
Markov Decision Processes and Bellman Equations

Emo Todorov

Applied Mathematics and Computer Science & Engineering

University of Washington

Winter 2014

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 1 / 21



Markov Decision Processes (MDPs)

Notation and terminology:

x 2 X state of the Markov process
u 2 U (x) action/control in state x
p (x0jx, u) control-dependent transition probability distribution

` (x, u) � 0 immediate cost for choosing control u in state x
qT (x) � 0 (optional) scalar cost at terminal states x 2 T

π (x) 2 U (x) control law/policy: mapping from states to controls

vπ (x) � 0 value/cost-to-go function: cumulative cost for
starting at state x and acting according to π thereafter

π� (x) , v� (x) optimal control law and corresponding value function

Different definitions of "cumulative cost" lead to different problem formulations.

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 2 / 21



Intuitions behind Dynamic Programming

Example (shortest paths)

The optimal cost-to-go equals the immediate cost (for the optimal action
at the current state) plus the optimal cost-to-go at the resulting next state.

If the optimal cost-to-go is known, the optimal actions can be computed
by greedy optimization, without explicitly considering future costs. This
is because the optimal cost-to-go reflects all future costs.

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 3 / 21



First exit formulation

Each trajectory terminates when a terminal/goal state x 2 T is first reached:

vπ (x) = Ex0=x
xk+1�p(�jxk,π(xk))

h
qT
�
xtfirst

�
+∑tfirst�1

k=0 ` (xk, π (xk))
i

At terminal states we have vπ (x) = qT (x).

Definition (Hamiltonian)

H [x, u, v (�)] , ` (x, u) + Ex0�p(�jx,u)v
�
x0
�

Theorem (Bellman equations)

policy-specific cost-to-go: vπ (x) = H [x, π (x) , vπ (�)]
optimal cost-to-go: v� (x) = minu2U (x) H [x, u, v� (�)]

optimal policy: π� (x) = arg minu2U (x) H [x, u, v� (�)]

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 4 / 21



Finite horizon formulation

This is a special case of the first-exit formulation. All relevant quantities are
now indexed by time. All trajectories end at t = N:

vπ
t (x) = Ext=x

xk+1�p(�jxk,πk(xk))

h
qT (xN) +∑N�1

k=t ` (xk, πk (xk))
i

Unlike the general first-exit case (which is complicated when the transition
graph contains loops) here the optimal cost-to-go can be found with a single
backward pass through time.

Theorem (Bellman equations)

policy-specific cost-to-go: vπ
t (x) = H

�
x, πt (x) , vπ

t+1 (�)
�

optimal cost-to-go: v�t (x) = minu2U (x) H
�
x, u, v�t+1 (�)

�
optimal policy: π�t (x) = arg minu2U (x) H

�
x, u, v�t+1 (�)

�

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 5 / 21



Infinite horizon discounted cost formulation
The trajectory continues forever, but future costs are exponentially discounted
(with α < 1 ) to ensure that the cost-to-go remains finite:

vπ (x) = Ex0=x
xk+1�p(�jxk,πk(xk))

h
∑∞

k=0 αk` (xk, π (xk))
i

The Hamiltonian now becomes Hα [x, u, v (�)] , ` (x, u) + αEx0�p(�jx,u)v (x0)

Theorem (Bellman equations)

policy-specific cost-to-go: vπ (x) = Hα [x, π (x) , vπ (�)]
optimal cost-to-go: v� (x) = minu2U (x) Hα [x, u, v� (�)]

optimal control law: π� (x) = arg minu2U (x) Hα [x, u, v� (�)]

Smaller α makes the problem easier to solve, but the resulting policy can be
short-sighted. This is relevant in economics and psychology.

Every discounted cost problem can be converted to a first exit problem. This is done
by scaling the transition probabilities by α, introducing a terminal state with zero cost,
and setting all transition probabilities to that state to 1� α.

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 6 / 21



Infinite horizon discounted cost formulation
The trajectory continues forever, but future costs are exponentially discounted
(with α < 1 ) to ensure that the cost-to-go remains finite:

vπ (x) = Ex0=x
xk+1�p(�jxk,πk(xk))

h
∑∞

k=0 αk` (xk, π (xk))
i

The Hamiltonian now becomes Hα [x, u, v (�)] , ` (x, u) + αEx0�p(�jx,u)v (x0)

Theorem (Bellman equations)

policy-specific cost-to-go: vπ (x) = Hα [x, π (x) , vπ (�)]
optimal cost-to-go: v� (x) = minu2U (x) Hα [x, u, v� (�)]

optimal control law: π� (x) = arg minu2U (x) Hα [x, u, v� (�)]

Smaller α makes the problem easier to solve, but the resulting policy can be
short-sighted. This is relevant in economics and psychology.

Every discounted cost problem can be converted to a first exit problem. This is done
by scaling the transition probabilities by α, introducing a terminal state with zero cost,
and setting all transition probabilities to that state to 1� α.

