
Multiagent Live Programming Systems:
Models and Prospects for Critical Applications

Steven L. Tanimoto
Paul G. Allen School of Computer Science and Engineering

University of Washington
Seattle 98195, Washington, USA

tanimoto@uw.edu

ABSTRACT
Live programming constitutes a human-computer symbiosis in
which a human creative activity and a continuous computer execu-
tion influence each other. Usually, there is a medium of expression
called “code” that the human(s) use to express desired behavior on
the part of the computer, and the computer provides its feedback
in the form of textual, graphical, audio, or other output. The most
popular domain for live programming has been music synthesis
(“live coding”), but the key features of live programming suggest
it can play an important role in other applications, even process
control or emergency management.

This paper breaks down live programming systems in terms of
agents, both human and computational, their roles, and representa-
tions they typically create and act upon. It then comments on how
multi-agent live programming systems could add new flexibility to
information systems such as those that manage critical infrastruc-
ture or emergency response activity, such as during a COVID-19
type of pandemic or after a major earthquake.

CCS CONCEPTS
• Software and its engineering→ Development frameworks
and environments; Collaboration in software development;

KEYWORDS
Software engineering, live programming, hot-swapping, models
of live programming systems, multi-agent systems, agile develop-
ment, coronavirus, COVID-19, earthquake, emergency manage-
ment, safety

ACM Reference Format:
Steven L. Tanimoto. 2020. Multiagent Live Programming Systems: Models
and Prospects for Critical Applications. In Companion Proceedings of the 4th
International Conference on the Art, Science, and Engineering of Programming
(<Programming’20> Companion), March 23–26, 2020, Porto, Portugal. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3397537.3397556

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
<Programming’20> Companion, March 23–26, 2020, Porto, Portugal
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7507-8/20/03. . . $15.00
https://doi.org/10.1145/3397537.3397556

1 INTRODUCTION
1.1 Overview
This paper examines the architecture of live programming systems
in terms of their component agents, data representations, and safety
of executions. The purpose of this analysis is to help establish ref-
erence points for the research and development community for
the design and analysis of new systems that offer alternative ap-
proaches to amplifying human creativity and productivity through
computation. Possible application scenarios include “critical” ones
such as computer-assisted management of responses to unfolding
emergencies including pandemics and earthquakes, as well as “cre-
ative” ones such as the already popular application domain of music
synthesis[Aaron and Blackwell 2013].

1.2 Motivation
The design of programming environments has a major impact on
the experience of computer programmers[Edwards et al. 2019],
including not only their productivity in terms of lines of code per
unit time, and the quality of that code, but also the affective aspects
of programming, and the programmers’ creativity in the broader
context of seeing the current task in the context of the entire project
or series of projects.

Furthermore, by supporting “live” programming, an environment
can enable a possibly more interactive programming experience
that can enhance either the process or the end result of a program-
ming session[Victor 2012][McDirmid 2013][Church 2017].

However, there are other domains where flexibility to quickly
add new program elements to a software system could conceivably
be extremely helpful. Such a domain is emergency management,
when time pressures and unexpected software and information
needs can arise. The time element is critical in pandemic response,
earthquake response, wildfire control, and many other types of
emergencies.

This paper is concerned with the question of how to design new
systems that support live programming. It focuses on models that
can serve as high-level design schemata, in the early stages of such a
project, but where such a project may be to extend the effectiveness
of an existing software application.

Why do we need models? One reason is that there are many
ways to achieve the goals of liveness, and it is important to be able
to readily analyze designs for possible systems with regard to a
particular application. Another is that models help us to understand
the space of possible live programming environments, to support an
evaluation of their applicability to emergency management systems.

90

https://doi.org/10.1145/3397537.3397556
https://doi.org/10.1145/3397537.3397556
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3397537.3397556&domain=pdf&date_stamp=2020-08-04

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal S. Tanimoto

1.3 Benefits of Liveness
When either choosing a development environment or designing
a scriptable software system, an important question is what the
benefits of liveness might be. There are two main benefits.

immediacy of feedback to programmers: The possibility of
low-latency responses from a running system, in terms of the
semantics of the program being modified, has been the fore-
most attraction of live programming.[Kato 2017]. This is not
only a convenience for debugging, but perhaps a key notion
in a reinforcement learning situation in which a program-
mer is discovering how best to structure or tune a section of
code. Having lots of trial/response interactions, as in big-data
machine learning, makes a big difference in the results.

keeping continuity of execution: This is important in cer-
tain applications. Examples include musical performance,
and as suggested later in this paper, emergency management
or possibly the control of a nuclear reactor.
When something is wrong with the control program, we
may not have the luxury of restarting from the beginning,
but need to make a patch that can fix the problem without
interrupting (or minimally interrupting) the execution. For
example, a computation which expends resources (such as
raw materials in manufacturing) to get up to a given state,
cannot simply be restarted if that state is not perfect.

