
Programming in a Data Factory

Steven L. Tanimoto
University of Washington, Seattle, WA USA

fanimoto@cs. Washington. edu

Abstract

Among the advantages of visual dataj7mv prograni-
ming is that if can give the user a sense of location for the
dolo in a computation. This can help novices build a
mental picture of a program and its execution. This
paper presents an experimental programming system
called the Data Factory that uses a manufacturing
metaphor to give dofa an even stronger sense of place. A
h q affordance for learners is the explicit dispiqv of e v e y
data object as it moves through a factoiy The system
provides facilities for handling streams of data and
parallel operations, as well as basic operations on
numerical values. The Data Factary suppom lmv-level
conrputations that might be studied by novices, but it also
offers novel constructs that might invite the anention of
others.

1. Introduction

Dataflow programming has many attractions. These
include taking advantage of metaphors to help learners,
making associations and data paths among components
explicit, and reducing dependency on verbal and textual
expressions. An important aspect of dataflow
programming kom a leaming point of view is that it gives
an explicit picture of &ere data can be in relation to the
processing components of the program That sense of
place may support a learner in building a mental model of
a computation.

This paper presents a somewhat new kind of dataflow
programming system in which data objects are treated like
parts on conveyor belts in factories. This manufacturing
metaphor offers several additional attractions, including
not only the easy handling of streams and parallelism but
making it clear at all times what data is involved in a
computation and where the data is in relation to all the
operations that have been done on it and the operations
that have yet to he done on it.

The Data Factory system described here is no doubt
not the hest way to introduce programming to all students.
However, its factory model may resonate with some
learners and point to way to filling a gap between systems
such as “The Incredible Machine” or “Widget Workshop”

and regular programming languages like Java and
Scheme.

2. Previous Related Programming Systems

Visual dataflow languages have appeared in a
substantial variety. Just a few of them are the following:
HI-VISUAL, F’rograph, Cantata, Viva, and FLOG0 [4,5,
IO, 141.

To a certain extent, Agentsheets [I 11 and Stagecast
Creator [131 might be considered dataflow programming
environments. However. they don’t explicitly provide
datatlow constructs for conventional computing on
numerical values. The Data Factory system presented
here, could, in principle, be implemented within
AgentSheets. However, it was implemented in Java to
gain some flexibility in the implementation of the editor
and runtime facilities.

For one reason or another, most existing systems do
not actually show data flowing along paths. Reasons may
include not wanting to devote the computational resources
needed to animate the data or not being able to provide
enough screen real estate to render all the data. Algorithm
animation systems typically present algorithms more so
than programs.

The ToonTalk system of Kahn employs a microworld
metaphor that suggests to the user the she is creating a
Leg0 toy world of city streets, houses, and robots. The
system is programmed primarily by demonstration: a
process is modeled by the user and a robot then imitates it.
So while its metaphor is something like the factory
metaphor described in this paper, it does not support
programming process as one of arranging conveyors, etc.
in a layout. In [6], Kahn shows how, at the “city” level,
ToonTalk can be used to implement cellular-logic or
“systolic” computations. It thus supports a sort of parallel
processing as does the Data Factory described here.

The OBPE system provides a visual language for
prototyping factory simulations [12]. As such its intended
users are primarily the designers of factory systems rather
than students learning about simple forms of computation.
It specifically avoids using data flow so that it can place
emphasis on objects and altemative views of them for
different kinds of users.

While the factory metaphor is an important aspect of
the Data Factory, one should not claim that this or any

0-7803-8225-0/03/$17.W 0 2003 IEEE 100

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 16,2024 at 20:42:57 UTC from IEEE Xplore. Restrictions apply.

metaphor necessarily increases the usability of the system;
Blackwell and Green [Z] performed an experiment
strongly suggesting that user programming experience
plays a much greater role in success with a programming
task than the extent to which the programming language
employs data flow.

A recent system intended to intxoduce programming
using a metaphor is HANDS by J. Pane [SI. In this
system, a user works with a collection of cards, somewhat

like a poker hand. Each card contains information that
can be accessed and manipulated using the language.
Loops are avoided, and the language provides aggregate
operations to compensate for this. The strategy used in
HANDS of making the context of computation apparent to
the user through transparency is also adopted in the Data
Factory.

Figure 1 . Screen shot of the Data Factory with a layout for computing successive factorials. The
tool panel for editing layouts is shown in the lower pane of the window.

101

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 16,2024 at 20:42:57 UTC from IEEE Xplore. Restrictions apply.

