
A Perspective on the Evolution of Live Programming

Steven L. Tanimoto
Dept. of Computer Science and Engineering

University of Washington
Seattle, WA 98195, U.S.A.

tanimoto@cs.washington.edu

Abstract—Liveness in programming environments generally
refers to the ability to modify a running program. Liveness is one
form of a more general class of behaviors by a programming
environment that provide information to programmers about
what they are constructing. This paper gives a brief historical
perspective on liveness and proposes an extension of a hierarchy
given in 1990, to now account for even more powerful execution-
oriented tools for programmers. In addition, while liveness
concerns the timeliness of execution feedback, considering a
broader array of forms of feedback is helpful both in better
understanding liveness and in designing ever more powerful
development tools.

Index Terms—Liveness, live programming, live coding,
debugging, software development tools, liveness levels, integrated
development environment, software engineering, code
completion, program inference, tactical prediction, strategic
prediction.

I. INTRODUCTION

There are two ways a do-it-yourselfer might replace an old

lightswitch with a dimmer: (1) first turn off the circuit breaker,
or (2) wire it hot. Hot wiring has two advantages: it’s probably
faster, and in some cases it may be easier to tell which wire is
which by touching them to a light bulb or voltmeter. However,
hot wiring is dangerous.

In programming, working live need not be dangerous, and
the opportunity it offers for immediate feedback can be very
valuable. Here are some of the motivations for liveness in
programming:

 minimizing the latency between a programming action
and seeing its effect on program execution.

 allowing performances in which programmer actions
control the dynamics of the audience experience in real
time.

 simplifying the “credit assignment problem” faced by a
programmer when some programming actions induce a
new runtime behavior (such as a bug).

 supporting learning (hence the early connections
between liveness with visual programming and
program visualization).

The aim of this paper is primarily to put current notions of
liveness into a context that includes past notions and possible
future ones. Secondarily, the paper suggests a more general

category of feedback mechanisms in programming
environments to which liveness belongs.

II. HISTORY

This section describes early notions of liveness, in order to

put newer notions into perspective. It covers developments up
through about 2003.

A. Fundamental Notion of Liveness

The traditional program development cycle involved the
four separate phases: edit, compile, link, run1. Debugging
sometimes altered the cycle by changing the run mode to
include setting breakpoints, single-stepping, etc. Changing a
program while it was being executed was rare outside of
debugging sessions, and the changes made during debugging
were more often to data values than machine code. Changes to
the code were difficult to make, and when they were made, it
was generally while execution was suspended at a breakpoint.
Live programming was very much an exception to the norm.

In live programming, there is only one phase, at least in
principle. The phase involves the program constantly running,
even as various editing events occur. A system that supports
live programming need not require that all programming
performed within the system be live. At times, live
programming is unnecessary and the execution of the program
might be distracting, particularly when the program is in an
intermediate state between useful versions with meaningful
behavior.

B. Liveness and Visual Languages

Liveness as an attribute of a programming environment
seems to have first been studied in the context of visual
languages [1][2]. Visual languages and program visualization
attempt to solve a similar problem to the one that liveness
addresses, which is the problem of making programming easier
by making it easier to understand quickly what a program is
doing or supposed to do. Visual representations of programs
appeal to the human ability to perceive spatial structure which
helps to understand something like a program. A visualization

1 While the edit-compile-link-run cycle was predominant in the 1960s, one
could also consider interactive development with Read-Eval-Print loops, as in
Lisp environments, as another tradition --- one a bit closer to live
programming because of the interactivity of the language interpreter.

of a program’s execution helps translate a process, otherwise
hidden inside the machine, into a display (often dynamic, with
animation), so that a programmer or user can more easily
construct a mental model of the program that is consistent with
its behavior.

Writing in the context of visual languages in a relatively
early paper [1], I distinguished four separate levels of liveness,
culminating in level 4 (“fully live”). A system supporting fully
live programming is one that permits a programmer to edit a
program while it is running, and furthermore the system
continues the execution immediately and without noticeable
interruption according to the updated version of the program.
The four liveness levels are shown as the first four levels on a
new, extended hierarchy in Fig. 1, which I discuss later on.