In order to achieve these benefits, liveness must be thoughtfully
integrated into the programming environment.

1.4 Prior Work on Live Programming
Creation of software can be accomplished using many methodolo-
gies. Most involve traditional edit-compile-run cycles. But some
use live programming environments, or possibly even non-coding
interaction[Petricek 2019]. System support features include file
management (naming, versioning, paths on the file system), editing
assistance (refactoring, auto-completion, etc.), and runtime safety
(type systems in programming languages, assertion mechanisms,
unit-testing affordances, etc.)

Live programming environments supplement conventional fea-
tures with forms of liveness[Edwards et al. 2019]. Liveness can
sometimes lead to faster semantic feedback to a programmer writ-
ing program code. This may help the human express ideas at a rate
closer to the rate of thought, rather than at a slower, belabored
rate caused the encumbrance of more required actions on the part
of the programmer. Liveness can be incorporated in a variety of
styles within an environment, from full programming to merely
parameter tuning[Kato and Goto 2016].

For more literature related to liveness, see the references in some
recent works[Petricek 2019][Kato 2017].

2 BASIC MODEL COMPONENTS
The focus of this paper is on better understanding the design space
of live programming environments that could be built in order to
better exploit emerging tool technologies, artificial intelligence, and
collaborative programming methodologies, and in order to broaden
the scope of applications that can benefit from live programming.
This section addresses the question of what sorts of agents should
be considered in such designs, as well as what types of program and

meta-program representations may be needed in the coordination
of live programming processes.

2.1 Human Agents
The most important agents in a programming environment are
the humans who work to create, shape, analyse, and document
the programs. We can consider all of these activities to be roles of
“programmers” broadly construed. In some possible systems, we
may label these people with more specific terms.

Requirements Analysts: Those who develop specifications
for software.

Coders: Those who design or write program code.
Evaluators: Those whose main function is to provide services

to programmers that complement the creation of the pro-
gram code. The roles of evaluators include: testers, judges,
and arguably, documenters.

In addition to filling these roles, the human agents communicate
with one another, and they are generally members of a team.

2.2 Computational Agents
The programmers work in a software-tool environment that we can
conceptualize as a collection of computational agents that embody
processes that perform services. Whether the agents are imple-
mented with separate execution threads, or even separate hardware
is an implementation issue that is somewhat orthogonal to the
design of the agents’ functionality. (We are concerned in this paper
with the functionality, not the implementation.)

Some of these agents perform traditional IDE tasks such as offer
and accept code completions. Others correspond to services that
are not standard today but that will be needed to better exploit
artificial intelligence and other technologies. Agents that perform
small analysis or codemodification tasks wemight call “script elves,”
while agents that tackle larger tasks such as inferring programmer
goals or finding nearest matching code on the web may be called
“script wizards." Both types of agents observe the program code
buffer. Those which modify code proactively (e.g., auto-correcting
indentation) can be distinguished from those which only suggest
modifications which must be accepted by the programmer before
they are performed. The nature of these analyses and transfor-
mations may be either proactive or suggestion-only, according to
programmer preferences.

In a traditional IDE such as the bare Java-tools configuration of
Eclipse, the functions performed by these agents are considered
services. By considering them to be agents, we reinforce the notion
that these functions can be applied proactively to increase liveness.

Code modifiers: Script elves that handle simple changes to
the code buffer. These include prettifiers, annotators, syntax
highlighter, code completion acceptors, and some refactorers.

Code analyzers: Script elves that handle code completion sug-
gestion, lexers, parsers, ancillary diagram (e.g., type graph)
constructors, and detectors of conflicts between different
programmers’ versions.

Segmenter: In a live programming environment, parts of a
source code buffer may contain valid program code, while
other parts contain comments, free textual notes, or invalid
program code. The job of a segmenter is a partition the text in

91

Multiagent Live Programming Systems <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

the buffer according to these classifications, with a primary
goal of inferring the programmer’s intent and enabling the
execution of whatever program can be discerned as a result
of this process.

