
Should Your 8-year-old Learn Coding?

Caitlin Duncan
Department of Computer

Science and Software
Engineering

University of Canterbury
Christchurch, New Zealand

caitlin.duncan
@pg.canterbury.ac.nz

Tim Bell
Department of Computer

Science and Software
Engineering

University of Canterbury
Christchurch, New Zealand

tim.bell@canterbury.ac.nz

Steve Tanimoto
Department of Computer
Science and Engineering
University of Washington
Seattle, Washington, USA

tanimoto@cs.washington.edu

ABSTRACT
There has been considerable interest in teaching “coding”
to primary school aged students, and many creative “Ini-
tial Learning Environments” (ILEs) have been released to
encourage this. Announcements and commentaries about
such developments can polarise opinions, with some calling
for widespread teaching of coding, while others see it as too
soon to have students learning industry-specific skills. It is
not always clear what is meant by teaching coding (which
is often used as a synonym for programming), and what the
benefits and costs of this are. Here we explore the mean-
ing and potential impact of learning coding/programming
for younger students. We collect the arguments for and
against learning coding at a young age, and review the ini-
tiatives that have been developed to achieve this (including
new languages, school curricula, and teaching resources).
This leads to a set of criteria around the value of teach-
ing young people to code, to inform curriculum designers,
teachers and parents. The age at which coding should be
taught can depend on many factors, including the learning
tools used, context, teacher training and confidence, cul-
ture, specific skills taught, how engaging an ILE is, how
much it lets students explore concepts for themselves, and
whether opportunities exist to continue learning after an
early introduction.

Categories and Subject Descriptors
K.3.2 [Computers & Education]: Computer and Infor-
mation Science Education — computer science education,
curriculum

Keywords
Coding, programming, young students

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
WiPSCE ’14, November 05 - 07 2014, Berlin, Germany
Copyright is held by the authors. Publication rights licensed to ACM.
ACM 978-1-4503-3250-7/14/11 ...$15.00
http://dx.doi.org/10.1145/2670757.2670774.

1. INTRODUCTION
As computer science (CS) curricula are appearing in more

and more countries, a commonly debated question that
arises (particularly in the popular press) is around what
age students should have the chance to learn to program.
In places where curricula don’t exist, clubs, camps and in-
formal programmes are filling the gap, so parents will also
be asking this question.

Here we unpack this issue, which involves looking care-
fully at what we mean by programming, what kind of ac-
tivities are relevant to various ages, what environment the
child is learning in, and what the benefits are. We are not
seeking to answer the question, but to work out what the
question really is! The goal is to inform curriculum de-
signers, teachers, and parents who must grapple with these
issues.

The title of this paper is a response to an article circu-
lated in April 2013, titled “Why your 8-year-old should be
coding”1. The article is announcing a new creative and en-
gaging learning environment for young children (Tynker),
and focuses on job opportunities, helping children to see the
options before them (“trying to educate them about those
options when they still have years to form opinions and
create and live their own dreams”), how “information and
computation is coming to every field”, and the value of this
kind of experience for other STEM subjects. It concludes
with the statement: “And that, dear readers, is why your
eight-year-old should be coding.” Of course, the article is
intended to be provocative, but with many such discussions
occurring in public and new curricula being deployed, it is
important to collate the key arguments around this so that
we are able to bring research-based facts to an emotionally
charged and anecdote-laden discussion.

For example, some people with a contrary view, provoked
by the article, raised questions about how important it is
for an 8-year-old to be prepared for a specific job, point-
ing out that it may be more valuable to let children enjoy
childhood without the pressure of preparing for a specific
career, and that working with computers too much takes
them away from living in the physical world and develop-
ing one’s imagination.

Such issues are also being raised in the design of new cur-
ricula, where programming is being introduced in primary
schools as a formal requirement [1]. To address these prop-
erly, we must define what we mean by “programming”, and
consider the cognitive abilities of young children, as well as

1http://venturebeat.com/2013/04/12/why-your-8-
year-old-should-be-coding/

WiPSCE 2014 Research Papers

60

http://dx.doi.org/10.1145/2670757.2670774
http://venturebeat.com/2013/04/12/why-your-8-year-old-should-be-coding/
http://venturebeat.com/2013/04/12/why-your-8-year-old-should-be-coding/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2670757.2670774&domain=pdf&date_stamp=2014-11-05

the ability of our education systems to deliver and teach
programming meaningfully to a typical student. Such dis-
cussions must also be culturally situated; in some countries
programming is already taught by qualified teachers in pri-
mary schools, whereas in others teachers with no computing
qualifications are having to teach this unfamiliar subject.

Gross and Powers [9] review the evaluations of about two
dozen programming environments for novices, and they re-
ported that robust assessments are hard to find. They ob-
served that the assessment of a tool is most often done
by those who wrote it, and the assessment can be oppor-
tunistic (around a self-selected group trying the new tool).
They also find that details can be missing from descriptions
of evaluations that make them hard to scrutinize. These
evaluations can help us to determine if a particular tool
is effective, but the question we are more concerned with
here is at what age the tool should be used, and what other
factors affect its usefulness (such as teacher confidence).

Many programming environments for novices have been
developed, and it’s important to acknowledge that these are
very creative innovations that are simple for students to use,
and have often seen very widespread adoption which in itself
is a testimony to their usefulness.

In this paper we catalogue the many issues around teach-
ing young students to “code,” survey the kinds of environ-
ments that have been developed to support teaching pro-
gramming to young students, and draw out the issues that
need to be considered when deciding if students of a partic-
ular age should have lessons in programming.

2. BACKGROUND
Papert’s“Mindstorms”reports early efforts to engage with

school students in the late 1960s, and his Logo language
was a landmark in taking programming into the classroom
where “children of almost any age could learn to program in
Logo under good conditions with plenty of time and pow-
erful research computers” [25]. The caveats at the end of
the sentence indicate the issues that can come up; access to
suitable computers has improved with time, but providing
“good conditions” and “plenty of time” remain a challenge
for school systems, and this raises the concern that teach-
ing programming without the right conditions may be worse
than not teaching it at all. Similar issues were considered
by Alan Kay [15], who ran trials with SmallTalk around
1973 with middle school children in Palo Alto. They had
some very positive results, but in a 1993 paper he observes
that “in part, what we were seeing was the ‘hacker phe-
nomenon’, that, for any given pursuit, a particular 5% of
the population will jump into it naturally, while the 80% or
so who can learn it over time do not find it at all natural’,
and that “real pedagogy has to work in much less idealistic
settings”. Successful experiences in the classroom can be
encouraging, but we do need to check that they generalise
to the typical classroom run by typical teachers.