3. The Data Factory

3.1. Overview

The Data Factory is an experimental visual program-
ming environment with the following features: (I) uses a
manufacturing metaphor for its key constructs; (2)
supports “fully live” programming - editing the layout
while the factory is operating to maximize user feedback;
liveness appears to help some users in certain situations
and get in the way of others 1151; the Data Factory
liveness is optional and users are always able to stop the
factory before editing, if they so desire; (3) doesn’t hide
its data; (4) supports parallel processing and streams of
data. As a language it is not particularly high-level. Also,
it does not have any direct support for functional
abstraction. It is intended for “programming in the small”
and as a experimental context in which to pose and solve
simple computational problems.

For a screen shot of the program, see Figure 1. From
this illustration, it is evident that the implementation of the
prototype system is in Java. The window has an upper
pane containing the factory and a lower pane containing
the tool panel for controlling the factory and arranging its
layout. The icons in the tool pane are intentionally simple
in this implementation of the Data Factory; this paper is
not about icon design.

A sample layout is shown in the factory pane. This
‘program” computes a sequence of factorials: 2, 6, 24,
120, etc. It contains two loops. The fust loop is located
in the northwest comer of the factory and serves to
produce an increasing sequence of factors: 2, 3, 4, etc.
The second loop is in the southeast, and it serves to return
a copy of the most recent factorial value to the
multiplication station, where it can he multiplied by the
next factor.

3.2. Devices Provided

This section provides an explanation of devices
provided in the Data Factory and of the operations of
those devices. The icons that correspond to these devices
begin at the left side of the bottom row of the tool pane.

Constant source. Feeds a constant to its output port 1
denever there is a vacancy there.

Button-activated constant source. Feeds a constant
to its output port 1 whenever both the output port is vacant
and the button has been pressed. The button immediately
resets itself and can be pressed again.

Button operated gate. When pressed, it lets its input
value move to its output. It immediately resets itself and
can be pressed again.

Random-number generator. Feeds a random number
to its output port 1, whenever it is vacant. The number is

an integer in the range 0 to n-1 , Initially n is set at 10, so
the numbers are in the range 0 to 9. Using the flashlight
tool it is possible to edit the value of n for any instance of
a random-number generator.

Klooer. Takes one input and propagates it to both
outputs.

Switched router. The value of input 2 controls which
way input 1 goes. A 0 sends it to output 1, and 1 sends it

Sorter. Implements a compare-and-exchange module.
When two inputs are available, they are propagated to the
outputs, but the smaller one is always sent to output 1 and
the greater one to output 2.

Delay. An input arriving at input port 1 is held inside
the device until another input arrives on the same port.
Input port 2 is ignored. when the second input arrives,
the data object being held is released on output I , and the
new input is then held, etc.

Delta. Takes a single input stream. Keeps track of the
last input value received. It only propagates the input to
the output if the value is different fiom the last one. Also,
the fust input value that arrives does get passed through,
unlike the case with the Delay device.

Display and Destroy. Holds the last value received,
and any new value ovemites the last one. A display
serves as a data sink, allowing data to die and not clog up
the conveyors.

The icons corresponding to the following devices begin
at the left side of the middle row of the tool pane.

Conveyor. The user can draw a conveyor belt or a
pair of conveyor belts with this tool. Conveyors always go
either north, east, west, or south. They are automatically
color-coded to show which way they transport data (red =

east; light blue = west; dark blue = north, yellow = south).
lfthe user tries to draw a diagonal conveyor belt, this tool
will automatically create two separate conveyors in an ell
shape to connect the same points. However, the tool uses
its o m layout method which sometimes, but doesn’t
always, do what one might want. However, it‘s easy to
undo any editing action, and the tool works consistently
and is not difficult to control. A conveyor is a special kind
of component and is not considered to be a processing
device in the Data Factory.

Crossover. Used to create a processing device that
allows two to four data paths to effectively cross each
other. Each conveyor that brings inputs to the crossover
should have a corresponding conveyor that hegins on the
opposite side (180 degrees around) the crossover. Input
data must arrive inside the device, and outputs are placed
just outside the device.

Arithmetic devices. These include the following: Add,
Multiply, Subtract, Divide, and Mod.

Arithmetic comparators. The fist of these is Less
Than. Ifits input 1 is less than its input 2, then a 1 is put

to output 2.