The "Interpreter": If not broken into separate services, one
agent might handle the whole of lexical analysis, parsing,
and execution.

Hot-swapping agents: These handle live modifications to the
machine code while it is being executed. They must ensure
integrity of the running process and trajectory of program
states, insofar as practicable.

Continuity agents: These may operate directly on program
states to compensate for an “inconsistent history.” For exam-
ple, a live change to the dimensions of an array from 100 to
10 could suddenly cause an array index of 79 to be outside
the legal range. The continuity agent might use a policy to
change its value to 9, or perhaps to 6, to retain consistency
in relative location.

Adjudication agents: When human agents or other agents
come up with conflicting requests/requirements, an adju-
dication agent can assist with an analysis and optionally a
resolution.

Basic execution agent: execution of the main process being
designed or modified.

Approximate computing agents: for early feedback when
the main computation takes too long to feel live. In graph-
ics/visualization applications, for example, progressive re-
finement of displays can help reduce the latency between
programmer action and programmer comprehension of the
consequences of that action.

Speculative executions: These agents run variations of the
main execution in anticipation of relatively likely possible
changes to the program. These not only allow tactically-
predictive liveness (“level 5”[Tanimoto 2013]) but can reduce
the need for approximate computation agents by getting to
future execution states early.

Simulation agents: When a computation involves not only
machine calculation but control of physical and social sys-
tems, an execution is not a “throwaway commodity.” Yet
some forms of liveness (e.g., level 5) require multiple threads
of computation exploring possible futures of the main thread.
In an environment with physical/social consequences, these
exploratory threads should typically be simulations to avoid
the high costs of consuming physical resources or social
capital.

Meta-execution agents: These include debugging assistants,
profilers, and execution critics.

IDE Control: One particular meta-agent is responsible for co-
ordinating all the other agents in the integrated development
environment. It may use a set of rules and preferences to
do this. For example, it may allocate speculative execution
agents on the basis of estimated opportunity/cost.

2.3 Representations
Source code, while perhaps the primary representation of a com-
puter program in a live programming environment, is not necessar-
ily the only representation of concern. In general, representations
in a live programming system are the information passed back
and forth or pointed to by the agents. Important characteristics of
relevant representations are discussed in the following.

Inscriptions: – human-intelligible representations, including
program code, approximate program code, slightly trans-
formed program code, comments, free text, drawing, formu-
las, intelligible records of gestures, and clear examples of
input-output pairs (for example-based programming).

Machine code: – representations that are normally unintelli-
gible to humans, but meaningful to a computer, such as byte
code, machine language code, etc. Typically, the machine
code is organized to facilitate hot swapping, e.g, as class
definition byte code.

Structured representations: Parse trees, graphs, CASE frames,
flow charts, type hierarchy diagrams, dependency graphs.

2.4 Control Schemes
Coordination of the agents and representations in a live program-
ming environment can itself be handled with agents and representa-
tions specific to this task. However, we give some special attention
to this aspect of the system here.

Rules, graphs and other representations that describe how
and when representations are processed. For example, a con-
trol scheme could poll for changes in a pair of human-edited
buffers, where two programmers are writing function def-
initions for a single execution thread. When updates are
detected by the polling, inconsistencies between the two pro-
grammers’ buffers will be resolved by an adjudication agent,
and the results passed to a code swapping and continuity-of-
execution agent.

Means for maintaining the experience of liveness may be
provided for in the control scheme. For example, approxi-
mate computations may be run, and or certain computations
may be automatically checkpointed for transparency on the
basis of elapsed time.

3 MODELS
In this section we consider views of possible live programming
environments in terms of their component agents. This aspect is
a key one for a model of such a system. The model should incor-
porate other aspects, such as information and control flows, and
representations, but here we focus mainly on the agents.

Figure 1 shows a model for a minimal live programming system,
with one human programmer and a computer agent that interprets
the code produced by the human.

Figure 2 shows a collection of agents in a hypothetical, general
live-programming system. The agents are grouped into four cat-
egories beginning with the human live programmers and ending
with meta-execution agents. One could also imagine interconnect-
ing these agents with information flow paths, but due to the high
degree of potential interconnection, the diagram would likely be
unnecessarily messy.

92

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal S. Tanimoto

Figure 1: Model of the agents in a minimal system for live
programming.

