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Probabilistic Inference of Multijoint Movements,
Skeletal Parameters and Marker Attachments
From Diverse Motion Capture Data

Emanuel Todorov

Abstract—This paper describes a comprehensive solution to the
problem of reconstructing the multijoint movement trajectories of
the human body from diverse motion capture data. The problem is
formulated in a probabilistic framework so as to handle multiple
and unavoidable sources of uncertainty: sensor noise, soft tissue
deformation and marker slip, inaccurate marker placement and
limb measurement, and missing data due to occlusions. All un-
known quantities are treated as state variables even though some
of them are constant. In this way, state estimation and system
identification can be performed simultaneously, obtaining not
only the most likely values but also the confidence intervals of
the joint angles, skeletal parameters, and marker positions and
orientations relative to the limb segments. The inference method is
a Gauss—Newton generalization of the extended Kalman filter. It
is adapted to the kinematic domain by expressing spatial rotations
via quaternions and computing the sensor residuals and their
Jacobians analytically. The ultimate goal of this project is to
provide a reliable data analysis tool used in practice. The software
implementation is available online.

Index Terms—Extended Kalman filter, kinematics, motion cap-
ture, probabilistic inference, quaternion, self-calibration.

1. INTRODUCTION

HE need to reconstruct the multijoint movements of
Tthe human body arises in a number of fields including
motor control and biomechanics, sports, ergonomics, phys-
ical medicine and rehabilitation, and computer animation.
Motion capture devices that measure the position and orien-
tation of markers attached to the body have become widely
available. However, the data analysis methods and software
tools lag behind these hardware advances. While a lot has
been accomplished [1]-[10], estimating the configuration of
a multiarticulate body to which markers are nonrigidly and
nonaccurately attached remains a challenge. In particular:

* existing methods do not provide error estimates;

* the requirements for accurate marker placement and limb
measurement are rarely met in practice, despite the pro-
longed setup sessions they lead to;
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* reliance on hardware-specific methods makes it difficult to
utilize new sensor modalities and to use multiple devices
simultaneously;

* most existing methods are tailored to the animation in-
dustry and may not have the accuracy needed for research
and clinical applications.

The aim of this project is to formulate the general motion esti-
mation problem within an appropriate mathematical framework,
develop a systematic approach to solving it numerically, and
provide a software implementation, which avoids the above lim-
itations. The problem of computing joint angles given marker
positions and orientations is sometimes considered to be one
of inverse kinematics. However, this is appropriate only in an
ideal world without uncertainty. In real-world applications un-
certainty must be dealt with, ideally from the very beginning
and not as an afterthought. Thus, it is more appropriate to cast
the problem in the general framework of probabilistic inference.
In this framework, all unknown quantities are treated as latent
variables and any prior knowledge about them is encoded prob-
abilistically. Their relation to the sensor data is captured by a
generative model, which defines the conditional probability of
the data given the latent variables. Probabilistic inference is es-
sentially an inversion of the generative model, but unlike inverse
kinematics it handles uncertainty and makes optimal use of data.

Two types of latent variables will be distinguished: those that
vary over time (joint angles, global position and orientation of
the body) and those that remain constant (limb sizes, axes of
joint rotation, marker placements). Inferring time-varying pa-
rameters from data is called estimation while inferring constant
parameters is called system identification. Despite this tradi-
tional distinction, however, both can be performed simultane-
ously by recursively computing the joint posterior distribution
of all latent variables given the data. An example of such com-
putation is the Kalman filter, which has previously been used
to perform estimation and system identification simultaneously
[11], [12]. Here the system is nonlinear, requiring at least an
extended Kalman filter. The method we develop is more ac-
curate than the extended Kalman filter and involves iterative
Gauss—Newton maximization of the posterior at each time step.
Another extension is our use of an implicit sensor noise model.
This is necessary because the natural representations of 3-D
orientation (unit quaternions and 3 x 3 orthonormal matrices)
are redundant and thus a straightforward noise model would be
degenerate.

A substantial part of the paper is devoted to constructing a
kinematic generative model. This involves computing the ex-
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pected values of the sensor measurements conditional on the
values of the latent variables. Adding Gaussian noise around
the expected values yields the necessary generative model. The
inference method also requires the derivatives of the expected
sensor measurements with respect to the latent variables. The
computation of the corresponding Jacobian matrix is somewhat
elaborate and is described in detail. The kinematic structure is
a tree of rigid segments connected with joints. The joints are
spatial transformations representing either time-varying joint
rotations or fixed relations such as offsets between coordinate
frames. Sensors are identified with virtual segments attached to
the body using joints. In this way every latent variable is a de-
gree of freedom of some joint, which simplifies the derivation
and implementation. 3-D orientations are represented and accu-
mulated using quaternions in order to improve numerical effi-
ciency and accuracy.