I02

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 16,2024 at 20:42:57 UTC from IEEE Xplore. Restrictions apply.

onto output 1. If not, a 0 is put out. The next of these is
Equal To. The last ofthese is Greater Than.

The icons for the following devices are found at the
right end of the top row of icons in the tool pane.

Stop Sign. When a data object reaches a stop sign, it
stops the factory processing as if the user clicked on the
red trafEc light icon.

Gate. An input arriving at input port 1 waits until any
data object arrives at input port 2. Then the gate is
momentarily opened and the first data value passes to

The remaining icons in the tool pane are for running
output port 1.

and editing factories.

4. Example Programs

To give some feel for the language, it's helpful to show
some examples. The ones given here are a straight
conveyor belt with a producer and consumer of number
data; a sequence splitter that puts evens on one h e and
odds on another; a Fibonacci sequence generator, and a
sorting network. Each example is shown in a state of
execution.

4.1. Conveyor with Random Numbers

The simple example in Figure 2 shows a stream of data
values moving on a lee-to-right conveyor. They are
produced by a random number generator and consumed
by a displayidestroy station.

Figure 2. .A simple t'actoo lasour with onc conveyor
connecting a number generator to a display/des&oy
station. Red conveyors always move data to the east.

4.2. Even-odd Sequence Sorter

The example in Figure 3 shows the use of a controlled
gate. The factory generates a stream of random numbers at
the upper left and sorts them into separate streams of even
numbers (upper right) and odd numbers (lower right).
This factory works by taking each random number
generated at the left and cloning it, feeding the original to
the controlled gate and feeding the copy to the MOD unit.
The MOD unit will receive its divisor from the bunon-
activated constant source; when the user presses this
button, a 2 is released. The output of the MOD unit is
either 0 or 1, depending upon whether the random number

0

9

Figure 3. The Even-odd sequence sorter.

was even or odd respectively. This parity value moves to
the control input port on the gate. There the number on
input 1 is directed to either the even or odd output
conveyor. It is interesting to note that at the inputs to the
gate, the random number and its parity are always paired
properly, even though the number might arrive long
before its parity value arrives.

4.3. Fibonacci Sequence Producer

Fibonacci numbers can provide a moderate challenge
to programmers in the Data Factory. This solution makes
use of a Delay device that is ''primed'' with the data value
1, when the user presses the button on the left, a new 1
value is released that moves to the right and is cloned.
The original continues right, releasing the 1 stored there in
advance. That 1 is then cloned. The original makes its
way to the lower right and represents the fmt Fibonacci
number. The new copy moves to input port 1 of the adder
and gets added to the copy of 1 made earlier. The
resulting value 2 travels back to the lee and falls on the
upper conveyor to be cloned and release the 1 in the
Delay unit that was recently trapped there. That 1 follows
the same path as its predecessor, indicating the second
number in the Fibonacci sequence. Successive iterations
of this process produce as many elements of the sequence
as will fit on the output stream conveyors. If they are
lengthened or if a Display and Destroy device is placed to
consume the sequence, arbitrarily many sequence

I'
2
1
7

Figure 4. Fibonacci sequence generator.

103

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 16,2024 at 20:42:57 UTC from IEEE Xplore. Restrictions apply.

elements can be created by the single initial button press.
If the user presses the button multiple times, multiple
values will propagate simultaneously around the loop and
various altemative, non-Fibonacci sequences can be
generated depending upon the number and timing of the
extra button presses.

4.4 Parallel Sorting Network

Figure 5 show a factory that sorts random numbers. It
makes use of a parallel sorting network constructed with
Sort devices and Crossovers.

5. Programming Construct Issues

5.1 Data, Memory, and Data Structures

A conventional programming language provides
constructs for building complex data objects, including
means to create arrays, lists, and tuples. The current
version of the Data Factory provides none of these,
although it works with sequences of data objects. Only a
few notions of memory are supported: data on conveyors
that are moving are “stored” on the conveyor for as long
as it takes for the conveyor to cany the data to its next
destination. If data is backed up on a conveyor because of
some data ahead of it waiting to be processed, this data is
effectively being stored. Data being held in a Delay

device is temporarily stored there. Data waiting at a Gate
is effectively stored until the gate is opened.