2.1 Cultural Factors
The best age for teaching programming also depends on

the educational system, culture, and personal experiences.
Comments in the media are often based on personal expe-
rience; one person may have had an inspiring teacher who
included programming in a class, while another may have
had very dull “ICT” lessons. Anecdotal stories of individ-
uals who have done particularly well at a young age don’t
help us to form a view of what should be offered to typical

students.
Culture also affects attitudes to learning and careers. In

this paper we will mainly focus on western culture, as the
shortage of qualified software engineers and computer sci-
entists, and the gender bias associated with the disciplines,
is largely a western phenomenon. In countries such as In-
dia and China, students are more motivated to train in this
area which has strong employment prospects, and they will
seek opportunities rather than needing a curriculum that
“sells” the career to them.

In the west, the gender imbalance in CS is also an is-
sue, and student numbers would increase substantially if as
many women went into a CS career as men. However, in
other countries (e.g., Malaysia), computing is already seen
as a strong career path, and gender balance is not the issue
that it is in countries such as the US and UK [22].

2.2 Changing School Curricula
Several western countries are in the middle of changes to

school curricula as they see the value of introducing top-
ics such as programming, CS and computational thinking.
For example, the changes in both the UK and Australian
curricula that are being introduced in 2014/2015 include
introductory programming experiences in primary schools.
Such changes stimulate public debate. A key driver for
updating the school programmes has been articulated by
Rushkoff: “We teach kids how to use software to write, but
not how to write software. This means they have access
to the capabilities given to them by others, but not the
power to determine the value-creating capabilities of these
technologies for themselves” [29].

Against this, there are concerns that programming may
not be a required skill in the future, either because it is
somehow automated, or is outsourced overseas. A related
argument is that programming is a sweatshop activity, rais-
ing images of training students to be cogs in a large indus-
trial wheel. History doesn’t support any of these ideas,
and the balance for this argument is the value of computa-
tional thinking and understanding how technology works.
It is almost certain that today’s students will be interact-
ing with technology throughout their working lives, regard-
less of what career paths they choose, so having an under-
standing of technology and its computational limitations
will serve them well.

Clubs and computer camps are also available, which pro-
vide de-facto curricula either where the school system doesn’t
provide it, or as an extension for interested students. Be-
cause they are not part of a compulsory system, and stu-
dents in the clubs are largely self-selected, many of the
issues that we raise won’t be as serious in these environ-
ments. Students who have already discovered a passion for
programming can benefit from clubs and camps where they
are able to get suitable mentoring and encouragement.

3. WHAT IS CODING?
The word “coding” is very widely used to describe the

skill needed for computer programming. The term is widely
used by organisations that promote learning programming,
such as code.org, Made with Code, Code Club, CoderDojo,
Black Girls Code, Codecademy, Code Avengers, CodeHS
and MotherCoders. Before we unpack the question of when
students should have the opportunity to learn to “code” we
need to explore what we mean by “coding”.

In the world of software the word “coding” is regularly

WiPSCE 2014 Research Papers

61

http://code.org/
https://www.madewithcode.com/
http://codeclub.org.uk/
http://coderdojo.com/
http://www.blackgirlscode.com/
http://www.codecademy.com/
http://www.codeavengers.com/
http://codehs.com/
http://www.mothercoders.org/

used interchangeably with the word “programming”, and is
often considered to mean the same thing. In the field of
CS, the term “code” is used with a variety of meanings:
in relation to data analysis, encryption, compression, er-
ror correction (source coding), machine code, even binary
“codes.” In fact, “source coding” refers to Shannon’s work,
and is quite different from “source code.” In the context
of programming, traditionally “coding” would only refer to
the last stage of the process of programming, translating a
designed program into programming expressions and typ-
ing/entering these into a computer.

So what is the difference between coding and program-
ming? Are they simply different words for the same thing,
or is the former a tool used to accomplish the later? Both
uses are common, and in the context of education there are
advantages and disadvantages to using these words as syn-
onyms. The main advantage of using this word is that it
captures interest. “Code” is a popular buzz word in today’s
technology driven world, and it also provides an element
of mystery (there are hints of a secret code), and achieve-
ment (cracking the code). As mentioned previously, it is a
term already used by many groups associated with learning
programming.

The disadvantage, however, is that it can cause confu-
sion among students and teachers. For example, if we use
the meaning that “coding” is only entering programming
expressions, students may only be taught to take existing
code or pseudo-code and enter it themselves. Many exist-
ing tutorials currently follow this model, with some only
asking students to make small changes to values in the pro-
gram. While this may reveal to them how a program works,
it could also lead to them becoming overconfident as they
may believe this is all there is to programming when it
really also involves many other skills, such as getting spec-
ifications, planning and debugging.

From a constructivist point of view, having students write
new code and wrestle with requirements has more educa-
tional value, but there is also value in having a student
actually see what “code” looks like, type it in, and have it
execute; this may inspire them to get over the barrier that
coding is some magic incantation that is beyond them. An
argument in favour of the latter is that they are learning
to read before they write, which would seem an obvious
approach, although there are also arguments that learning
to write is a good way to learn to read. Lopez et al show
evidence that the ability to write has a correlation with the
ability to read code [17].

An experience of teaching young students by having them
work through sample programs is reported by Smith et al.
in the context of the UK “Code Club” [31]. They report
that a common comment from survey respondents was that
“children were able to follow the early, guided instructions
but were unable to apply any knowledge to unguided chal-
lenges.” The survey also revealed that from a list of several
concepts, the area that students were least confident with
was debugging, an essential skill for creating one’s own pro-
grams. This has prompted an effort to develop new peda-
gogy to address these concerns.

So an important question we must tackle now is what
is programming? The definitions of “programming”, “pro-
grammers”and“programming languages”have changed and
developed over time as software, hardware and usage of
computers has changed [5]. In 2004 Guzdial observed “Per-
haps we don’t know yet what programming really is or

what it could be” [11]. As the technology industry is ever-
changing it can be expected that these definitions will re-
main fluid in the future. Blackwell [5] observes that people
refer to programming a computer, a video recorder or a
microwave oven, but not a word processor document. The
common feature of things that are programmed is that the
user is not engaging in direct manipulation; that is, the
sequence of actions is specified in advance, and then the
programmer must effectively wait to see if the sequence of
actions produces the desired result. From this point of view,
beginner programming (for example, with Scratch) is close
to direct manipulation (in fact, students can double click
on a “Forward” command to execute it). However, it pro-
vides a transition away from this as long as the teacher
encourages students to do so. A trial-and-error approach
to programming, combined with a very simple repertoire of
control commands, can lead to what some teachers have re-
ferred to as a “Spritefest”, where students simply “program”
sprites to move around, and make do with how the program
happens to work if they don’t understand how to achieve
the effect they were after.