C. A Few Example Systems

Some early interactive computer systems had live qualities.
For example, Sutherland’s Sketchpad [3] allowed a user to
specify graphical objects interactively, and the appearances and
properties of objects were computed and displayed in real time.
Although we don’t consider Sketchpad to be a programming
system, it was not a big leap from interactive drawing programs
to tools that supported the drawing and running of “executable
flowcharts.” Executable flowcharts and executable dataflow
diagrams [5] exemplify level-2 liveness, in which a visual
representation of the program is “significant” enough to the
computer to be run.

The VIVA proposal [1] specified a system for fully live
executable dataflow diagrams; its implementation by Birchman
[4] in 1991 achieved level 3 liveness (edit-driven updates). A
detailed study of the implementation requirements for
achieving level-4 liveness was carried out for declarative visual
languages by the leading academic research group on
spreadsheet languages [2]. The 1995 release of the computer
game “Widget Workshop” [6] marked an important point in the
availability of live programming-like systems to the public.
The Gamut programming-by-demonstration system did away
with the run/build distinction, making it fully live [7].

The author’s “Data Factory” is a more recent example of a
fully live visual programming system for experimental use in
education [8]. The primary purpose of the Data Factory was to
offer a rich form of computation for which a student could
develop a mental model almost immediately. Its key qualities
were complete visibility, continuity of data movement during
execution, natural parallelism, liveness and a factory metaphor.

D. Criticisms of Liveness

One might argue that liveness at level 4 is probably not
very important in most kinds of programming. First of all, it
doesn’t seem to apply to programs that simply run for a few
milliseconds and then terminate. And even if a program runs
for a long time, editing a part of the program where execution
has passed and to which it will not return will not allow the
liveness to do any good. Another criticism of liveness is that it
requires too much of the computational resources of a system,
since editing and execution have to happen simultaneously, and
the edits might actually trigger compile or compile-link-load
activities that have to happen so quickly that they are not

noticed. Computational resources certainly were limiting
factors during the days when our concept of an IDE was
developed. Another issue is that there may be semantic
inconsistencies between an execution and the latest version of
the program.

However, today, there are a variety of ways to address these
criticisms of liveness.

III. THE PRESENT

I’ll draw the line between past and present at about 2003, at

the risk of seeming ancient, simply as an organizational
convenience. This will allow me to discuss live coding for
performances as a recent phenomenon, although it does go
back at least a decade; the year 2003 saw the publication of
Collins et al in this area [9]. That year was also the 40th
anniversary of the publication by Sutherland of Sketchpad [3].

A. Addressing the Criticisms

Let’s start this part of the discussion with answers to the
criticisms of liveness stated in the previous section. First, let’s
acknowledge that liveness by itself is not a panacea for
programming environments. Neither is it necessary for all
programming tasks. But let me now argue that it is potentially
very important for many kinds of programming. As with many
new features, a programmer probably won’t miss it until s/he
has used it and it is taken away. Interactive debuggers are a
case in point. The ability to easily inspect a computation and
modify it is taken for granted in most IDEs. Adding liveness is
a straightforward enhancement.

The criticism that liveness is meaningless when running
short programs can be addressed by adjusting the run-test
configuration as follows. “Auto-repeat” mode simply runs the
program over and over again, until it is explicitly stopped by
the user. Live edits then lead to nearly instantaneous changes
in the perceived execution (assuming the relevant branches are
taken, etc.). A similar approach addresses the criticism that
live updates might be useless due to execution having passed
the location of the updates; like breakpoints, special “start
section” and “end section” locations can be set, which define
an interval of code that should be indefinitely repeated while
live editing is performed on it.

While scarcity of computational resources might have been
a disincentive to live programming in the 1980s or 1990s,
modern computers can generally handle concurrent editing and
running of a program with no difficulty, even if compiling and
linking or loading have to be performed after each edit event.

The possibility of semantic inconsistency between an
execution and the latest version of a program may
problematical in some settings, such as the operation of critical
infrastructure. In such settings, one should either not use live
programming to begin with, or special precautions should be
taken to prevent some kinds of inconsistency and automatically
detect and correct others. In other settings, the inconsistent
states may not matter. For example, in the Scratch system [10],
which permits live editing of running programs, deleting a

game avatar (e.g., Pac Man) and undoing the deletion in the
middle of the game can render the reincarnated character
inoperable for the remainder of the game --- not a valid game
state, but a possibly instructive result to a budding programmer,
nonetheless.