The probabilistic framework for motion estimation is devel-
oped in Section II. The kinematic computations underlying the
generative model are presented in Section ITI. Numerical results
on both synthetic and real data are given in Section I'V. Prelim-
inary results were reported in [13].

II. PROBABILISTIC INFERENCE

Let y denote the vector of all sensor measurements avail-
able at sampling time k. Our general formulation applies to any
combination of sensors as long as they output real numbers that
can be stacked into y. It accommodates missing data—which
can be missing due to occlusion of optical markers, or because
some sensors have lower sampling rates and do not provide data
at all times. Calibration data, collected by asking subjects to as-
sume specified postures, is also accommodated. The joint angles
of the specified postures are treated as measurements of virtual
goniometers and are included in yy.

Let x; denote the vector of all latent variables that affect
the sensor data: the global position and orientation of the body,
the joint angles, the joint centers and rotation axes, the sizes of
the limb segments, and the marker placements relative to the
limb segments. Some of these variables vary over time while
others remain constant, but nevertheless need to be estimated.
Derivatives of time-varying quantities can also be included,
which makes it possible to introduce smoothness priors.
Known parameters are implicit in the kinematic model and are
not included in xy; everything included in x;, is automatically
estimated.

Given measurements yj as well as prior information, our
objective is to estimate the most likely states X, and their con-
fidence intervals. Key to such inference problems is a genera-
tive model specifying the probability distribution of the mea-
surement conditional on the state, as well as a dynamics model
specifying the probability distribution of the next state condi-
tional on the current state.

A. Generative Models

The most commonly used generative model is of the form

yie = f(xk) +er, e ~ Ne(0;V) (1)
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where V' is the covariance of the sensor noise €. The noise
is assumed Gaussian, which tends to be a reasonable assump-
tion. The function f(x) is the expected value of y given x, thus
p(y|x) = Ny (f(x); V). In motion capture applications f(x)
corresponds to the forward kinematics.

The standard model (1) turns out to be overly restrictive, be-
cause it implies that the subtraction y — f(x) is a sensible opera-
tion. However, 3-D rotations cannot be represented in a coordi-
nate system where vector addition and subtraction make sense
geometrically (see below). Thus, we introduce a more general
model of the form

r(Yr,Xk) = €r, €x ~Ne(0;V) 2
where r(y,x) is some function playing the role of a residual.
Here p(y|x) is defined implicitly: it is such that r(y, x) has con-
ditional probability density p(r|x) = N;(0; V). Even though
p(r|x) is still Gaussian, a function r(y, x) which is nonlinear in
y will induce a non-Gaussian p(y|x), making (2) more general
than (1). The two models become equivalent in the special case
'(y,x) = y — £(x).

In addition to a generative model of the observations, we
need a model of dynamics to describe how the states vary over
time. In a sense this is another generative model because it
specifies how the next state arises as a function of the current
state. A complete model of dynamics would incorporate mus-
culoskeletal mechanics, muscle force production and statistics
of muscle activations. However, such models have so many un-
known parameters that estimation performance is likely to be
poor, in addition to being computationally inefficient. One can
save a lot of effort and obtain better results by assuming a sim-
plified linear model of the form

Xipt1 = Axp +wi, wi ~ No(0; R). 3)
A linear model affords more efficient computation and is suffi-
cient to capture movement continuity. Continuity allows us to
propagate information through time, and in particular estimate
constant parameters by pooling information from multiple time
frames. It is also useful in estimating time-varying parameters:
given estimate Xj, and estimation error covariance Sy, at time k,
the most likely next state (in the absence of new data) is AXy,
and its covariance is AS, AT + R. This induces a prior over the
unknown state and enables estimation even if some of the sensor
data is missing. Since the estimation algorithm is a form of it-
erative numerical optimization (see below), the prediction AXy,
is further useful in initializing the iteration.