For the purposes of the discussion here, we will use the
term “programming” for the broader activity of analysing a
problem and implementing a program that solves it, which
isn’t always in a speaker’s mind when he or she says “cod-
ing.” The analysis or design of the program is challenging
in its own right, particularly if the requirements are in-
flexible. Typically this requires students to come up with
an algorithm expressed as pseudo-code or some other gen-
eral notation that will then be coded into a program. In
the New Zealand NCEA standards for high school pro-
gramming, the two tasks of design and implementation can
even be assessed separately; it is possible that a student
can demonstrate the ability to implement a program from
pseudo-code, but not get credit for the design of the pro-
gram — or vice-versa [3]. Implementation skills need to go
beyond simply translating pseudo-code to code, as there is
also testing and debugging the program, which can include
devising suitable test cases.

4. YOUNG STUDENTS PROGRAMMING
Several studies have been made of how young students

use coding Initial Learning Environments (ILEs), and these
studies provide clues about the kind of programming they
are doing, the concepts that students pick up from the ex-
perience, and any changes of attitudes they form towards
programming and CS.

Meerbaum-Salant et al. [20] looked at the habits of middle-
school students programming in Scratch, and found that
they invariably used a bottom-up development process (se-
lecting commands, and then combining them for a desired
effect), and focused on “extremely fine grained program-
ming” (having many very small scripts that made the logic
of the program difficult to follow). They point out that this
is at odds with good programming habits. Furthermore,
they observed that control structures were often used in-
correctly, and that students avoided the fundamental struc-
tures of conditional execution and bounded loops. Their
concern was that these students are developing habits, which
would need to be broken later, although they conclude with
the dilemma that there is value in making it “easy” for stu-
dents to get into programming, and that sound program-
ming techniques are not easy to learn. Also, the version of
Scratch (in 2011) being used would not have supported the

WiPSCE 2014 Research Papers

62

writing of functions, and these may turn out to encourage
better top-down design habits.

Kaucic and Asic [14] evaluated the use of Scratch with 32
students in primary school in Slovenia and found that (for
this small sample at least) students who had used Scratch
continued to use it more than those who had learned a con-
ventional programming language. This could be taken to
be an indicator of the value of such languages for forming
long-term opinions about the enjoyment of programming.

Werner et al. [33] investigated work done by middle-school
students programming games using Storytelling Alice (a
variant of the Alice ILE). They found that 13 out of the
23 programs developed met at least 4 criteria for being a
game, such as having rules, a goal, and an un-predetermined
outcome. Having this high proportion of students produce
a game with these elements indicates an ability to design a
program as well as implement it. A later more detailed in-
vestigation found that, while writing games, middle-school
students were able to work successfully with several abstract
constructs, but the students “struggle with variable initial-
ization, looping, conditionals, pointers, and recursion” [33].
This gives an indication that there might be a limit on
the level of abstraction that students of this age can nat-
urally work with, at least without a different pedagogical
approach.

The Code Club survey mentioned earlier [31] also found
that while students were comfortable with several concepts,
being able to design and debug their own programs could
be a challenge (although there were some who were able to
build their own projects confidently).

The value of teaching programming to young students is
generally supported for one of two reasons: enabling stu-
dents to understand what programming is all about, and
the general value of computational thinking (CT) which will
be of use regardless of a student’s career.

The CT argument is stronger since it applies to more of
the population. Resnick et al. [27], when describing the rea-
son for developing the Scratch ILE, say that their “primary
goal is not to prepare people for careers as professional pro-
grammers but to nurture a new generation of creative, sys-
tematic thinkers comfortable using programming to express
their ideas”.

Of course, CT involves more than learning to program,
but many of the concepts in CT are exercised during pro-
gramming. Some ILEs encourage CT. While even the sim-
plest of them introduces sequencing (i.e., giving instruc-
tions without direct manipulation), some enforce the need
for concepts like decomposition and abstraction by placing
limitations on the commands available to achieve a goal.

In addition to tools for teaching programming, there is
also a wide variety of off-line material for teaching ideas
from programming (e.g., [4]), to inspire young students to
engage in CT. Lack of space prevents us from listing such
material here, but we note that this kind of teaching can
be a valuable supplement to working on a computer, and
much of it is suitable for young students.

5. STUDENTS’ AGE AND PROGRAMMING
To think about the question of what age a student should

be learning programming, we look at it from several an-
gles, including ideas from developmental psychology, the
relationship between age and gender issues, the nexus with
other disciplines, and the opinions of practitioners (includ-
ing those designing school curricula).

5.1 Developmental Psychology
Developmental psychology helps us to work out what kind

of concepts students are able to cope with at various ages.
Piaget’s four stages of development [26] provided age-based
milestones, with boundaries at 2-, 7-, 11-, and 16-years of
age. These boundaries are no longer regarded as universal,
but they do characterise commonly observed transitions for
typical children as they gain an awareness of a world out-
side their own, and eventually develop abstract and logical
thinking. In Piaget’s model, the age from 7 to 11 is im-
portant as the phase where they become physically dexter-
ous as well as gaining the mental ability to understand the
world around them better, and think logically. However,
the formal operational stage (which includes working with
symbols and using logical reasoning) would seem to map
well to introductory computer programming, which Piaget
pigeon-holed as 11 to 16 years. Neo-Piagetian theories [23]
have established that assigning specific ages to cognitive de-
velopment isn’t that simple, and can depend on the area of
learning and the individual. For example, there is evidence
that tertiary students go through neo-Piagetian stages for
programming [6], while it is also clear that some program-
ming concepts can be taught to students as young as 5 to 7
years old [7, 16] as long as the language uses concepts acces-
sible to that age group (e.g., not requiring large numbers).

Seiter and Foreman [30] introduce their “Progression of
Early Computational Thinking” (PECT) model which is in-
tended to provide research-based underpinnings for the de-
sign of curricula for primary grades (Grades 1 to 6). This
was based on the patterns used by students programming
in Scratch. For example, they found that Grade 1 stu-
dents were able to work with patterns called Animate Looks
(changing the look of a sprite) and Conversate (conversa-
tions between sprites), and somewhat with Animate Mo-
tion (changing location with possible syncronization), but
not with concepts that involved selection or controlled rep-
etition (Collide, User Interaction, Maintain Score). The
Maintain Score pattern, which includes variables and boolean
expressions, was achieved only in grades 4 and up. Seiter
and Foreman note that “this data seems to indicate that
certain patterns are best suited for certain grades”.

Specific results with young students using sequencing have
been reported: Kazakoff [16] reports success with kinder-
garten aged students learning sequencing through robotics
programming, and an experiment with programming for
primary schools in Slovakia with students aged 8 to 10
years old has reported success with students working with a
custom designed environment in which students move from
command-by-command control of an object to move it to a
target in 2D space, to giving the commands in advance [10].