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 6 / 21



Infinite horizon average cost formulation

The trajectory continues forever and there is no discounting, thus the
cost-to-go is infinite. Let vπ,N

0 (x) denote the cost-to-go at time 0 for a
finite-horizon problem with N steps. Then the average cost is

cπ = lim
N!∞

1
N

vπ,N
0 (x)

Note that cπ does not depend on the initial state. The optimal control law
(minimizing c) can be found using a "differential" cost-to-go ev, which loosely
speaking is evπ (x) = vπ,N

0 (x)�Ncπ

Theorem (Bellman equations)

policy-specific cost-to-go: cπ + evπ (x) = H [x, π (x) ,evπ (�)]
optimal cost-to-go: c� + ev� (x) = minu2U (x) H [x, u,ev� (�)]
optimal policy: π� (x) = arg minu2U (x) H [x, u,ev� (�)]

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 7 / 21



Policy evaluation using linear algebra

Stacking all states into a vector and suppressing the superscript π, the
cost-to-go vπ (x) becomes v, the immediate cost ` (x, π (x)) becomes r, and the
transition probability distribution p (x0jx, π (x)) becomes P where rows
correspond to x and columns to x0. Let N be the set of non-terminal states.

First exit

vN = rN + PNN vN + PNT qT
vN = (I� PNN )

�1 (rN + PNT qT )

Finite horizon

vn = rn + Pnvn+1

Infinite horizon discounted cost

v = r+ αPv
v = (I� αP)�1 r

Infinite horizon average cost

c1+ ev = r+ Pev
Here ev is defined up to an additive
constant. Fixing 1Tev = 0 yields� ev

c

�
=

�
I� P 1

1T 0

��1 � r
0

�

The optimal control problem is
well-defined when the matrix
inverse exists for some policy.
(Perron-Frobenius theory)

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 8 / 21



Policy evaluation using linear algebra

Stacking all states into a vector and suppressing the superscript π, the
cost-to-go vπ (x) becomes v, the immediate cost ` (x, π (x)) becomes r, and the
transition probability distribution p (x0jx, π (x)) becomes P where rows
correspond to x and columns to x0. Let N be the set of non-terminal states.

First exit

vN = rN + PNN vN + PNT qT
vN = (I� PNN )

�1 (rN + PNT qT )

Finite horizon

vn = rn + Pnvn+1

Infinite horizon discounted cost

v = r+ αPv
v = (I� αP)�1 r

Infinite horizon average cost

c1+ ev = r+ Pev
Here ev is defined up to an additive
constant. Fixing 1Tev = 0 yields� ev

c

�
=

�
I� P 1

1T 0

��1 � r
0

�
The optimal control problem is
well-defined when the matrix
inverse exists for some policy.
(Perron-Frobenius theory)

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 8 / 21



Value iteration

Recall that the optimal cost-to-go/value always satisfies an equation whose
right-hand side is of form minu H [x, u, v (�)]. This minimization operator is
called the dynamic programming backup operator:

T [v (�)] (x) , minu2U (x)
n
` (x, u) + α ∑x0 p

�
x0jx, u

�
v
�
x0
�o

with α = 1 in non-discounted problems. Now v� is the solution to

v = T [v]

The easiest way to solve such fixed-point equations is

Algorithm (value iteration)

v(n+1) = T
h
v(n)

i
Initialization can be arbitrary. In first-exit problems v(n) (x 2 T ) = qT (x) for all n.
In infinite-horizon average-cost problems we subtract the mean of v after each
iteration (after convergence this mean is the average cost).

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 9 / 21



Convergence of value iteration

The Bellman equation for v� has a unique solution (corresponding to the
optimal cost-to-go) and value iteration converges to it. In the first exit and
average cost problems some additional assumptions are needed:

First exit: the algorithm converges to the unique optimal solution if there
exists a policy with non-zero probability of termination starting from
every state, and every infinitely long trajectory has infinite cost.

Finite horizon: the algorithm always converges in N steps to the unique
optimal solution.

Infinite horizon discounted cost: the algorithm always converges to the
unique optimal solution, i.e. the unique fixed point of v = T [v], because
the operator T is a contraction mapping (see below).

Infinite horizon average cost: the algorithm converges to the unique
optimal solution if every state can be reached from every other state (in
finite time with non-zero probability) for some policy – which may
depend on the pair of states.