The structure of the dynamics model (3) can be adapted to the
estimation problem at hand without modifying the rest of the
framework. In the simplest model the state vector is partitioned
as x = [x%;xP] where xV contains all constant parameters
while xP contains all time-varying parameters. This superscript
notation was chosen because time-invariant model parameters
(or weights) are usualy denoted w while time-varying positions
are usualy denoted p. The semicolumn notation denotes vertical
stacking (as in Matlab).
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The dynamics of xP are modeled as a random walk. Thus

w LW P _ P p
Xpp1 = Xp,  Xpy = X, Wy “4)

The matrices A, R needed to represent (4) in the form (3) are

0 0
A=1, R:[O RP} )

where RP is the covariance matrix specifying how rapidly the
time-varying parameters are expected to change.

A more sophisticated model, which captures not only the
continuity but also the smoothness of natural movements, can
be obtained by including time-derivatives of xP. Consider the

state vector x = [x%V;xP;xV;x?] where x¥ = dxP/dt and
x® = dxV /dt. Then, the dynamics are
W — W
X1 = Xg
xp = xp + Ax)
Xty =X} + Ax
Xy =X; +wj (©6)

where A is the time step. Here, the movement is driven by the
acceleration change w?®. Such an assumption is equivalent to
imposing a minimum-jerk smoothness prior motivated by the
empirical success of the minimum-jerk model [14], [15].

We have experimented with (6) and found that although the
resulting estimator can be more accurate, it also diverges more
often. This is because errors in the velocity and acceleration
estimates can accumulate, which can cause the next-state
predictions of the sensor positions and orientations to be far
from the correct values, which in turn can cause the optimiza-
tion process to get trapped in local minima. Incorporating
accelerometers and gyroscopes is likely to eliminate this failure
mode (see Section V, Discussion). However, typical motion
capture applications rely on position and orientation sensors, in
which case the simpler model (4) is recommended.

B. Recursive Estimation

The estimation procedure is a generalization of the extended
Kalman filter. At each time step k the probability density of xy,
is approximated with the Gaussians

P(Xely1 .. Yr—1) =Nx(Xi; Pr)
P(Xk|y1 - Yr-1.Yk) = Nx(Xi: Sk)- @)

Nx (Xg; Py) is the prior probability before yy, is observed while
Ny (Xg; Sk) is the posterior probability after yj is observed.
Note that “prior” and “posterior” are used here in a recursive
sense: the posterior at one time step yields the prior at the next
time step.

The estimation procedure is initialized by specifying Xg; So.
The time-varying components of X, should be set to some
intermediate values, and their covariance should be large be-
cause the initial configuration of the body is typically unknown.
Proper initialization of the constant components of X is more
important and should incorporate any available information
about skeletal parameters and marker placements. Setting the
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prior covariance for the constant components is also important.
A small covariance implies that we are very confident in our
guess. If that guess turns out to be inaccurate, the inaccuracies
will persist for a long time even though the sensor data may
contain enough information to correct them. If on the other
hand the initial covariance is large, the estimator will make
large changes on the basis of little data. Problem-dependent
tuning of the initial covariance is likely to be needed. In an ideal
Bayesian world prior knowledge would be quantified precisely,
but in practice the shape of the prior is often used as a control
knob for fine-tuning the Bayesian machinery.

The recursive estimation procedure is now as follows. At time
step k we are given Xy_1, Sx_1, Yx. First we “predict” the prior
X; Py using the dynamics model, and then “correct” it in light
of the new data y, and compute the posterior Xj; Si. This is
known as a predictor-corrector method. For linear-Gaussian dy-
namics of the form (3) the prediction is simple:

Xp = ARj—1, P = ASp_1A" +R. ()

The correction involves two steps: computing the most likely
state X via numerical optimization, and linearizing the obser-
vation model (2) around X}, in order to compute Sy. These two
steps are discussed in turn. Suppressing the time index k, the
residual r has conditional density A (0; V') and the state x has
prior density Ny (X; P). Thus, the joint density is

p(r,x) = p(rlx)p(x) = No(0: V)N (X P).  (9)

The maximum aposteriori (MAP) estimate is the value of x
which maximizes the above expression for given y, x. Max-
imizing p(r,x) is equivalent to minimizing — log(p(r,x)),
which, up to an additive constant, is equal to

0(x) = %r(y7 TV lx(y, x)+ %(x— 2)T P (x—%). (10)