Note that data visualization tools are often valuable when the
design of software involves making sense of large quantities of data.
Agents supporting visualizations could be added to the collection
in Fig. 3; however, they could also be considered to be part of a
library of software tools, separate from the IDE, that can be linked
into the software application under development.

Figure 2: The agents in a general multi-agent model for a
live programming system.

4 IMPORTANT ISSUES
4.1 Safety
Live programming has traditionally been promoted in a spirit of
empowering the programmer, and making execution follow the
programmer’s latest actions. Although this may seem to violate
safe practices such as careful vetting of code before execution, a
later section of this paper discusses how live programming can be
made safe.

4.2 Hot Swapping and Checkpointing
Maintaining continuous execution while reflecting the semantics
(to the extent practicable) of the current version of a changing
program poses challenges.

Hot swapping is the method of replacing a chunk of machine
code in a running program by another chunk. Some live program-
ming environments require this for continuity of execution of the
main process. A somewhat analogous technique is “double buffer-
ing" in computer graphics, and this suggests one means of hot
swapping: whenever a new method definition becomes available,
redirect calls to the old method to go to the new method.

Certain limitations may sometimes be necessary to make hot
swapping safe, such as having the main thread temporarily block if
it reaches the point in the code where the hot-swapping is taking
place.

Checkpointing is a means of saving past execution states in part
or in total, for the purpose of backing up an execution, if required,
to help quickly obtain a newmodified execution that is semantically
more consistent with the current version of the changing program.
Making an execution as continuous as possible, and as consistent
with a changing program as possible, is an open research problem.
In live-coding practice for musical improvisation, the semantics of
the execution are implicitly defined to be “whatever you get” (i.e.,
whatever the listener hears).

4.3 Coordination of Programmers
Live programmers may create conflicting function definitions or
other inconsistent code. How such inconsistencies are handled can
be considered at the system design level or at the level of control
policies within the environment. One policy would be to resolve
conflicts according to a hierarchy among the programmers; the
lead programmer’s version of a code block supercedes conflicting
versions by other programmers.

4.4 Scripting vs. Live Programming
Scripting is typically considered to be a form of programming in
which pre-written applications or libraries are called in order to
coordinate execution flows that are primarily handled by those
components. Live programming, on the other hand, is program-
ming at any level of abstraction in an environment that offers the
affordances of automatic transfer of code changes to the execution,
etc. These two types of programming can be combined for live
scripting, with no inherent inconsistency.

93

Multiagent Live Programming Systems <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

5 APPLICATION TO EMERGENCY
MANAGEMENT SYSTEMS

5.1 Needs of Emergency Management Systems
An emergency management system (EMS) is a computer-based
information system that keeps track of needs, resources, and re-
sponses during an emergency[World-Health-Organization 2013].

The unpredictable nature of each specific emergency has paral-
lels in business, in which the rapid pace of business and technology
changes require rapid adaptation of software products and plans.
Agile development has been the most popular approach to software
engineering in the past two decades under these conditions[Alaa
and Fitzgerald 2013].

An EMS is typically structured either as a decision-support sys-
tem[Turoff 2002] or a general-purpose digital communications plat-
form. Since many emergencies occur over spatial regions, it is
common to use maps or geographic information systems as a fun-
damental components of EMSs. While some emergencies such as
a mine collapse, are focused in one location, broader emergencies
such as earthquakes and pandemics require tracking multiple issues
in a variety of locations. Keeping track of the issues and response
plan status is part of what the EMS does. Interfaces for human
response managers require affordances for quickly bringing up the
status of a response effort and seeing where on the map it is taking
place.

One of the most widely used systems is Virtual OSOCSS, de-
veloped under the auspices of the United Nations Office for the
Coordination of Humanitarian Affairs, and as part of the Global
Disaster Alert and Coordination System (GDACS). This system is
intended to help deal with new emergencies anywhere in the world
during their first few days (e.g., 72 hours). The primary types of
emergencies addressed are earthquakes, tropical storms, volcanoes,
floods, and droughts. In spite of its wide usage, it has been criticized
for being oriented towards UN elites rather than the local teams on
the ground who deal directly with the consequences of a disaster.
Nonetheless, its development since 1999 has been studied, and re-
current patterns of new information-processing needs in it have
been identified[Bjerge et al. 2016]. In fact, a major reason for Virtual
OSOCSS not being more widely used by responders is that it still
often fails to provide relevant information in a way that those in
need of it can find it in a timely and appropriate fashion. Contribut-
ing to this problem is the fact that a plethora of new information
formats continues to grow as more organizations in more countries
either offer information or request information. Another issue is the
insufficient internationalization of the interface; although Virtual
OSOCSS supports more than one language in its static interface
(English, French and Spanish), many of the responder teams in the
world are not able to use these languages. The study by Bjerge et al
found that over time, features were added to Virtual OSOCSS that
improved flexibility of information access, and as that happened,
the number of users increased.