5.2 Gender Issues
The lack of female students studying CS at a tertiary

level can be traced back to relatively early in their school-
ing, and increasing the number of women in CS would have
a large impact on overall numbers, as well as improving the
quality of software by increasing diversity [2]. Margolis and
Fisher observed that the middle school years (ages around
12 years) are a critical time when it comes to encouraging fe-
male students interest in CS and programming [19]. During
High school and puberty the majority of female students ex-
perience a drop in their self-esteem and confidence in com-
puting, but previous experience (i.e., in primary years) can
assist them in maintaining their confidence in CS.

WiPSCE 2014 Research Papers

63

Positive school experiences with computing curricula in-
crease the likelihood that female students will study CS
in the future. However negative experiences, such as poor
teaching, also have a very strong and lasting impact on
their interest in CS careers [19]. This suggests that if a
teacher does not wish to, or does not feel confident teach-
ing programming then it may be better if programming is
not taught extensively in school, and instead students are
encouraged to pursue it in their own time or through a club.

Riegle-Crumb et al. [28] evaluate the balance between
learning that inspires students, and learning that gives them
skills to achieve well, and conclude that“an educational sys-
tem that focuses on increasing achievement without some
degree of attention to whether students are engaged and
having positive experiences is unlikely to produce greater
numbers of future scientists, especially female ones.” They
note that career aspirations become apparent before stu-
dents enter high school, which supports the idea that learn-
ing at primary school is valuable, but also should be a pos-
itive experience.

5.3 Nexus With Other Disciplines
Many concepts in programming build on concepts from

other subjects, such as mathematics and language, so one
factor in considering what students can learn is how strong
they will be in related subjects. For example, Scratch pro-
gramming can involve working with a coordinate system
and negative numbers, which may be difficult for a younger
student to understand. Many computer-based games incor-
porate simple computational models involving possibilities
of motion and achieving states, or scoring points. The men-
tal models required to understand these games are often ab-
stractions that can be compared with mathematical ideas
(e.g., functions – “I put in this, and that comes out.”) This
illustrates that the pedagogy can work both ways; computer
programming can be used as a vehicle for learning concepts
for other subjects2, but nevertheless it would be unreason-
able to expect a young programmer to have to grapple with
a very advanced concept from another subject in order to
progress.

5.4 Learning Natural Languages
Another clue about teaching programming can be drawn

from what we know about learning natural languages, and
often an analogy is drawn between learning a new natural
language and learning a new programming language. The
“critical period effect” in natural language learning is the
idea that a language is best learnt when one is young, and
there is good evidence that learning a new language beyond
puberty is more difficult [13]. This establishes the beginning
of puberty (typically around 10 to 12 years old) as a critical
milestone for young students, and the time immediately
up to this is a key time for learning. Our own experience
teaching to various age groups has been that the 10 to 12
year old age group is particularly ready to absorb new ideas
in CS. While younger students can also be enthusiastic and
open to learning, they have fewer social and academic skills
to build on, making progress slower, and beyond 12 years
old they can be less open to new ideas. One of our long-
term goals is to quantify this effect which is currently based

2For example, see http://scratched.media.mit.edu/
resources/investigation-using-scratch-teach-ks3-
mathematics, http://computerbasedmath.org/, and
http://www.codebymath.com/

only on anecdotal experience.
Of course, although learning models and observed norms

offer predictions, there will be outliers, and often these are
the ones visible in the media. Many of the industry leaders
(e.g., Gates, Jobs, Zuckerberg) were exceptional as children,
yet are often used as examples to argue how a student’s ca-
reer might progress. The reality is that the majority of
people who are hired by companies (including those owned
by the leaders just mentioned) would normally have com-
pleted a full K-12 schooling programme and a university
degree.

5.5 Opinions of Practitioners
Another benchmark for the age at which programming

can be taught is the opinions of those who have been work-
ing with students.

One manifestation of these views are curricula that have
been developed. For example, in the 2011 CSTA K-12 cur-
riculum3 activities for programming are suggested at all
levels; Level 1 (K–6) focuses on sequencing, while Level 2
(grades 6–9) collaborative programming is suggested with-
out strong guidance on the constructs to be used; and at
Level 3 algorithmic problem solving (i.e., programming) is
explicitly suggested, with conditions, variables, operators
and other general constructs mentioned.

In 2014/2015 both the UK and Australia are adopting
new curricula where primary school students will be learn-
ing elements of programming. For example, the UK cur-
riculum4 specifies “create and debug simple programs” at
Key Stage 1 (KS1, about 5 to 7 years old), and “sequence,
selection and repetition” at Key Stage 2 (about 7 to 11
years old). Supplementary materials would indicate that
systems like “Beebot” are expected at KS 1 (i.e., sequenc-
ing only), and languages like Scratch are expected at KS2.
The Australian curriculum5 specifies following sequences in
years F–2 (up to 8 years old), the use of branching and user
input in years 3–4 (8 to 10 years old), and iteration is added
at years 5–6 (10 to 12 years old), all as “simple visual pro-
grams” i.e., using a language such as Scratch. Thus both of
these curricula expect the full range of programming com-
mands to be covered by the end of primary school.

Another view from professionals is a poll made by the
makers of Tynker, who asked teachers at ISTE “How early
should computer programming skills be introduced to kids?”6

Elementary (primary) school was the main response (75%),
although the report noted that some teachers“fervently dis-
agreed” with starting that young, and others felt that it
should be optional.

Another angle on age and learning to program is pro-
vided by an informal study by Neil Fraser, who surveyed
colleagues at Google, asking them at which age they could
first program, and a simple evaluation of their current pro-
gramming skills7. The staff most likely to become good
programmers had reported starting programming between
grades 3 and 7 (about 8 to 13 years old). Of course, we

3Available from http://csta.acm.org/
4http://www.computingatschool.org.uk/data/uploads/
primary_national_curriculum_-_computing.pdf
5http://www.australiancurriculum.edu.au/
technologies/digital-technologies/Curriculum/F-10
6http://www.tynker.com/blog/articles/stem-
education/at-what-age-should-kids-start-learning-
programming/
7https://neil.fraser.name/news/2012/07/01/

WiPSCE 2014 Research Papers

64

http://scratched.media.mit.edu/resources/investigation-using-scratch-teach-ks3-mathematics
http://scratched.media.mit.edu/resources/investigation-using-scratch-teach-ks3-mathematics
http://scratched.media.mit.edu/resources/investigation-using-scratch-teach-ks3-mathematics
http://computerbasedmath.org/
http://www.codebymath.com/
http://csta.acm.org/
http://www.computingatschool.org.uk/data/uploads/primary_national_curriculum_-_computing.pdf
http://www.computingatschool.org.uk/data/uploads/primary_national_curriculum_-_computing.pdf
http://www.australiancurriculum.edu.au/technologies/digital-technologies/Curriculum/F-10
http://www.australiancurriculum.edu.au/technologies/digital-technologies/Curriculum/F-10
http://www.tynker.com/blog/articles/stem-education/at-what-age-should-kids-start-learning-programming/
http://www.tynker.com/blog/articles/stem-education/at-what-age-should-kids-start-learning-programming/
http://www.tynker.com/blog/articles/stem-education/at-what-age-should-kids-start-learning-programming/
https://neil.fraser.name/news/2012/07/01/

can’t assume that this correlation implies causation, and
since the results come from a school system where comput-
ing hasn’t been taught well for those who are interested in
it, it’s inevitable that the results reflect self-selection. How-
ever, it does add some weight to the value of students being
exposed to programming before they leave primary school.