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 10 / 21



Contraction mapping in discounted problems

Theorem (properties of T)
monotonicity v (x) � v0 (x) , 8x =) T [v (�)] (x) � T [v0 (�)] (x)
additivity T [v (�) + d] (x) = T [v (�)] (x) + αd

α-contraction maxx jT [v (�)] (x)� T [v0 (�)] (x)j � α maxx jv (x)� v0 (x)j

Proof.
[Proof of α-contraction] Let d = maxx jv (x)� v0 (x)j. Then

v (x)� d � v0 (x) � v (x) + d, 8x

Apply T to both sides and use monotonicity and additivity:

T [v (�)] (x)� αd � T
�
v0 (�)

�
(x) � T [v (�)] (x) + αd, 8x

Therefore jT [v (�)] (x)� T [v0 (�)] (x)j � αd, 8x

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 11 / 21



Policy iteration

Given π and vπ , we can improve the policy by choosing the action for which
the Hamiltonian (i.e. the immediate cost plus the cost-to-go under π at the
resulting next state) is minimal. The improvement can be made
synchronously for all states:

Algorithm (policy iteration)

π(n+1) (x) = arg minu2U (x) H
h
x, u, vπ(n) (�)

i

The initialization π(0) can be arbitrary as long as the resulting vπ(0) is finite (which is
not always the case in first-exit problems).

Policy iteration always converges in a finite number of steps. This is because
the number of different policies is finite (the state and control spaces are
finite), and the algorithm cannot cycle since each iteration is an improvement.

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 12 / 21



Linear programming approach
We can relax the Bellman equation

v (x) = minu2U (x)
n
` (x, u) + α ∑x0 p

�
x0jx, u

�
v
�
x0
�o

, 8x

by replacing it with the set of linear inequality constraints

v (x) � ` (x, u) + α ∑x0 p
�
x0jx, u

�
v
�
x0
�

, 8 (x, u) (constraints)

Now v� is the maximal (at each state) function which satisfies all constraints,
thus it can be found as

Algorithm (linear programming)
maxv(�) ∑x v (x) s.t. (constraints)

In the infinite-horizon average-cost formulation this becomes

maxc, ev(�) c

s.t. c+ ev (x) � ` (x, u) +∑x0 p (x0jx, u)ev (x0) , 8 (x, u) and ∑x ev (x) = 0

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 13 / 21



Example

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 14 / 21



Example continued

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 15 / 21



Matlab: value iteration

[P, L, isgoal] = makeMDP;
[nx, nu] = size(L);
while 1,

for iu = 1:nu
H(:,iu) = L(:,iu) + alpha*P(:,:,iu)*v;

end
vold = v;
[v, policy] = min(H,[],2);
if average,

c = mean(v);
v = v - c;

elseif firstexit,
v(isgoal) = 0;

end
if max(abs(v-vold))<tol,

break;
end

end

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 16 / 21



Matlab: policy iteration

while 1,
vold = v;
for ix = 1:nx

PP(ix,:) = P(ix,:,policy(ix));
LL(ix) = L(ix,policy(ix));

end
if discounted,

v = (eye(nx)-alpha*PP)nLL;
elseif average,

tmp = [eye(nx)-PP, ones(nx,1); ones(1,nx), 0]n[LL; 0];
v = tmp(1:nx);
c = tmp(end);

elseif firstexit,
v(~isgoal) = (eye(sum(~isgoal)) - ...

PP(~isgoal,~isgoal)) n L(~isgoal);
v(isgoal) = 0;

end

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 17 / 21



Matlab: policy iteration 2

...

for iu = 1:nu
H(:,iu) = L(:,iu) + alpha*P(:,:,iu)*v;

end

[v, policy] = min(H,[],2);
if max(abs(v-vold))<tol,

break;
end

end

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 18 / 21



Matlab: linear programming

% min f�*v s.t. A*v<=b, Aeq*v=beq
if discounted,

f = -ones(nx,1);
A = ones(nx*nu,nx);
b = L(:);

elseif average,
f = [zeros(nx,1); -1];
A = ones(nx*nu,nx+1);
b = L(:);
Aeq = [ones(1,nx), 0];
beq = 0;

elseif firstexit,
nn = sum(~isgoal);
f = -ones(nn,1);
A = ones(nn*nu,nx);
tmp = L(~isgoal,:);
b = tmp(:);

end

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 19 / 21



Matlab: linear programming 2

...

% fill A matrix

ic = 1;
for iu = 1:nu

for ix = 1:nx
if ~(isgoal(ix) && firstexit),

A(ic,1:nx) = -alpha*P(ix,:,iu);
A(ic,ix) = 1-alpha*P(ix,ix,iu);
ic = ic+1;

end
end

end

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 20 / 21



Matlab: linear programming 3

...

% run linprog

if discounted,
v = linprog(f,A,b);

elseif average,
tmp = linprog(f,A,b,Aeq,beq);
v = tmp(1:nx);
c = tmp(end);

elseif firstexit,
A = A(:,~isgoal);
tmp = linprog(f,A,b);
v(~isgoal) = tmp;
v(isgoal) = 0;

end

Emo Todorov (UW) AMATH/CSE 579 Winter 2014 21 / 21


	MDP
	Intuition
	First exit
	Finite horizon
	Discounted
	Average cost
	Policy evaluation
	Value iteration
	Convergence of value iteration
	Contraction mapping
	Policy iteration
	Linear programming approach
	Example
	Example continued
	Matlab: value iteration
	Matlab: policy iteration
	Matlab: policy iteration 2
	Matlab: linear programming
	Matlab: linear programming 2
	Matlab: linear programming 3