B. Liveness in IDEs

In modern integrated development environments such as
Eclipse for Java programming, there are many features that
work as the programmer codes, to provide feedback to the
programmer. These include syntax highlighting, code
completion suggestions, and indications of problems associated
with various locations in a source file. Facilities for editing
running code also exist. The Java virtual machine from version
1.4 has included a “hot-swap” feature that enables the
replacement of a class file by a new one while the overall
program is running. That permits IDEs to offer a code “push”
feature to quickly compile a new version of a class and/or
object and insert it into the running JVM. When programmers
code live, their behavior may be different than without
liveness, and this can lead to new means to infer structures such
as unit tests [11].

C. Live Coding in Performance Arts

An important context for the study of live programming is
as part of a performance. Although computer music and visual
shows such as light shows are often scripted in advance (like
classical music programs), some artists emphasize the
extemporaneous, improvisational aspects of performance.
When musical or visual output is driven by software, changes
to the software, whether parameter changes through GUIs or
code changes through editors, can be used to cause particular
effects in real-time. Although the goals of such programming
are very different from that of constructing a usable piece of
software, the concerns for human control and feedback are at
least parallel, if not clearly similar Collins and Blackwell have
analyzed many of the human factors involved in live coding for
performance art, drawing on the psychological framework of
cognitive dimensions [9][12].

When one contemplates the possibilities of a modern
computer in comparison with those of a traditional instrument
such as a bassoon or trumpet, the challenge to exploit the
power of computers for live music creation is intriguing. In
ensemble playing (e.g., in the genre of bebop jazz), the force of
time (the steady beat) may add a sense of urgency to any live
coding that may be involved. On the other hand, certain
program structures can relieve some of the urgency; having a
main loop that is repeated once per jazz beat or per measure or
per 4-bar unit, etc., may require only that the live coder change
a value that controls a case/switch branch. In other words, the
live coding could simply be the manipulation of two or three
key variables that control the execution.

A different approach to the production of live music would
be to incorporate “software sensors” within an IDE, such as
Eclipse, in such as way that normal programming actions
create “coding music” as a byproduct of the software-
development process. A wind chime’s music reflects the
weather, and an IDE’s music reflects the dynamics of coding.

Live programming is taking place in more and more
contexts, including web-server scripting, learning
environments, and professional tools. This trend is likely to
continue.

IV. THE FUTURE

While live programming is likely to become ubiquitous,

with its increasing incorporation into IDEs, scripting
environments, and tools for learning, there are some
qualitatively different possibilities, with much of the character
of liveness, on the horizon for programming environments. In
order to try to offer a broad perspective on liveness, I want to
incorporate one of these notions, in two degrees of intensity,
into the hierarchy originally offered in 1990 [1].

There is a natural rationale for this new aspect of liveness
as an extension of level-4 liveness, and it is about the temporal
relationships between programmer actions and computer
responses. In liveness level 2, the programmer would do

Fig. 1. Proposed extended version of the liveness hierarchy. The
tactically predictive and strategically predictive levels incorporate
“extrapolation tools” that could offer a new look and feel to the
process of programming.

something, would ask for a response, and some time later, the
computer would respond. In level 3, the computer would wait
and sometime after the programmer did something, would
respond. In level 4, the computer wouldn’t wait but would keep
running the program, modifying the behavior as specified by
the programmer as soon as changes were made.

In the new liveness level 5, the computer not only runs the
program and responds, but also predicts the next programmer
action (with possibly multiple alternatives predicted together)
and runs one or more of the predicted resulting versions of the
program (probably in separate virtual machines or separate
sandboxes). Instead of the environment lagging behind, or just
keeping up with the programmer, it stays a step ahead of the
programmer. Such prediction appears to be feasible through
the use of machine learning technology. Programmer actions
can be described at multiple levels: lexical, phrase, code block,
semantic, etc. Statistical models of programmer behavior can
provide one basis for prediction [13], and logical reasoning
about meaningful choices can help refine predictions based on
the numbers.

Liveness at level 5 can be called “tactically predictive”
liveness, because the programming environment plans ahead
slightly to discover possible nearby program versions that the
programmer might be interested in choosing, either as the next
version in the program’s evolution, or as an approximation to it
that s/he will hand-edit. As in level-4 liveness, the new
versions are presented running, and the programmer can select,
inspect, or kill any or all of them.