6. TEACHING AND LEARNING TOOLS
We have collected a list of 47 tools that can be used for

teaching programming and programming concepts to chil-
dren. These tools range from novice programming environ-
ments (for educational and also industry level languages),
to games and challenges which require programming or pro-
gramming concepts to complete, game building environ-
ments which involve programming, and online“learn to pro-
gram” courses. We refer to these tools as Initial Learning
Environments (ILEs). To fit into this category a tool must
allow, or be designed for, a novice to interact with the tool
and have the opportunity to learn programming concepts.
These ILEs can be used independently of teacher guidance,
but many of them can be used with additional teacher sup-
port and instruction.

The 47 tools we have examined for this paper do not cover
all available ILEs as there are a huge number of these. It
does however include the majority of the most well known
ones. Taking in to account that 31 of the 47 ILEs we exam-
ined were released later than 2010 (including several which
are yet to be fully released) and that public interest in“cod-
ing”curricula is growing, many more of these ILEs are likely
to be developed and released in the future.

With so many of these ILEs available it is inevitable that
some will be better suited to teaching programming con-
cepts to a target age group and ability level than others.
While having a large number of ILEs will give learners many
choices and opportunities to learn, there is a risk that stu-
dents and teachers may be overwhelmed by the range of
choices. We have attempted to classify these so that simi-
lar ILEs can be examined as a group to assist educators who
are choosing tools and deciding how to use them effectively.

There are many different criteria against which these can
be classified. Many come with recommended age ranges,
although it is not always clear if these are based simply on
the age group who enjoy the ILE the most rather than the
suitability of the concepts taught. They can be accessed
in numerous ways including through a browser, downloads
for Linux, Windows and OS X, apps for Android, iPhone,
iPod touch and iPad, and some are available on XBox and
Playstation. They vary greatly in cost, although a large
number are free.

The majority of ILEs fall into one of two groups based
on whether their interfaces and/or the programming lan-
guage use Drag-and-Drop or Text-based input. Text-based
environments involve the user entering text to form pro-
gramming expressions in order to interact with the environ-
ment. This text is either a commonly used programming
language, e.g., Python, Java, or JavaScript, or in some cases
it is a novel language that only exists in the ILE. Drag-and-
Drop environments on the other hand do not require users
to manually enter programming expressions; instead they
provide the user with a selection of ‘blocks’ that represent
programming expressions.These blocks can then be used
by the learner to interact with the ILE, most commonly
by dragging and dropping the blocks into an area where
they can build a program, although several simply have the

user click the blocks and do not have an area for ‘build-
ing’ programs. Drag-and-Drop environments have become
very popular for teaching programming to young children
as they do not require knowledge of programming syntax
and provide an environment where compile-time errors are
nonexistent. For example, in the Drag-and-Drop language
Scratch, any program a user builds with the Scratch blocks
will run (rather than giving a build or compile error) be-
cause it is impossible to join two blocks together if they
are not allowed to be joined. This prevents novices from
encountering confusing error messages, which can be very
discouraging to learners. However, as Drag-and-Drop lan-
guages tend to limit exactly how much you can create, and
are not widely used for professional software development,
it is useful that text-based ILEs do exist for older and/or
more experienced learners.

Ease of adoption is also an important consideration for
schools who wish to use an ILE in the classroom. A free-
to-use ILE that can run in a browser on any computer will
be much easier for a school to acquire and set up than,
for example, an ILE that must be purchased and requires
a specific device such as an iPad or an XBox to be used.
ILEs that need to be installed on a computer can also be
challenging for schools to adopt as downloading, installing
and updating software is often a complicated process for
school network administrators who have a large number of
machines to look after and are constrained by school policies
for new software.

For the purposes of our research we have created a set
of heuristics that can be used to classify an ILE according
to a ‘Level’ between 0 and 4. These levels are intended to
give an idea of the approximate age group, ability level and
learning outcomes that each ILE is best suited for. The
heuristics we used are as follows:

Level 0 — Age range 2-7 years. Drag-and-Drop or sim-
pler. Teaches planning (sequence) only. Requires no
abstraction. Contains no significant use of: functions,
variables, iteration, indexed data structures, condi-
tional execution.

Level 1 — Age range 5-10 years. Drag-and-Drop. Re-
quires no abstraction (or small amounts). Contains
none or few of: functions, variables, iteration, indexed
data structures, conditional execution.

Level 2 — Age range 8-14 years. Drag-and-Drop or text-
based. Includes some abstraction. Contains some or
most of: functions, variables, iteration, indexed data
structures, conditional execution.

Level 3 — Ages 12 years and up. Drag-and-Drop or text-
based. Includes abstraction. Contains all of: func-
tions, variables, iteration, indexed data structures,
conditional execution.

Level 4 — Ages 14 years and up. Teaches an industry-
level Turing-complete programming language. Ad-
vanced, with extensions available. Contains all of:
functions, variables, iteration, indexed data structures,
conditional execution.

Table 1 shows a list of ILEs surveyed giving the approach
they use, their cost, and their level classification. The age
range of an ILE was generally determined by the recom-
mended age provided by the creators, although in some

WiPSCE 2014 Research Papers

65

Table 1: Initial Learning Environments for young students (prices are in $US)
Name Type Cost Level
Bee-Bot app Drag and Drop Free 0
Cato’s Hike Drag and Drop $4.99 0
Daisy the Dinosaur Drag and Drop Free 0
Lightbot jnr Drag and Drop $2.99 0 1
My Robot friend Drag and Drop $3.99 0 1
ScratchJnr Drag and Drop Not available yet 0 1
Beta Text Free Lite, $10 Full 1
Hakitzu Elite: Robot
Hackers

Javascript Free, in app purchases 1

Kodable Drag and Drop Free app, $6.99 Pro, $2.99
per student Sync

1

Lightbot Drag and Drop $2.99 1
Lightbot lite Drag and Drop Free 1
Robo Logic Drag and Drop Free Lite, $0.99 Full 1
Robo Logic 2HD Drag and Drop Free Lite, $2.59 Full 1
Cargo-Bot Drag and Drop Free 1 2
Code Kingdoms Drag and Drop, some