The WebEOC system[Juvare-Inc. 2020] is a software product of
Juvare, Inc., that is licensed to many local government agencies in
the United States. It uses the Internet and browsers to give users
access to EMS functionality. The company offers a short course on
scripting with HTML and JavaScript for the purpose of creating new

front-end “boards.” However, back-end functionality is apparently
not scriptable by end-users.

If a new feature is needed during an emergency, such as a means
to integrate a new type of data, agile methodology has typically
been the fastest way to incorporate new functionality. However,
even that relatively flexible means to get the new code up and
running may require too much time.

In a viral outbreak or pandemic such as with COVID-19, there
may be a series of connected emergencies over a period of months.
As a scenario in which live programming could help, consider the
following. During the COVID-19 pandemic, there was a shortage
of ventilators in many cities.

A manufacturer offers to produce 𝑁 ventilators
of a slightly new type, 𝐵, which have certain
limitations in capacity due to the unavailabil-
ity of the exactly correct part 𝐶 . The quantity
for this proposed device cannot be integrated
(within the EMS) with the expected ventilator
supply predictions due to restrictions built into
the EMS’s ventilator specification data format.
An immediate change is needed to the software
to permit the type-𝐵 ventilators to be included.
Due to this incompatibility, the human emer-
gency coordinator, under time pressure and
other stress, refuses to entertain the prospect
of the type-𝐵 ventilators, which nonetheless
could save lives.

Although this example is somewhat hypothetical, incompatibili-
ties between software systems and data formats have long been a
challenge for complex information systems. When time is of the
essence, the ability to make changes promptly becomes urgent.

5.2 Incorporating Live Programming
Disaster response management often suffers from inadequate shar-
ing of information during the response[Bharosa et al. 2009], which
is an issue orthogonal to centralized decision-making.

The unpredictable nature of many types of emergencies means
that the software systems that help manage responses to emergen-
cies[Neville et al. 2016][Scholl 2019] should be easily adaptable,
should their affordances not adequately match the needs of a new
situation. While agile methodologies may help to allow last-minute
software modifications to work[Alaa and Fitzgerald 2013], the live-
programming methodology offers some complementary features
that might be helpful.

Human factors are an important dimension of emergency re-
sponse system[Park et al. 2014]. Liveness in the programming en-
vironment can help in making the system and its programmability
easier to learn by a programmer who might not have been part of
the design team for the system or who has not been fully trained
in the system details.

Making a complex information system live-scriptable is techni-
cally feasible; it is well exemplified by the Analyst system[Thomas
1997][Xerox-PARC 1987], implemented in SmallTalk at Xerox PARC,
before the existence of Microsoft Office for Windows.

94

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal S. Tanimoto

5.3 Training Live Programmers
The live programming component of a critical application system af-
fords the human programmer great power to quickly make changes
to the system. Such a programmer must be well-educated in the
domain, and trained to be able to use these affordances effectively
and safely.

Let’s call a live programmer for an EMS an EMLP. An EMLP
must be familiar with the field of emergency management, with
the structure of the EMS and with programming in the system’s
language. An EMLP should be a member of the emergency response
team, and should be ready to communicate with team members
if needed as part of evaluating the latest software needs and their
impacts. In order to be ready to assist in an emergency, the EMLP
should already be practices in the live-programming environment,
and should have participated in drills which simulate actual emer-
gencies.

5.4 Safety Concerns
Further to the issue of safety mentioned earlier, in an EMS or critical
infrastructure, it is fundamental to minimize the risks of system
downtime, accidental catastrophic command/policy mistakes or
grossly incorrect parameter values, interference with proper opera-
tion, reduced transparency, or sabotage. Mitigation and prevention
of these types of failures can be designed into an EMS without
eliminating live programming. Consider, for example, minimizing
risk of accidental catastrophic action by a live coder. First, a live pro-
gramming component of a large system must be understood as one
component, and not the entirety of that system. That component
can be all or partially sandboxed, depending on the circumstances.