The function ¢(x) plays the role of a cost function. The first term
encourages small residual (explaining the sensor data) while the
second term encourages staying close to the prior (avoiding mo-
tion discontinuities). This is a nonlinear least squares problem.
The most efficient method for solving such problems is usually
the Gauss—Newton method. It requires computation of the Jaco-
bian matrix

or(y,x
Iy = )
Note that in mathematics “Jacobian” refers to the derivative of
any vector function (in our case the residual). This should not
be confused with the robotics terminology, where “Jacobian”
refers specifically to the derivative of the forward kinematics.
The gradient of the cost function is now

(11

Vix) = J(y,x)"V 'r(y,x) + P H(x—-%).  (12)
Taking another derivative, the Hessian is
Ty —1 -1, 9J -1
Ty %)V (y, %)+ P74+ == x Voie. - (13)
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The last term involves a tensor product because d.J/0x is not
a matrix but rather a tensor with rank 3. The essence of the
Gauss—Newton method is to ignore this term, and define the
approximate Hessian

H(x) = J(y, %)V (y,x) + P~ (14)
This avoids computation of second-order derivatives while still
yielding second-order convergence. Note that if r is a linear
function of x, the second-order derivative 0.J/Jx is zero and
(14) becomes the exact Hessian. Now initialize X = X and min-
imize ¢ via the quasi-Newton iteration

X — X - HEX) V). (15)
The term P~! in (14) makes H invertible even for .J = 0. Our
implementation also includes line-search to ensure stability.

Note that both the Kalman filter and the extended Kalman
filter are special cases corresponding to the first iteration of (15).
When r is linear in x, the cost function £(x) is quadratic and
(15) converges in one iteration which coincides with the Kalman
filter. In nonlinear problems, the extended Kalman filter still
uses a single iteration even though additional iterations can im-
prove accuracy. Our method iterates for as long as time permits
or until convergence. This yields an adaptive procedure, which
is as efficient as the extended Kalman filter when X is close to
the minimum of #(x) but is more accurate (albeit slower) in less
favorable conditions.

Once £ has been optimized and X has been found, the ap-
proximate posterior covariance S is simply the inverse of the
approximate Hessian H evaluated at X:

S =H(x)™". (16)
This follows from the form of the multivariate Gaussian.

The sensor noise covariance V' can also be estimated. The
standard method is the expectation—maximization (EM) algo-
rithm [16], [17] which iterates between computing the sequence
X and setting V' to the covariance of the residuals

n

V= -~ Zr(Yk,/ik)r(Yk;ﬁk)T~
=1

a7)

The mean of r is not subtracted because the noise model is
zero-mean. EM is an offline algorithm, however it can also be
implemented online via the following recursion:

Vi = (1= ) Vi1 + mer (i, Xe)r(ye, %) " (18)

If the computation of Xj, and r were not affected by V' and the
learning rate 7 decayed as 7, = k!, the online version would
yield exactly the same result as the batch version. In online ap-
plications it may be advantageous to use learning rates which
decay slower than k!, so as to avoid premature convergence
to local minima. Note that estimation of V' is different from es-
timation of x because the uncertainty about V' is ignored. One
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(b) (©)

Fig. 1. Examples of unobservable systems. Suppose the room is dark and the
kinematic mechanisms cannot be seen. Only the lanterns (denoting 3-D posi-
tion-and-orientation sensors) are visible. In these examples, the motion of the
lantern is insufficient to infer the motion (a) or structure (b,c) of the underlying
mechanism. (a) The joints (dots) can rotate without affecting the position and
orientation of the last link where the sensor is rigidly attached. (b, ¢) Pairs of
mechanisms (solid versus dashed lines) such that any feasible motion of the
sensor could have resulted from either mechanism.

could represent the latter via a Wishart distribution, however it
is not clear if the resulting improvement would justify the added
complexity.

C. Observability

A system is observable if the sensor data contains enough
information to infer the state variables. Observability is usually
analyzed in the limit of zero sensor noise. Even then, a system
can be unobservable for a number of reasons. The most obvious
reason is having fewer measurements than state variables.
However, counting is not always sufficient to determine observ-
ability. Consider the example in Fig. 1(a) with four joint angles
and one 3-D position-and-orientation sensor. Such a sensor
would normally provide six independent measurements, but
here only three of the measurements are independent due to the
planar geometry. Instead of counting, one should ask a more
general question: Can the state variables be modified without
affecting the sensor data? If so, the system is unobservable
from the viewpoint of estimation (we consider system id later).