Text
Free 1 2

Kodu Drag and Drop Free on PC, $5 on Xbox 1 2
Move the Turtle Drag and Drop $2.99 1 2
Turtle Academy Logo Free 1 2
Blockly Drag and Drop Free 1 2 3
HopScotch Drag and Drop Free 1 2 3
Scratch Drag and Drop Free 1 2 3
Tynker Drag and Drop $50 per course 1 2 3
Code HS Karel, JavaScript,

HTML, CSS
Free, $25, $75, $400 depend-
ing on subscription

1 2 3 4

Codemancer Drag and Drop Not available yet 2
CodeSpells JavaScript Free 2
i-Logo Logo $2.99 2
NetLogo Logo Free 2
StarLogo TNG Drag and Drop Free 2
12blocks Drag and Drop $49 Lite, $99 Standard 2 3
Alice Drag and Drop Free 2 3
AppInventor Drag and Drop Free 2 3
Code Combat JavaScript Free 2 3
Greenfoot Drag and Drop +

Java
Free 2 3

Hackety Hack Ruby Free 2 3
Looking Glass Drag and Drop Free 2 3
Snap! (BYOB) Drag and Drop Free 2 3
KidsRuby Ruby Free 3
StarLogo Logo Free 3
StarLogo Nova Drag and Drop Free 3
BlueJ Java Free 3 4
Code avengers JavaScript, HTML,

CSS
Free 3 4

Codecademy Python, Ruby,
Javascript, HTML,
CSS, PHP

Free 3 4

Minecraft JavaScript $26.95 3 4
Squeak Small Talk Free 3 4
Codea Text $9.99 4
Khan academy JavaScript Free 4
Simduino Arduino C $1.99 4

WiPSCE 2014 Research Papers

66

http://www.bee-bot.us/
http://hwahba.com/catoshike/
http://www.daisythedinosaur.com/
http://light-bot.com/
https://itunes.apple.com/nz/app/my-robot-friend/id555121423
http://www.scratchjr.org/
http://www.betathegame.com/
http://www.kuatostudios.com/games/hakitzu-elite/
http://www.kuatostudios.com/games/hakitzu-elite/
http://www.kodable.com/
http://light-bot.com/
http://light-bot.com/hocflash.html
http://www.digitalsirup.com/apps/app_robologic.html
http://www.digitalsirup.com/apps/app_robologic2hd.html
http://twolivesleft.com/CargoBot/
http://codekingdoms.com/
http://www.kodugamelab.com/
http://www.geekkids.me/
http://turtleacademy.com/
https://code.google.com/p/blockly/
http://www.gethopscotch.com/
http://scratch.mit.edu/
http://www.tynker.com/
http://codehs.com/
http://codemancergame.com/
http://codespells.org/
https://itunes.apple.com/us/app/i-logo/id435280247
http://ccl.northwestern.edu/netlogo/
http://education.mit.edu/projects/starlogo-tng
http://onerobot.org/products/12blocks/
http://www.alice.org
http://appinventor.mit.edu/explore/
https://codecombat.com/
http://www.greenfoot.org/home
http://hackety.com/
http://lookingglass.wustl.edu/
http://snap.berkeley.edu/
http://kidsruby.com
http://education.mit.edu/starlogo/
http://www.slnova.org/
http://bluej.org/
http://www.codeavengers.com/
http://www.codecademy.com/
https://minecraft.net/
http://www.squeak.org/
http://twolivesleft.com/Codea/
https://www.khanacademy.org/
https://itunes.apple.com/us/app/simduino/id526927905

cases this was not available or did not match the age range
of similar ILEs. Not all ILEs fit these heuristics exactly.
For example Hakitzu Elite, Robot Hackers uses the Indus-
try level language JavaScript, and the recommended age
is higher than the range for level 1; however, it doesn’t
include creating functions, loops, conditionals etc., which
lowers its classification. Several ILEs are shown spanning
several levels. In the cases of game or challenge based ILEs
this is generally due to different game-levels requiring dif-
ferent levels of programming concepts. Several of the ILEs,
e.g., Codecademy and Code HS, have tutorials for different
languages and ranges of ability and so span multiple lev-
els. Others that span multiple levels generally contain the
functionality of the highest level they have been classified
at, but do not force this on the user and so can be used for
lower ability levels as well. Other features that were not
included in these heuristics but have still been identified
as significant are “share and remix” abilities (students can
share their work in an online community and view other
users’ projects and explore and learn by ‘remixing’ them),
and the availability of teaching resources.

The challenge of an ILE is sometimes described as try-
ing to offer a low floor (minimal barriers to starting), a
high ceiling (not putting limits on how far a project can
be taken), and (ideally) wide walls (can be used for a wide
variety of projects) [27].

The Level 0 ILEs are targeted at very young users and
focus only on sequences of operations. They aim to teach
learners the concept of planning a program and having the
actions they have selected execute sequentially. They are
highly visual and involve the manipulation of objects with
Turtle-graphics-like commands; for example the buttons on
the BeeBot instruct the Bee Bot to move forward or turn.
This provides young learners with scaffolding as their ac-
tions have a clear and direct impact on the objects within
the app. These ILEs are very limited however and if a
learner has an idea for something he or she would like to
program, it’s unlikely one could do this with these applica-
tions.

The Level 1 ILEs are still generally drag-and-drop envi-
ronments with clear manipulation of objects, but offer more
functionality than the Level 0 tools as they tend to include
more “blocks” (e.g., functions or conditionals). They tend
to focus on teaching slightly more than the planning of the
Level 0 ILEs.

The Level 2 ILEs have another increase in functionality
and complexity. At this stage we begin to include text-
based ILEs, including several that use industry level pro-
gramming languages. (These do not allow full use of the
language, however, and so the are distinct from the Level
4 ILEs.) Each of these contains some level of abstraction,
most often in the form of variables and functions.

At Level 3 an ILE will involve a language that is Turing
complete, or very close to this. Most of these will have
much ‘wider walls’, and learners will find it easier to take
their ideas and implement them. This is significant as it
will allow learners to express their creativity and learn in a
constructivist manner.

Level 4 ILEs are for advanced school students who have
a strong interest in programming or have already become
tired of lower level ILEs. They would not be necessary for
a typical school curriculum, but could still be used in high
school if students and teachers felt up to the challenge. The
fact that these ILEs exist is important because they offer

advanced students the opportunity to extend their skills.
However they also pose the risk of school students exhaust-
ing the available learning content and becoming bored in
the future when they run out of possible extensions.

Based on the reviews above, for primary school aged stu-
dents the ideal levels to use for learning would be 1, 2 and
3. However, each of these ILEs has individual strengths
and limitations that need to be taken into account. Some
ILEs have very structured environments that guide learn-
ers through specific concepts in a predetermined order. For
example, Lightbot introduces students to the concepts of se-
quencing and planning actions, and later it introduces and
forces the use of functions to complete challenges. The ad-
vantage of this strategy is that it ensures that students are
introduced to each of the concepts the ILE aims to teach,
which could make it particularly useful to students learning
in their own time or to teachers who are not yet confident
in teaching programming. The downside of this, however, is
that once a student has completed the tutorial or challenges
he or she is then unable to continue exploring.