5.2 Cloning Data
i

The Klone device that copies data may seem to
experienced programmers as a construct that makes a
simple operation more cumbersome. Mer all, a program
in a language like Java need only repeatedly reference a
variable x to use it multiple times. The Data Factory’s
model of computation calls for objects to be consumed
when they are used in most cases. (Another system that
does this is Linear Lisp [l]). To use one data object for
multiple purposes, it is usually necessary to clone copies
of it. In traditional manufacturing, copying a part i s not
typically performed (because it is usually impractical),
and if it were performed, it would probably be a costly
operation. The Klone device doesn’t cost anything hut a
little real estate on the screen. Yet its presence seems to
make the manufacturing metaphor a little more convincing
than if copying were as automatic and “inexpensive“ as it
is in a traditional programming language. We should note
that in object-oriented languages such as Java, it is
sometimes necessary to explicitly clone objects in spite of
the fact that one object can be referenced multiple times.
For example, a single Java “Button” object cannot be
placed in multiple panels at the same time.

a &a object with value-I that opens four gates for random numbers to make their way
through the compare-exchange modules and crossovers. On the right are four vertical
columns of sorted numbers.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 16,2024 at 20:42:57 UTC from IEEE Xplore. Restrictions apply.

5.3 Loops

In the Data Factory there are two ways to obtain
automatically repeated computation. One is to use a data
generator that continually supplies data to the rest of the
factory. The other is to create a “loop” or means for a
downstream data object or another object derived fiom it
to propagate back to the beginning of what is effectively a
closed, cyclic data path.

A loop of this sort is potentially different tiom a loop
in an imperative language program, in part because there
is a passibility of multiple data objects circulating
simultaneously in the loop. Some computations use a
loop as a form of temporary storage to buffer copies of a
previously generated data value for later reuse. If all the
values in a given loop are always identical, then the timing
of loop transits and phase differences among the transiting
values may not affect the resulting computation.
However, the possibility of timing effects complicates the
analysis of some factory programs having loops.

5.4 Generators versus Functions

Conventional languages usually support the definition
and calling of functions. The Data Factory does not offer
an explicit function construct, though it is possible to
create factory arrangements with function-like behavior.
For example, the Fibonacci sequence may be considered
either as a stream or as a function mapping the integers
into other integers: f(i). Streams are more natural in the
Data Factory, while “callable” functions for specific
elements of the same sequence are more difficult to
construct but possible. A function in the Data Factory is a
portion of the factory where values come in and values go
out, and the outputs depend on the inputs. A factory
subsystem for a referentially transparent function should
contain no buttons or random number generators.

Special types of functions can be defmed that may help
formalize designs for larger systems. For example, we
may defme a “clean” function in the Data Factory to be a
function that obeys this constraint: it takes only one input
on each of its input conveyors at a time and produces its
output before accepting any new inputs. It may achieve
this either via an internal control or by being used in a
way that ensures new inputs will not be presented until the
last output is ready.

6. Challenges and Opportunities for Learners

Many students have been effectively engaged in problem
solving activities through the use of The Incredible
Machine [9] and ToonTalk [7]. In the case of ToonTalk,
for example, Kahn poses a variety of puzzles such as
constructing a box containing a given s e i of data objects.

Numerous puzzles can be made up for Data Factory
solutions. Some examples are variations on the example
programs given here. These include (a) an assembly line
that generates random even numbers; (b) a generator for
pseudo-Fibonacci numbers following the sequence 1, 1, 1,
3, 5, 9, 17 and the recurrence f(n) = f(n-3)+f(n-2)+f(n-l);
(c) a sequence sorter that distributes random numbers k to
one of three output conveyors depending on the value of k
mod 3; (d) a sorting network for 5 numbers at a time
instead of 4. Significantly more difficult challenges are
building a factory that produces prime numbers, building
a shift register, or simulating a pushdown stack.

6.2 Experience in an Informal User Trial

An informal user trial was performed with three high-
scbool students. Two were age 15 and the other age 16.
Each student met one-on-one with the author for 22 to 40
minutes. The following paragraphs describe the
experience with ‘the fvst student, and then some
differences between the other students and the fvst are
discussed.

