
Copyright © 2006 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
SOFTVIS 2006, Brighton, United Kingdom, September 04–05, 2006.
© 2006 ACM 1-59593-464-2/06/0009 $5.00

A Transparent Interface to State-Space Search Programs

Steven L. Tanimoto∗
University of Washington

Stefano Levialdi†

University of Rome “La Sapienza”

Abstract

We present a visual interface for a variety of programs that em-
ploy state-space search methods. The interface displays a tree of
the states visited so far, and it permits user interaction through ma-
nipulation of the tree. The interface is implemented in a domain-
independent Python module. We give illustrations of its application
in three domains: classical problem solving, image processing, and
composition of musical motifs. The interface exemplifies a class
of techniques for bringing a form of transparency to computer sys-
tems.

CR Categories: H.5.2 [User Interfaces]: Interaction Styles—
Theory and Methods, Screen Design; J.6 [Computer-Aided Engi-
neering]: Computer-Aided Design—Collaborative Design.

Keywords: transparent interface, state-space search, tree layout,
interactive search, computer-aided design, collaborative problem
solving

1 Introduction

As software systems become more complex, the challenge of mak-
ing systems understandable to users becomes harder. One approach
to meeting the challenge is to “open up” more of the inner work-
ings of the system to the user purview. Computer systems that per-
form “intelligent” processing are a case in point, where problem
complexity or the vastness of the space of candidate solutions can
confuse users.

We present a visual interface to one class of intelligent computa-
tion methods – state space search. The interface is based on the
display of the tree of states explored so far, starting with a given
initial state. The interface serves as a starting point for the imple-
mentation of transparent software tools for a variety of domains. A
transparent interface is one that reveals some of the inner workings
of the system [Tanimoto 2004]. This project is motivated in part by
ideas in H. Simon’s The Sciences of the Artificial [Simon 1996].

2 The Transparent STate-space search
ARchitecture (T-STAR)

In order to facilitate the design and implementation of transparent
tools for problem solving and design in a variety of application do-
mains, we have developed a software module called T-STAR using

∗e-mail: tanimoto@cs.washington.edu
†e-mail: levialdi@di.uniroma1.it

the Python programming language. T-STAR (which can also be
written T*) stands for “Transparent STate-space search ARchitec-
ture.”

The module, TStar.py, implements a variety of domain-
independent features including: representation of tree nodes and
arcs, display of trees, interactive features for managing the use of
screen space by the tree, organization of state representation, oper-
ators, and code that applies operators. It is written in the Python
language, using the Tkinter GUI toolkit [Lundh 1999].

3 T-STAR in Classical Problem Solving

Our first illustration of T-STAR is in the traditional problem-solving
domain of combinatorial search. The Missionaries and Cannibals
puzzle has an initial state in which three missionaries and three can-
nibals are on the west bank of a river, along with a canoe. They must
get across the river. However, there are constraints on how they may
move. The canoe holds a maximum of three people, and it must al-
ways contain a missionary to guide it. The missionaries must never
be outnumbered by cannibals at either the west bank, east bank or
in the canoe, for if they are, they will be eaten[Russell and Norvig
2003]. The role of the T-STAR software is to manage the states ex-
plored by the user and to display, in a flexible fashion, those states.
It also enforces the constraints. In the example, T-STAR does not
automatically solve the puzzle but manages the moves made by a
human user.

Figure 1: A display of the T-STAR interface for the Missionaries
and Cannibals Puzzle.

151

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1148493.1148519&domain=pdf&date_stamp=2006-09-04

4 Examples in Processing of Images and
Music

Next we show an application of T-STAR to image processing. In
figure 2, a screen shot is presented that portrays a program that
extends T-STAR with operators for digital image processing. This
program, called TRAIPSE, uses a digital image to represent each
state, and any operator takes one state to another by making an
image transformation.

Figure 2: The TRAnsparent Image Problem Solving Environment
based on T-STAR.

The domain of musical composition provides some counterpoint to
the previous domains. In Figure 3, the T-STAR system has been
extended with a means to display musical motifs as states, and a set
of permutation operators has been incorporated in order to allow a
computer (user) to make arbitrary sequences of transformations to
the initial motif, which is defined in the example to be a diatonic
scale. The program has also been given a means to play the musical
motifs.

Figure 3: Application of T-STAR to the composition of musical
motifs using permutation operators.

5 Issues

This project addresses a number of important issues having to do
with software visualization.

The behavior of a state-space search program can involve visiting
very large numbers of states. Facilities for managing screen real-
estate are clearly important in situations like these. The ability to
minimize and maximize nodes’ displays is important, and it is help-
ful to have a variety of ways for expressing how this is to be done.
There may be different size options for each node, and there may
be different ways to specify sets of nodes that are to be adjusted. T-
STAR allows not only 3 different levels of detail for node displays
but also allows specifying sets of nodes in terms of ancestors and
descendants of any selected node.

Another design issue for T-STAR is how to make it easy to cus-
tomize T-STAR for different applications. Our approach has been
to encapsulate generic functionality in methods of a class, so that
the methods can be overridden in subclasses that are application-
specific. The state display method is an example of such a method.

Some application domains require large numbers of operators. Op-
erators may be parameterized, too. In the future, we plan to incor-
porate into T-STAR facilities for managing sets of operators and for
managing their parameterization.

Next, there is the issue of incorporating automatic services such as
the running of search algorithms, application of evaluation criteria,
etc. T-STAR currently provides just a small amount of functionality
of this nature – enough to show a straightforward way to incorporate
more such functionality; a menu command is available to request
the automatic generation of a subtree of depth 2 from the currently
selected node.

Finally, we mention the issue of supporting collaboration in prob-
lem solving and design by teams of users. The T-STAR interface
can serve to provide both common views and private views of por-
tions of the state space. An extention of T-STAR called CO-STAR
is currently under development to provide affordances for collabo-
ration in design activities.

6 Acknowledgements

Thanks to P. Bottoni, L. Cinque, A. Malizia and W. Winn for con-
structive comments about the T-STAR software. Preparation of this
extended abstract was funded in part by NSF Grant IIS-0537322.

References

LUNDH, F. 1999. Introduction to Tkinter.

RUSSELL, S., AND NORVIG, P. 2003. Artificial Intelligence: A
Modern Approach, 2nd ed. Prentice Hall.

SIMON, H. 1996. The Sciences of the Artificial, 3rd ed. MIT Press.

TANIMOTO, S. 2004. Transparent interfaces: Model and methods.
In Proceedings of the Workshop on Invisible and Transparent
Interfaces.

152