The ILEs that do not follow this method, for example
Scratch, Alice and Hopscotch, offer a programming environ-
ment with much more freedom. Students are able to exper-
iment with different “blocks” and concepts in any way they
please, and while tutorials and challenges do exist for many
of these environments, they are not forced upon the learner.
The drawback of these environments, however, is the risk
that students come away without having learnt many (or
any) programming, CS or CT concepts, or they may de-
velop an incorrect model of what programming is. We have
referred to this previously as a “Spritefest”, where students
focus on the simple animation or turtle-movement functions
and don’t extend themselves to more abstract concepts such
as conditionals. However, with proper teacher guidance
these environments can be used to great benefit for teaching
programming skills and abstract CS and CT concepts [32].
Their richer functionality allows students more opportuni-
ties to explore programming.

7. PREPARING TEACHERS
Having good programming tools and capable learners isn’t

sufficient for teaching programming in schools, as teachers
need to be able to deliver the material confidently in the
context they find themselves in. For example, Goode et al.
report this observation in a high school programme [8], and
Meerbaum-Salant et al. [21] found that Scratch is suitable
for teaching fundamental programming concepts but only
if teachers have sufficient guidance on good didactic ap-
proaches, which in turn takes time. Yadav et al. [34] com-
pared attitudes towards CT between teachers who had had
specific training in the area and those in a control group.
They found that those in the control group, who didn’t have
training, had misunderstandings about what CT is and how
it could be taught. Ni and Guzdial [24] highlight the im-
portance of teachers’ sense of identity so that they can be
committed and effective teachers

One exception, where students’ success was independent
of teacher’s experience is at the Kindergarten level [16].
There, the material being covered uses only sequencing. For
this level sequences are not peculiar to programming, and
a teacher is likely to be familiar with the ideas of giving
instructions in sequence!

A teacher’s attitude and pedagogical knowledge will be
related. For example, Makris [18] reported on two groups

WiPSCE 2014 Research Papers

67

of 12 to 15 year old students in Greece who were taught
Scratch programming. One group had programming demon-
strated to them, while another group had an “encouraging
style,” where the demonstrator encouraged them as they
worked out for themselves how to achieve the goal. The
latter group showed a considerably more positive attitude
to programming afterwards. Confident teachers are bet-
ter placed to convey a positive attitude to students, and
in the opposite situation, teaching programming to young
students may do more harm than good if the teacher is
confused or frustrated.

8. CONCLUSIONS
Teaching programming to young students has both costs

and benefits. The benefits include enabling students to be-
come fluent in programming while they are at an age when
they can learn quickly, shaping attitudes to programming
before it is too late, and support learning outside of just pro-
gramming (particularly maths and CT). The costs include
equipping teachers to deliver programming in their classes,
and the time taken away from other subjects. There are
also risks: if a student is taught programming by a teacher
who lacks confidence, there is the possibility that the stu-
dent will create a negative impression of the subject.

There isn’t a simple answer to the question that the title
of this paper poses, although it is clear from a variety of
evidence that some exposure to programming before about
12 years old is both worthwhile and feasible. However, it’s
more important to ask the right questions, and avoid jump-
ing to conclusions based on exceptional cases, bad experi-
ences, or opinions in the press. Based on the issues raised
above, we have synthesised the following list of considera-
tions that need to be explored when considering what kind
of “coding” should be taught to a particular age group, and
in a particular environment. Many of the issues raised here
are those covered by the Darmstadt model which consid-
ers the factors involved in the delivery of a curriculum in
computing [12].

• Can teachers be supported to be confident and com-
petent teaching programming? If not, requiring pro-
gramming could have a negative influence on students’
attitudes. This is particularly important for female
students as building confidence in programming while
at primary school is more likely to translate to long-
term confidence in their ability and help address the
shortage of females in computer science.

• We need to be clear what is meant by programming:
at younger ages just sequencing is a useful concept to
master; for older students programming should also
include design, implementation, debugging and test-
ing.

• When selecting which programming concepts to teach
and which ILE to use consider the following

– The age and maturity of the students

– Their mathematical ability and language skills

– The purpose of teaching programming; in some
situations it is to capture student’s enthusiasm,
at more senior levels it could be to develop skills
that will be useful in a career.

– Are there good teaching resources (such as books,
tutorials, and web sites) available for the ILE?

– The ILE should have a “low floor”, and where
possible, “wide walls” and a “high ceiling” [27].

– There needs to be a pathway beyond an initial
experience if students become enthusiastic.

• The risk of teaching programming depends on the
context: there are higher stakes at school where re-
sults may impact grades and qualifications, whereas
in lower grades and clubs students are more able to
experiment.

• With limited space in the curriculum, existing mate-
rial may have to be removed to make space, although
programming could also be used to support parts of
the existing curriculum, particularly math.

• If a student is already enthusiastic then it is important
to maintain their passion, and a club or mentoring
arrangement may be best.

Teaching programming to younger students is clearly pos-
sible, and it has benefits. The appropriate aspects to teach
depend on many factors other than just a student’s age, in-
cluding the context and teacher confidence. We have identi-
fied many of the issues involved with the intention of inform-
ing discussions and planning around teaching programming
to younger students. We have also uncovered areas that
need more research before we can draw strong conclusions.

9. REFERENCES
[1] B. M. Armoni. Designing a K-12 computing

curriculum. ACM Inroads, 4(2):34–35, 2013.

[2] C. Ashcraft and A. Breitzman. Who Invents IT? An
Analysis of Women’s Participation in Information
Technology Patenting, 2012 Update. National Centre
for Women & Information Technology, 2012.

[3] T. Bell, P. Andreae, and A. Robins. A case study of
the Introduction of Computer Science in NZ schools.
ACM Trans. Computing Educ. (TOCE), page to
appear, 2014.

[4] T. Bell, P. Curzon, Q. Cutts, V. Dagiene, and
B. Haberman. Overcoming Obstacles to CS Educ. by
using Non-Programming Outreach Programmes. In
Proceedings of Informatics in Schools: Situation,
Evolution and Perspectives (ISSEP) 26, Bratislava,
LNCS 7013, page to appear, Oct. 2011.

[5] A. Blackwell. What is programming. In 14th
workshop of the Psychology of Programming Interest
Group, pages 204–218, 2002.

[6] M. Corney, D. Teague, A. Ahadi, and R. Lister. Some
empirical results for neo-Piagetian reasoning in novice
programmers and the relationship to code explanation
questions. In Proc. Fourteenth Australasian
Computing Educ. Conference-Volume 123, pages
77–86. Australian Computer Society, Inc., 2012.