For the first student (age 15), approximately 5 minutes
were spent introducing the Data Factory, and then a series
of 4 challenges were posed. The fvst challenge was to
produce random numbers in the range 0 to 9 and clone the
stream. The second challenge was a version of (a) above -
-- to produce a stream of random even numbers in the
range 0 to 98. The third challenge was to create a stream
of random multiples of 10 in the range 0 to 100. The
fourth challenge was to create a factory that takes a stream
of random numbers in the range 0 to 299, representing
times given in numbers of minutes, and convert the stream
into two new streams, giving the corresponding numbers
of hours and remaining minutes. For example, an input of
75 would produce outputs 1 and 15. The student took 5
minutes to complete each of the fist two challenges,
including time for help with the tools. The third challenge
took only 2 minutes, since its solution is so similar to that
of the second challenge. The fourth challenge, on the
other hand, required 20 minutes to complete, including
time for help. This problem posed several conceptual
difficulties, including the need to create a second copy of
the input stream, the need to compute remainders, and the

6.1 Puzzles and Patterns for Problem Solving need to provide not only a stream of input data but two
streams of the constant 60 for use in the separate quotient

Nontraditjom] env~oments have an and mod devices. The fmal solution by the student for
this challenge is shown in Figures 6a and 6b. In 6a, we
see the fist input data objects just before arrival at the

important use aside
itself. It is to support the leaming of problem solving.

the teachmg of

105

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 16,2024 at 20:42:57 UTC from IEEE Xplore. Restrictions apply.

copying unit. The first number on the input conveyor is
214. In 6b, the factory has run a few seconds longer, and
the first few results have reached the ends of the output
conveyors. The fust input has been converted into 3
hours and 34 minutes. Other solutions to the challenge
might use fewer bends in the conveyors or only one
constant generator rather than two. However, the user
session w a s planned to have a 30-minute duration.

The experience with this user suggest that the time to
learn to begin working effectively With the Data Factory is
very short - on the order of 5 to 10 minutes for the basics
of number generators and conveyors and the use of the
Add and Klone devices. The greater amount of time
required by the fourth challenge can he explained in terms
of the cognitive complexity of the task, and the need to
codont several issues simultaneously. Thus the Data
Factory seems to provide the elements of an effective
environment for posing and solving problems that require
design, planning, logical, and mathematical skills.

Figure 6. One student’s solution to the challenge of
creating a factory that converts numbers of minutes into
hours and minutes. In (a) the fust data element is
approaching the Klone device, while in (b) the outputs
for the fxst input have arrived at the ends of the output
convevors.

This student did not have prior programming
experience hut did have experience with construction
games including The Incredible Machine, Roller Coaster
Tycoon, and SimCity. This student found the drawing,
selecting, and erasing actions easy to learn. The most
confusing aspects of the construction process were joining
conveyors to prevent data fiom falling off, and learning
h e r e the input and output ports on the devices are
located.

The second and third students had similar backgrounds
and worked the same four challenges as the fust.
However, they used a later version of the program (having
pastel-colored conveyors for greater data visibility, data
on rather than above conveyors, and several additional
drawing affordances, such as location previewing), and
they were given only a two-minute introduction to the
program. Their experiences were similar to that of the
first student. Student number 2 (age 15) took 3’50” for
the frst challenge including the time for the introduction.
5’30” for the second challenge, 6’10” for the third
challenge, and 6’40” for the fourth challenge. This student
exhibited a definite style for connecting constants to
multipliers and dividers, hutting the devices up against
each other. This can he seen in this student’s solution (see
Figure 7).

The third student (age 16) took more time in each of
the challenges, exploring the functioning of several of the
devices prior to solving the problem. His total time to
complete all four challenges was 40 minutes.

6.3 Layout and Style Issues

Figure 7. Ihe second student‘s solution to Ihe hours
and minutes challenge. Here the constant generators
(60) abut the division and mod devices that they feed.

Most visual languages pose layout challenges that are
quite different &om the formatting of textual programs.
The two dimensions of a factory workspace offer great
flexibility for arranging devices and conveyors, and they
also can lead to layout difficulties. The Data Factory
offers a few easy-to-use facilities for layout. One is the
semiautomatic routing of conveyors. The operating

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 16,2024 at 20:42:57 UTC from IEEE Xplore. Restrictions apply.

direction of each conveyor is inferred from the vector
d r a w by the user, and conversion from diagonal to ell-
shaped N, E, s, W constrained conveyors is performed by
the system. If the user runs out of space in the factory, the
current layout can he copied into a new, larger work area.
Copy and paste operations can be used to move or
duplicate sections of the factory already arranged.

Ultimately, layout can he a challenge in the Data
Factory just as it is when performing two-dimensional
layout in other domains such as poster design, electric
circuit board design, flowchart layout, etc. Skills and
habits developed with the Data Factory such as general
planning of the use of space, estimating sizes of
subsystems, and identifying key flows could he reasonably
expected to transfer in part to other layout tasks.

