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Continuous-time formulation

Notation and terminology:

x (t) 2 Rn state vector
u (t) 2 Rm control vector
ω (t) 2 Rk Brownian motion (integral of white noise)

dx = f (x, u) dt+G (x, u) dω continuous-time dynamics

Σ (x, u) = G (x, u)G (x, u)T noise covariance

` (x, u) � 0 cost for choosing control u in state x
qT (x) � 0 (optional) scalar cost at terminal states x 2 T

π (x) 2 Rm control law
vπ (x) � 0 value/cost-to-go function

π� (x) , v� (x) optimal control law and its value function
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Stochastic differential equations and integrals

Ito diffusion / stochastic differential equation (SDE):

dx = f (x) dt+ g (x) dω

This cannot be written as ẋ = f (x) + g (x) ω̇ because ω̇ does not exist.
The SDE means that the time-integrals of the two sides are equal:

x (T)� x (0) =
Z T

0
f (x (t)) dt+

Z T

0
g (x (t)) dω (t)

The last term is an Ito integral. For an Ito process y (t) adapted to ω (t),
i.e. depending on the sample path only up to time t, this integral is

Definition (Ito integral)Z T

0
y (t) dω (t) , lim

N!∞
0=t0<t1<���<tN=T

∑N�1
i=0 y (ti) (ω (ti+1)�ω (ti))

Replacing y (ti) with y ((ti+1 + ti) /2) yields the Stratonovich integral.
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Stochastic chain rule and integration by parts
A twice-differentiable function a (x) of an Ito diffusion dx = f (x) dt+ g (x) dω
is an Ito process (not necessarily a diffusion) which satisfies:

Lemma (Ito)

da (x (t)) = a0 (x (t)) dx (t) + 1
2 a00 (x (t)) g (x (t))2 dt

This is the stochastic version of the chain rule.

There is also a stochastic version of integration by parts:

x (T) y (T)� x (0) y (0) =
Z T

0
x (t) dy (t) +

Z T

0
y (t) dx (t) + [x, y]T

The last term (which would be 0 if x (t) or y (t) were differentiable) is

Definition (quadratic covariation)

[x, y]T , lim
N!∞

0=t0<t1<���<tN=T
∑N�1

i=0 (x (ti+1)� x (ti)) (y (ti+1)� y (ti))

For a diffusion with constant noise amplitude we have [x, x]T = g2T.
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Forward and backward equations, generator

Let p (y, sjx, t) , s � t denote the transition probability density under the Ito
diffusion dx = f (x) dt+ g (x) dω. Then p satisfies the following PDEs:

Theorem (Kolmogorov equations)

forward (FP) equation
∂

∂s
p = � ∂

∂y
(fp) +

1
2

∂2

∂y2

�
g2p
�

backward equation � ∂

∂t
p = f

∂

∂x
(p) +

1
2

g2 ∂2

∂x2 (p) = L [p (y, sj�, t)]

The operator L which computes expected directional derivatives is called the
generator of the stochastic process. It satisfies (in the vector case):

Theorem (generator)

L [v (�)] (x) , lim
∆!0

Ex(0)=x [v (x (∆))]� v (x)
∆

= f (x)T vx (x)+ 1
2 tr (Σ (x) vxx (x))
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Discretizing the time axis

Consider the explicit Euler discretization with time step ∆:

x (t+ ∆) = x (t) + ∆f (x (t) , u (t)) +
p

∆G (x (t) , u (t)) ε (t)

where ε (t) � N (0, I). The term
p

∆ appears because the variance grows
linearly with time.

Thus the transition probability p (x0jx, u) is Gaussian, with mean x+ ∆f (x, u)
and covariance matrix ∆Σ (x, u). The one-step cost is ∆` (x, u).

Now we can apply the Bellman equation (in the finite horizon setting):

v (x, t) = min
u

n
∆` (x, u) + Ex0�p(�jx,u)

�
v
�
x0, t+ ∆

��o
=

min
u

n
∆` (x, u) + Ed�N(∆f(x,u), ∆Σ(x,u)) [v (x+ d, t+ ∆)]

o
Next we use the Taylor-series expansion of v ...
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Hamilton-Jacobi-Bellman (HJB) equation

v (x+ d, t+ ∆) = v (x, t) + ∆vt (x, t) + o
�

∆2
�
+

+dTvx (x, t) +
1
2

dTvxx (x, t)d+ o
�

d3
�

Using the fact that E
h
dTMd

i
= tr (cov [d]M) + o

�
∆2�, the expectation is

Ed [v (x+ d, t+ ∆)] = v (x, t) + ∆vt (x, t) + o
�

∆2
�
+

+∆f (x, u)T vx (x, t) +
∆
2

tr (Σ (x, u) vxx (x, t))

Substituting in the Bellman equation,

v (x, t) = min
u

�
∆` (x, u) + v (x, t) + ∆vt (x, t) + o

�
∆2�+

+∆f (x, u)T vx (x, t) + ∆
2 tr (Σ (x, u) vxx (x, t))

�
Simplifying, dividing by ∆ and taking ∆ ! 0 yields the HJB equation

�vt (x, t) = min
u

�
` (x, u) + f (x, u)T vx (x) +

1
2

tr (Σ (x, u) vxx (x))
�
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HJB equations for different problem formulations