Simulation in a sandbox is one approach. Simulation is currently
an important methodology in understanding how the dynamics
of emergency management plays out[Gonzalez et al. 2016]. Live
programming affordances should be connected to the simulation
facilities.

In an emergency management system, live programmers should
debug new functionality with embedded simulations that can use
the real data as input, but can only provisionally alter the state of
controls of the main system. Because the provisional feedback is
live it achieves one of the two aims of liveness: rapid feedback to
the programmer.

A suitably debugged and vetted new software component can
then be hot-swapped into a main execution with reduced risk.

Another approach to reducing the risk that live programmer
might cause damage is to incorporate a detailed risk-analysis pro-
cess into the basic computational fabric of the system. Like systems
that track bounds on numerical error in scientific computations,
a risk management subsystem could make inferences about types
and levels of risk associated with changes to the program code.

Other safety hazards such as sabotage, are not necessarily worse
because of live programming. Some, such as the prospect for re-
duced transparency, may be better, because live programming envi-
ronments are typically designed in a matter to expose the function-
ality of API calls and expose more details of the state of a system
than usual.

5.5 Other Critical Infrastructure Systems
While natural disasters are the main targets of systems such as
Virtual OSOCSS, information systems that control power, trans-
portation, water, or communications networks are also in need
of flexible and safe controls. It is an open question whether live
programming facilities can offer something valuable that enhances
the ability of such systems to respond effectively to unusual circum-
stances. For example, one can speculate that the Fukushima nuclear
reactors might have behaved differently if either the control system
had been more flexible, or if its simulation facilities had been so
flexible and powerful that live programmers working with it would
have more easily understood the risks the reactor posed in the face
of possible tsunamis.

6 CONCLUSION
Adding a live-programming component to an existing software
systems can be a means to more flexible and timely responses to
changing software needs. While there are challenges in making a
symbiosis between a live programming environment and a facility
such as an emergency managements system work well, attempts
to do it appear justified by the possibility of doing a better job in
the ultimate management of emergencies or critical infrastructure.

ACKNOWLEDGMENTS
Thanks to Jochen Scholl, Burr Stewart, the anonymous reviewers
and the PX/20 organizers for their discussions and/or encourage-
ment regarding this paper. Thanks go also to the participants of the
online lightning-talks session of PX/20 held on March 27.

REFERENCES
Samuel Aaron and Alan Blackwell. 2013. From Sonic Pi to Overtone: Creative

Musical Experiences with Domain-Specific and Functional Languages (FARM
’13). Association for Computing Machinery, New York, NY, USA, 35–46. https:
//doi.org/10.1145/2505341.2505346

Ghada Alaa and Guy Fitzgerald. 2013. Re-Conceptualizing Agile Information Systems
Development using Complex Adaptive Systems Theory. Emergence: Complexity &
Organization 15 (September 2013), 1–23. Issue 3.

N Bharosa, J. Lee, and M. Janssen. 2009. Challenges and obstacles in sharing and
coordinating information during multi-agency disaster response: Propositions from
field exercises. Information Systems Frontiers 12 (2009), 49–65.

Benedikte Bjerge, Nathan Clark, Peter Fisker, and Emmanuel Raju. 2016. Technology
and Information Sharing in Disaster Relief. PLoS One 11 (2016). Issue 9.

Luke Church. 2017. Becoming Alive, Growing up. Invited keynote, LIVE 2017,
workshop at SPLASH/OOPSLA.

Jonathan Edwards, Stephen Kell, Tomas Petricek, and Luke Church. 2019. Evaluating
programming systems design. In Proceedings of the 30th Annual Workshop of the
Psychology of Programming Interest Group, PPIG 2019.

Jose J. Gonzalez, Leire Labaka, Starr Roxanne Hiltz, and Murray Turoff. 2016. Insights
from a Simulation Model of Disaster Response: Generalization and Action Points.
In HICSS ’16: Proceedings of the 2016 49th Hawaii International Conference on System
Sciences. IEEE, Piscataway, NJ, 152–161. https://doi.org/10.1109/HICSS.2016.27

Juvare-Inc. 2020. WebEOC. http://juvare.com/webeoc
Jun Kato. 2017. User Interfaces for Live Programming. Keynote presentation at LIVE

2017, Vancouver, Canada.
Jun Kato and Masataka Goto. 2016. Live Tuning: Expanding live programming benefits

to non-programmers. In Proceedings of ECOOP LIVE. ACM. https://junkato.jp/live-
tuning/

Sean McDirmid. 2013. Usable live programming. In Proceedings of the 2013 ACM inter-
national symposium on New ideas, new paradigms, and reflections on programming
& software. ACM, 53–62.