Two distinct styles of layout are (a) clear layout, and
(b) compact layout. Clear layout strives to keep
independent conveyors from touching each other,
“ i z e turns and crossovers, and keep most flow lefl-
to-right. Compact layout may butt devices together, run
parallel conveyors directly adjacent to one another, and
make extra tums and crossovers to reduce the factory area
required for the layout. Clear layout is preferable for
experimental arrangements and presentation, while
compact layout is appropriate for tried-and-true
components that may be needed as building blocks for
more experimental programs.

7. Discussion

The Data Factory is a new programming system. It
takes advantage of the power and graphics of current
technology by animating its program executions hy
default. While any visual diagrams for information
processing may he prone to misinterpretation [4], the Data
Factory offers a transparency during execution that can
help dispel misunderstandings about the operations of its
devices. Unlike some visual programming environments
for children it offers facilities for computing with nunhers
rather than microworld characters or robots. However,
future versions may support more general types of data
such as text, lists, sounds and images.

8. Ackuowledgements

The author would like to thank D. Lawton and R Rice
for suggestions, H. Chen and J. Kinkead for implementing
parts of another prototpe visual language called VIVA2,
the reviewers for their comments, and the users for their
time and interest. Partial support under NSF Grant EIA-
0121345 is gratehlly acknowledged.

9. References

[I] H. G. Baker, “Lively Linear Lisp‘Look Ma, No
Garbage!”’. http:/ihome.pipeline.com/-hbakerlLmear
Lisp.html, 1991.
[2] A. F. Blackwell and T. R. G. Green, “Does Metaphor
Increase Visual Language Usability?”, Proc. 1999 IEEE
Symposium on Visual Languages VL’99, pp. 246-253.
[3] E. P. Glinert, “Nontextual programming environ-
ments”. In S-K. Chang, (Ed.), Principles of Visual
Programming Systenis. Prentice-Hall, pp. 144-232, 1990.
[4]. T. R G. Green and A. F. Blackwell. ‘Thinking ahout
Visual Programs”. Presented at Thinking with Diagrams.
Colloquium of IEE Computing and Control Division,
Digest No 96/010,5/1-514.
[SI C. Hancock, “FLOGO: A Robotics Programming
Language For Leamers”. Proc. IEEE Symposia on Human
Centric Computing Languages and Environments
HCC’OI. Stresa, Italy, 2001
[6] K. Kahn, “Seeing systolic computations in a video
game world”. Proc. IEEE Symposium on Visual
Languages VL ’96. pp. 95-101. Darmstadt, Germany,
1996.
[7] K. Kahn, “A Computer Game to Teach Program-
ming.”Proc. ofNECC’99.
[SI J. F. Pane. “Human-Centered Design of a Program-
ming System for Children”. Proc. IEEE Syniposia on
Human Centric Coniputing Languages and Envi-
ronnienfs HCC’OI. Stresa, Italy, 2001.
[9] A. Parks. “Review of the Incredible Machine”. At the
TERC web site:
http://www.terc.edu/mathequity/gwhtmlrTIMReview,html
[IO] Pictorius, Inc. Prograpb CPX User Guide. Halifax,
Nova Scotia, 1996.
[I l l A. Repetming. “AgentSheets: An Interactive
Simulation Environment with End-User Programmable
Agents”. Proc. of Interaction 2000, Tokyo, 2000.
[I21 J. E. Rohhins, D. J. Morley, D. F. Redmiles, V.
Filatov, and D. Kononov. “Visual Language Features
Supporting Human-Human and Human-Computer
Communication”. Proc. IEEE Symposium on Visual
Languages VL ’96. Darmstadt, Germany, 1996.
[I31 D. C. Smith, and A. Cypher, “Making Programming
Easier for Children”. In A. Drnin, ed. The Design of
Children ’s Technology, Morgan Kaufinann, San
Francisco, 1999, pp. 201-222.
[I41 S . L. Tanimoto, “VIVA A Visual Language for
Image Processing,” J. Visual Languages and Computing,
Vol. 1,No. 2, June 1990.
[lS] E. M. Wilcox, J. W. Atwood, M. M. Burnett, J. J.
Cadiz, and C. R. Cook. “Does Continuous Visual
Feedback Aid Debugging in Direct-Manipulation
Programming Systems?” Proc. of CH1’97, Atlanta,
GA,1977.

107

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 16,2024 at 20:42:57 UTC from IEEE Xplore. Restrictions apply.

http:/ihome.pipeline.com/-hbakerlLmear
http://www.terc.edu/mathequity/gwhtmlrTIMReview,html