Definition (Hamiltonian)

H [x, u, v (�)] , ` (x, u) + f (x, u)T vx (x) +
1
2

tr (Σ (x, u) vxx (x)) = `+ L [v]

The HJB equations for the optimal cost-to-go v� are

Theorem (HJB equations)

first exit 0 = minu H [x, u, v� (�)] v� (x 2 T ) = qT (x)

finite horizon �v�t (x, t) = minu H [x, u, v� (�, t)] v� (x, T) = qT (x)

discounted
1
τ

v� (x) = minu H [x, u, v� (�)]

average c = minu H [x, u,ev� (�)]
Discounted cost-to-go: vπ (x) = E

R ∞
0 exp (�t/τ) ` (x (t) , u (t)) dt.
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Existence and uniqueness of solutions

The HJB equation has at most one classic solution (i.e. a function which
satisfies the PDE everywhere.)
If a classic solution exists then it is the optimal cost-to-go function.
The HJB equation may not have a classic solution; in that case the
optimal cost-to-go function is non-smooth (e.g. bang-bang control.)
The HJB equation always has a unique viscosity solution which is the
optimal cost-to-go function.
Approximation schemes based on MDP discretization (see below) are
guaranteed to converge to the unique viscosity solution / optimal
cost-to-go function.
Most continuous function approximation schemes (which scale better)
are unable to represent non-smooth solutions.
All examples of non-smoothness seem to be deterministic; noise tends to
smooth the optimal cost-to-go function.
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Example of noise smoothing
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More tractable problems

Consider a restricted family of problems with dynamics and cost

dx = (a (x) + B (x)u) dt+ C (x) dω

` (x, u) = q (x) +
1
2

uTR (x)u

For such problems the Hamiltonian can be minimized analytically w.r.t. u.
Suppressing the dependence on x for clarity, we have

min
u

H = min
u

�
q+

1
2

uTRu+ (a+ Bu)T vx +
1
2

tr
�

CCTvxx

��
The minimum is achieved at u� = �R�1BTvx and the result is

min
u

H = q+ aTvx +
1
2

tr
�

CCTvxx

�
� 1

2
vTx BR�1BTvx

Thus the HJB equations become 2nd-order quadratic PDEs, no longer
involving the min operator.
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More tractable problems (generalizations)

Allowing control-multiplicative noise:

Σ (x, u) = C0 (x)C0 (x)
T +∑K

k=1 Ck (x)uuTCk (x)
T

The optimal control law becomes:

u� = �
�

R+∑K
k=1 CTk vxxCk

��1
BTvx

Allowing more general control costs:

` (x, u) = q (x) +∑i r (ui) , r : convex

The optimal control law becomes:

u� = arg min
u

n
∑i r (ui) + uTBTvx

o
=
�
r0
��1

�
�BTvx

�
r (u) = s

Z juj

0
atanh

�
w

umax

�
dw =) u� = umax tanh

�
�s�1BTvx

�
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Pendulum example

θ̈ = k sin (θ) + u

First-order form:

x =

�
x1
x2

�
=

�
θ
θ̇

�
a (x) =

�
x2

k sin (x1)

�
B =

�
0
1

�

Stochastic dynamics:

dx = a (x) dt+ B (udt+ σdω)

Cost and optimal control:

` (x, u) = q (x) +
r
2

u2

u� (x) = �r�1vx2 (x)

HJB equation (discounted):

1
τ

v = q+ x2vx1 + k sin (x1) vx2

+
σ2

2
vx2x2 �

1
2r

v2
x2
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Pendulum example continued
Parameters: k = σ = r = 1, τ = 0.3, q = 1� exp

�
�2θ2

�
, β = 0.99

Dicretize state space, approximate derivatives via finite differences, iterate:

v(n+1) = βv(n) + (1� β) τ min
u

H(n)
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MDP discretization

Define discrete state and control spaces X(h) � Rn, U(h) � Rm and discrete
time step ∆(h), where h is a "coarseness" parameter and h ! 0 corresponds to
infinitely dense discretization. Construct p(h)(x0(h)jx(h), u(h)) s.t.

Definition (local consistency)

d , x0(h) � x(h)
E [d] = ∆(h)f(x(h), u(h)) + o(∆(h))

cov [d] = ∆(h)Σ(x(h), u(h)) + o(∆(h))

In the limit h ! 0 the MDP solution v�(h) converges to the solution v� of the
continuous problem, even when v� is non-smooth (Kushner and Dupois)
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Constructing the MDP
For each x(h), u(h) choose vectors fvigi=1���K such that all possible next states
are x0(h) = x(h) + hvi. Then compute pi

(h) = p(h)(x(h) + hvijx(h), u(h)) as:

Find wi, yi s.t.

∑i wivi = f

∑i yivivTi = Σ

∑i yivi = 0

∑i wi = 1, wi � 0

∑i yi = 1, yi � 0

and set

pi
(h) =

hwi + yi
h+ 1

∆(h) =
h2

h+ 1

Set ∆(h) = h and minimize


Σ� h ∑i pi
(h) (vi � f) (vi � f)T




2

s.t.

∑i pi
(h)vi = f

∑i pi
(h) = 1, pi

(h) � 0

Set ∆(h) = h and

pi
(h) ∝ N

�
x(h) + hvi; hf, hΣ

�
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