[7] L. P. Flannery, B. Silverman, E. R. Kazakoff, M. U.
Bers, P. Bontá, and M. Resnick. Designing ScratchJr:
Support for Early Childhood Learning Through
Computer Programming. In Proc. 12th Int’l. Conf.
Interaction Design and Children, IDC ’13, pages
1–10, New York, NY, USA, 2013. ACM.

[8] J. Goode, J. Margolis, and G. Chapman. Curriculum
is Not Enough: The Educational Theory and
Research Foundation of the Exploring Computer

WiPSCE 2014 Research Papers

68

Science Professional Development Model. In Proc.
45th ACM Technical Symposium on Computer
Science Educ., SIGCSE ’14, pages 493–498, New
York, NY, USA, 2014. ACM.

[9] P. Gross and K. Powers. Evaluating assessments of
novice programming environments. In Proc. 2005
Int’l. workshop on Computing Educ. research - ICER
’05, pages 99–110, New York, New York, USA, Oct.
2005. ACM Press.

[10] M. Gujberova and I. Kalas. Designing productive
gradations of tasks in primary programming
education. In Proc. 8th Workshop in Primary and
Secondary Computing Education, WiPSE ’13, pages
108–117, New York, NY, USA, 2013. ACM.

[11] M. Guzdial. Programming environments for novices.
Computer science Educ. research, 2004:127–154, 2004.

[12] P. Hubwieser, M. Armoni, T. Brinda, V. Dagiene,
I. Diethelm, M. N. Giannakos, M. Knobelsdorf,
J. Magenheim, R. Mittermeir, and S. Schubert.
Computer science/informatics in secondary education.
In Proc. 16th annual conference reports on Innovation
and technology in computer science education-working
group reports, pages 19–38. ACM, 2011.

[13] J. S. Johnson and E. L. Newport. Critical period
effects in second language learning: The influence of
maturational state on the acquisition of English as a
second language. Cognitive Psychology, 21(1):60–99,
Jan. 1989.

[14] B. Kaucic and T. Asic. Improving introductory
programming with Scratch? 2011 Proc. 34th Int’l.
Convention MIPRO, pages 1095–1100, 2011.

[15] A. C. Kay. The Early History of Smalltalk. In The
Second ACM SIGPLAN Conf. History of
Programming Languages, HOPL-II, pages 69–95, New
York, NY, USA, 1993. ACM.

[16] E. Kazakoff and M. Bers. Programming in a robotics
context in the kindergarten classroom: The impact on
sequencing skills. Journal of Educational Multimedia
and Hypermedia, 21(4):371–391, 2012.

[17] M. Lopez, J. Whalley, P. Robbins, and R. Lister.
Relationships between reading, tracing and writing
skills in introductory programming. In Proc. Fourth
Int’l. Workshop on Computing Education Research,
ICER ’08, pages 101–112, New York, NY, USA, 2008.
ACM.

[18] D. Makris, K. Euaggelopoulos, K. Chorianopoulos,
and M. N. Giannakos. Could you help me to change
the variables? Comparing instruction to
encouragement for teaching programming. In Proc.
8th Workshop in Primary and Secondary Computing
Educ. on - WiPSE ’13, pages 79–82, New York, New
York, USA, Nov. 2013. ACM Press.

[19] J. Margolis and A. Fisher. Unlocking the clubhouse:
Women in computing. MIT press, 2003.

[20] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari.
Habits of programming in scratch. In Proc. 16th
annual joint Conf. Innovation and technology in
computer science education, ITiCSE ’11, pages
168–172, New York, NY, USA, 2011. ACM.

[21] O. Meerbaum-Salant, M. Armoni, and M. M.
Ben-Ari. Learning computer science concepts with
scratch. In Proc. Sixth Int’l. workshop on Computing
Education Research, ICER ’10, pages 69–76, New
York, NY, USA, 2010. ACM.

[22] U. Mellström. The intersection of gender, race and
cultural boundaries, or why is computer science in
Malaysia dominated by women? Social Studies of
Science, 39(6):885–907, 2009.

[23] S. Morra, C. Gobbo, Z. Marini, and R. Sheese.
Cognitive development: neo-Piagetian perspectives.
Psychology Press, 2007.

[24] L. Ni and M. Guzdial. Who AM I? Understanding
High School Computer Science Teachers’ Professional
Identity. In Proc. 43rd ACM technical symposium on
Computer Science Educ., Raleigh, NC, USA, pages
499–504, 2012.

[25] S. Papert. Mindstorms: children, computers, and
powerful ideas. Basic Books, Inc., New York, NY,
USA, Jan. 1980.

[26] J. Piaget and B. Inhelder. The psychology of the child.
Basic Books, 1969.

[27] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, and Others.
Scratch: programming for all. Communications of the
ACM, 52(11):60–67, 2009.

[28] C. Riegle-Crumb, C. Moore, and A. Ramos-Wada.
Who wants to have a career in science or math?
exploring adolescents’ future aspirations by gender
and race/ethnicity. Science Educ., 95(3):458–476,
May 2011.

[29] D. Rushkoff. Program or be programmed: Ten
commands for a digital age. Or Books, 2010.

[30] L. Seiter and B. Foreman. Modeling the learning
progressions of computational thinking of primary
grade students. In Proc. Ninth annual Int’l. ACM
Conf. on Computing Educ. Research - ICER ’13,
page 59, New York, New York, USA, Aug. 2013.
ACM Press.

[31] N. Smith, C. Sutcliffe, and L. Sandvik. Code club:
Bringing programming to uk primary schools through
scratch. In Proc. 45th ACM Technical Symposium on
Computer Science Education, SIGCSE ’14, pages
517–522, New York, NY, USA, 2014. ACM.

[32] B. Ward, T. Bell, D. Marghitu, and L. Lambert.
Teaching Computer Science Concepts in Scratch and
Alice. The Journal of Computing Sciences in
Colleges, 26(2):173–180, Dec. 2010.

[33] L. Werner, S. Campe, and J. Denner. Children
Learning Computer Science Concepts via Alice
Game-programming. In Proc. 43rd ACM Technical
Symposium on Computer Science Educ., SIGCSE ’12,
pages 427–432, New York, NY, USA, 2012. ACM.

[34] A. Yadav, C. Mayfield, N. Zhou, S. Hambrusch, and
J. T. Korb. Computational Thinking in Elementary
and Secondary Teacher Educ. ACM Trans.

Computing Educ., 14(1):1–16, Mar. 2014.

WiPSCE 2014 Research Papers

69

	Introduction
	Background
	Cultural Factors
	Changing School Curricula

	What is Coding?
	Young Students Programming
	Students' Age and Programming
	Developmental Psychology
	Gender Issues
	Nexus With Other Disciplines
	Learning Natural Languages
	Opinions of Practitioners

	Teaching and Learning Tools
	Preparing Teachers
	Conclusions
	References

