustworthy information sources, and
being sensitive to warning signs (see, e.g., Sam Woolley’s
The Reality Game) But not all AI will be bad. We can learn to

enjoy the good stuff – appreciate the humor that occasionally
comes from AI systems (see, e.g., Witscript by Joe Toplyn).
Appreciate a beautiful art composition or poem, whether
the source is artificial or human. In reality, most material
likely to come out of bots is both artificial and human, in
the sense that the large language models have been trained
on human-created text and natural images taken by human
photographers or art painted by human artists. Having been
output as pixels or
synthesized through Stable Diffusion does not mean that
there is no humanity in the resulting creation. It means that
a sort of shuffling and remixing has taken place. Appreciate
that you are living in an era of fundamental technological
changes, analogous to the dawn of industrialization, pho-
tography, the advent of electrical power, flush toilets and
modern plumbing, the automobile, the mobile smartphone,
air travel, and antibiotic medicine. You’ll be able to say, “I
was there.”

C. Adapt If you are a professional creative – one who relies
every day on your creative abilities in order to make a living
– it is possible that your profession will evolve. If you see this
happening in your future, you may be able anticipate it and
either go with the flow, or stay ahead of the crowd. When
photography was invented, artists adjusted their activities
to focus less on realism and more on interpretation, whether
through impressionism, abstraction, or surrealism. Photog-
raphy itself developed not only as a recording medium, but
as an art form in its own right. As writing, translation, para-
phrasing and poetry become increasingly automated, profes-
sional writers and editors may become “bosses to bots" who
instruct them on what to write, how to tailor material, and
what to re-write when it does not come out well enough the
first time.

37



Five Futures with AI Coding Agents <Programming>’23 Companion, March 13–17, 2023, Tokyo, Japan

Figure 4: Full response by ChatGPT to a question about the
future of software development.

D. Exploit Photography changed what painters did, but it
opened up a field and a new profession: photographer. Tech-
nologies such as ChatGPT will change what writers do. Jour-
nalists are likely to spend more of their efforts on investiga-
tion and acquiring stories, and less time on wordsmithing
the reports on those stories. A mystery writer may give
increased attention to plot features and less to the word-by-
word narrative. Completely new media may come out of the
new AI technologies, including producing new interactive
experiences in which a mix of human and robotic actors cre-
ate dramatic environments in which playgoers can wander
and talk. Educational materials authors will have new pow-
erful tools with which to create rich, customized tutorials
in STEAM subjects (science, technology, engineering, arts,

and mathematics). Whether you are or are not a professional
who is called upon daily to use your creative facilities to do
your job, you will have fantastic new tools available with
which to play. Create your first adventure novel. Produce a
beautiful animated movie to share with others or to serve
as a background for your own private meditation. Let AI
help you visualize and share your thoughts, dreams, and
aspirations.

8.3 Closing Words
For the record, the full answer of ChatGPT to the prompt shown in
Figure 1 is provided in Figure 4.

In the PX community at least, these are exciting times.

ACKNOWLEDGMENTS
Thanks go to Edward Misback for providing comments on a pre-
submission draft, and to the three anonymous reviewers who pro-
vided helpful suggestions. Thanks also go to the organizers of PX/23
and the active audience of participants.

REFERENCES
[1] Alan Blackwell, Emma Cocker, Geoff Cox, Alex McLean, and Thor Magnusson.

2022. Live Coding: A User’s Manual. MIT Press, Cambridge MA.
[2] David Brooks. 2023. Despite Everything You Think You Know, America Is on the

Right Track. The Atlantic (January 2023).
[3] Wikipedia 2023. Code Golf. Wikipedia. Retrieved January 15, 2023 from

https://en.wikipedia.org/wiki/Code_golf
[4] GitHub 2021. Introducing GitHub Copilot: your AI pair programmer. GitHub.

Retrieved June 29, 2021 from https://github.blog/2021-06-29-introducing-github-
copilot-ai-pair-programmer/

[5] Mihaly Csikszentmihalyi. 1990. Flow: The Psychology of Optimal Experience.
Harper, New York.

[6] Wikipedia 2023. Hackathon. Wikipedia. Retrieved January 15, 2023 from
https://en.wikipedia.org/wiki/Hackathon

[7] ICPC 2022. International Collegiate Programming Contest Rules. ICPC. Retrieved
January 15, 2023 from https://icpc.global/worldfinals/rules#heading-8

[8] J. Paladines and J. Ramirez. 2020. A Systematic Literature Review of Intelligent
Tutoring Systems With Dialogue in Natural Language. IEEE Access 8 (2020),
164246–164267. https://doi.org/10.1109/ACCESS.2020.3021383

[9] Horst Rittel and MelvinWebber. 1973. Dilemmas in a General Theory of Planning.
Policy Sciences 4 (1973), 155–169. Issue 2.

[10] Advait Sarkar, Andrew D. Gordon, Carina Negreanu, Christian Poelitz, Sruti Srini-
vasa Ragavan, and Ben Zorn. 2022. What is it like to program with artificial
intelligence? Proceedings of the 33rd Annual Conference of the Psychology of
Programming Interest Group (PPIG 2022) (2022).

[11] Steven L. Tanimoto. 2013. A Perspective on the Evolution of Live Programming.
In Proceedings of the First International Workshop on Live Programming (LIVE).
IEEE Computer Society, San Francisco, CA.

[12] Matt Welsh. 2023. The End of Programming. Commun. ACM 66 (January 2023),
34–35. Issue 1. https://doi.org/10.1145/3570220

38

https://en.wikipedia.org/wiki/Code_golf
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/
https://en.wikipedia.org/wiki/Hackathon
https://icpc.global/worldfinals/rules#heading-8
https://doi.org/10.1109/ACCESS.2020.3021383
https://doi.org/10.1145/3570220

	Abstract
	1 Introduction
	1.1 Criteria for Comparisons
	1.2 Disclaimer
	1.3 Spoiler

	2 Soloing
	3 ``On the Shoulders of Agents'' or Flow
	4 Coasting or ``Let Them Do It''
	4.1 They'll Do the Work, But then What?
	4.2 Do You Trust Them?

	5 ``Teach Me''
	6 ``Teach Them'' or Help Them Save Your World
	7 Comparing the Futures
	8 Anticipating the Future
	8.1 What's Coming
	8.2 Preparing to Live with Agents: Understand, Cope, Adapt, and Exploit
	8.3 Closing Words

	Acknowledgments
	References