As an example of tactical prediction, the pattern suggested
by Hindle et al, of input/output calls of the form (OPEN,
ACCESS*, CLOSE) can be used by an IDE to predict, after an
OPEN call, that an ACCESS call will be made, possibly within
a loop or called function [13]. Thus the tactical prediction
might offer a program variant that includes a working call to
ACCESS the file (and thus do a default read or write on it) and
perhaps a CLOSE call, as well.

The incorporation of the intelligence required to make such
predictions into the system is an incorporation of one kind of
agency – the ability to act autonomously. Agency is commonly
associated with life and liveness. (One might argue that here,
liveness has spread from the coding process to the tool itself.)

Further in the future is the possibility of more intelligent
inference of the programmer’s intentions or desires. Rather
than simply making tactical predictions, a system might be
capable of successfully making strategic predictions. Such a
prediction would cover the desired behavior of a larger unit of
software. The system would then (quickly!?) synthesize a
program with that behavior from a combination of the current
program and a large knowledge base. This is, naturally,
liveness level 6.

As an example, let us consider what it would mean to infer,
at the strategic level, a specification in the input/output scenario
that we just considered at the tactical level. Assuming that the
IDE has access to a rich knowledge base, it might determine
that the programmer, with some nontrivial probability, wants
his or her program to read a text file, parse its contents, and use

that data to assign values to a set of configuration variables.
Some details would also be inferred, but others simply guessed.

ACKNOWLEDGMENT

I thank Alan Blackwell and Andy Ko for encouraging this

submission and Adrian Kuhn for relevant discussion. Thanks
also go to the four anonymous referees for their constructive
comments, which in turn have improved the paper.

REFERENCES

[1] Tanimoto, S. “VIVA: A visual language for image processing,”

Journal of Visual Languages and Computing, Vol. 1, No. 2,
pp.127-139, June 1990.

[2] Burnett, M. M., Atwood, J. W., Jr., and Zachary T. Welch, Z. T..
“Implementing level 4 liveness in declarative visual
programming languages,” Proc. of the Int’l. Symp. On Visual
Languages VL’98, Sept. 1-4, 1998, Halifax, Nova Scotia,
Canada. pp.126-133.

[3] Sutherland, I. E., “Sketchpad: A Man-Machine Graphical
Communication System,” New York: Garland Publishers, 1980.

[4] Birchman, J. J., “Visualization of Vision Algorithms (VIVA):
An Implementation of a Visual Language on the NeXT
Computer,” Master’s thesis, Dept. of Electrical Engineering,
Univ. of Washington, 1991.

[5] Docker, T. W. G, and Tate, G. “Executable data flow diagrams,”
in D. Barnes and P. Brown (eds), Proceedings of the BCS/IEE
Conference ‘Software Engineering 86’, Peter Peregrinus Ltd,
1986, pp. 352–370.

[6] Elliott Portwood Productions, Inc. “Widget Workshop: The Mad
Scientist’s Laboratory.” Computer game published by Maxis,
Inc. 1995.

[7] McDaniel, R. G., and Myers, B. A. “Building applications using
only demonstration,” Proc. IUI’98: 1998 Intr’l. Conf. on
Intelligent User Interfaces, San Francisco, CA. pp.109-116.

[8] Tanimoto, S. L. “Programming in a Data Factory. Proc. Int'l
Symposium on Visual Languages and Human-Centric
Computing, VL/HCC’2003, Auckland, New Zealand.

[9] Collins, N., McLean, A., Rohrhuber, J., and Ward, A. “Live
coding techniques for laptop performance,” Organised Sound,
Vol. 8, No. 3, 2003, pp.321–30.

[10] Maloney, J., Resnick, M. and Rusk, N., “Scratch: A sneak
preview,” Second Int’l Conference on Creating, Connecting, and
Collaborating through Computing, Tokyo, Japan, 2004.

[11] Kuhn, A. “Liveness in Programming, on Extracting Unit Tests
from Live Programming Sessions,” Unpublished oral
presentation at the Univ. of Washington. Dec. 12, 2012.

[12] Blackwell, A. and Collins, N. (2005). “The programming
language as a musical instrument,” in Proceedings of PPIG
2005, pp.120-130.

[13] Hindle, A., Barr, E. T., Su, Z., Gabel, M., and Devanbu, P.
“On the naturalness of software,” Proceedings of the 34th
International. Conference on Software Engineering, Zurich,
pp.837-847.