Karen Neville, Sheila O’Riordan, Andrew Pope, Marion Rauner, Maria Rochford, Mar-
tina Madden, James Sweeney, Alexander Nussbaumer, Nora McCarthy, and Cian
O‘Brien. 2016. Towards the development of a decision support system for multi-
agency decision-making during cross-border emergencies. Journal of Decision
Systems 25, sup1 (2016), 381–396. https://doi.org/10.1080/12460125.2016.1187393
arXiv:https://doi.org/10.1080/12460125.2016.1187393

95

https://doi.org/10.1145/2505341.2505346
https://doi.org/10.1145/2505341.2505346
https://doi.org/10.1109/HICSS.2016.27
http://juvare.com/webeoc
https://junkato.jp/live-tuning/
https://junkato.jp/live-tuning/
https://doi.org/10.1080/12460125.2016.1187393
https://arxiv.org/abs/https://doi.org/10.1080/12460125.2016.1187393

Multiagent Live Programming Systems <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

Jongsoon Park, Ralph Cullen, and Tonya Smith-Jackson. 2014. Designing a Decision
Support System for Disaster Management and Recovery. In Proceedings of the
Human Factors and Ergonomics Society Annual Meeting. SAGE Journals, 1993–1997.

Tomas Petricek. 2019. Histogram: You have to know the past to understand the present.
University of Kent. http://tomasp.net/histogram/

Hans J. Scholl. 2019. Overwhelmed by brute force of nature: First responsemanagement
in the wake of a catastrophic incident. In EGOV 2019, I. Lindgren et al (Ed.).
Vol. LNCS 11685. Springer Nature Switzerland AG, 105–124.

Steven Tanimoto. 2013. A perspective on the evolution of live programming. In
Proceedings of the 1st International Workshop on Live Programming. IEEE Computer
Society, Los Alamitos, CA, 31–34.

Dave Thomas. 1997. Travels with SmallTalk. http://www.mojowire.com/
TravelsWithSmalltalk/DaveThomas-TravelsWithSmalltalk.htm

Murray Turoff. 2002. Past and future emergency response information systems. Com-
munications of the A.C.M. 45 (2002), 19–32. Issue 4.

Bret Victor. 2012. Inventing on Principle. video. https://vimeo.com/36579366
World-Health-Organization. 2013. A Systematic Review of Public Health Emergency

Operation Centers (EOC). http://apps.who.int/iris/bitstream/10665/99043/1/WHO_
HSE_GCR_2014.1_eng.pdf

Xerox-PARC. 1987. The Analyst Workstation System. In Xerox Special Information
Systems.

96

http://tomasp.net/histogram/
http://www.mojowire.com/TravelsWithSmalltalk/DaveThomas-TravelsWithSmalltalk.htm
http://www.mojowire.com/TravelsWithSmalltalk/DaveThomas-TravelsWithSmalltalk.htm
https://vimeo.com/36579366
http://apps.who.int/iris/bitstream/10665/99043/1/WHO_HSE_GCR_2014.1_eng.pdf
http://apps.who.int/iris/bitstream/10665/99043/1/WHO_HSE_GCR_2014.1_eng.pdf

	Abstract
	1 Introduction
	1.1 Overview
	1.2 Motivation
	1.3 Benefits of Liveness
	1.4 Prior Work on Live Programming

	2 Basic Model Components
	2.1 Human Agents
	2.2 Computational Agents
	2.3 Representations
	2.4 Control Schemes

	3 Models
	4 Important Issues
	4.1 Safety
	4.2 Hot Swapping and Checkpointing
	4.3 Coordination of Programmers
	4.4 Scripting vs. Live Programming

	5 Application to Emergency Management Systems
	5.1 Needs of Emergency Management Systems
	5.2 Incorporating Live Programming
	5.3 Training Live Programmers
	5.4 Safety Concerns
	5.5 Other Critical Infrastructure Systems

	6 Conclusion
	References