The mathematical answer to the above question is
well-known for linear systems of the form

Xpt1 = AXp + W, Y = Oxp + Ui (19)
Suppose the noise terms wy,, v, are negligibly small and let the
state vector Xy, have dimensionality d. The system is observable

if and only if the observability matrix

O =[C;CA;...;CA Y (20)
has rank d, that is, it has full column rank. This is because in the
small-noise limit the observations are

Vi Yhtts-- 3 Yitd—1] = OXp. (2D

The rank condition is equivalent to saying that every change in
the state causes some change in future observations. Only the
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first d observations are relevant because for all n >= d the
matrix A™ is a linear combination of A4, ... A4~

This classic result is not applicable here because the measure-
ments are nonlinear. Also, our dynamics model A = I effec-
tively reduces the observability matrix to O = C' and makes the
above condition trivial. Nevertheless the main ideas behind the
classic result can be generalized, as follows. Ignore the obser-
vation noise, the dynamics model and the issue of local minima,
and suppose we are given a collection of noiseless measure-
ments and our state estimates happen to be correct—in which
case all residuals are zero. If the system is observable, it should
be impossible to perturb the estimates while keeping the resid-
uals equal to zero. Thus, the issue of observability comes down
to sensitivity of the residuals with respect to changes in the state
variables. This suggests looking at the Jacobian matrix, which
will now be partitioned as

Or(y, Xp) Or(ye, Xx)

— w TP] _

(22)

The system is observable for estimation purposes if and only if
JP has full column rank for all k. This resembles the classic re-
sult with A = I and C corresponding to J» , except that here the
measurements are nonlinear and so the Jacobian is state-depen-
dent. Once a generative model is constructed, this observability
condition can be checked numerically by generating a database
of random states, predicting the sensor measurements, evalu-
ating the matrices J; and computing their rank. The size n of
this database should be larger than the number of measurements
or state variables.

Next consider observability from the viewpoint of system
identification. Fig. 1(b), (c) gives examples where the system
identification problem cannot be solved even though the state
estimation problem is solvable. Counting is again insufficient
and one needs sensitivity analysis. However, the situation here
is more complex. Looking at J; alone can be misleading, be-
cause the constant parameters x* are estimated using data from
all time steps and so the system may be observable even if all .J}¥
are singular. Suppose that the filter yielding time-varying esti-
mates X} is replaced with a batch method yielding a single esti-
mate XV. Let X denote an arbitrary small perturbation to X%
Can such a perturbation leave all residuals at all time steps un-
changed? Although the perturbation is likely to change at least
some of the predicted sensor measurements, it may be possible
to cancel those changes by appropriate perturbations 6X}, to the
estimates of the time-varying parameters. This reasoning yields
the following condition. The model is observable for system
identification purposes if and only if vectors X" # 0 and 6X%
satisfying

TWERY 4+ JP6RY = k=1...n (23)

cannot be found. This reduces to a matrix rank condition as
follows. The n equations (23) are equivalent to

M 6%V %55 ... 6%XP;6X%] =0 (24)

1931

where the extended observability matrix M is

gy Ty
JP Jy o5)
Jp W

n

Observability as defined above is equivalent to the matrix M
having full column rank. That matrix is normally large, but it is
also sparse which can be taken advantage of, as follows. Con-
struct the symmetric positive semi-definite matrix M ' M, which
is also sparse, and look for its smallest eigenvalue using a sparse
eigensolver. The smallest eigenvalue of MTM is zero if and
only if M is column-rank defficient. The number of eigenvalues
which are numerically indistinguishable from zero equals the
dimensionality of the null-space. This yields our numerical test
for observability.

III. KINEMATICS

The above estimation procedure is straightforward as long as
the residuals r(yy, xy) and Jacobians J(y, X)) can be com-
puted. Here we describe a kinematic modeling approach which
is sufficiently general and yet allows efficient computation of r
and J. In the remainder of this section we focus on a single time
step and drop the time index k.

The simplest sensor, which does not require forward kine-
matics computation, is a joint angle sensor or goniometer. Its
predicted output is the linear function a + bf where 6 is the
joint angle being measured, « is the offset and b is the gain. The
scalars a, b, f are part of the state vector x, in particular a, b
are part of x% and 6 is part of xP. The goniometer’s output y
and residual r are part of the measurement vector y and residual
vector r(y, x), respectively. Then

r=y—a-—bl. (26)
The goniometer’s Jacobian, which is part of the Jacobian matrix
J(y,x), has elements

or or ar b

da o T 099
If the parameters a, b are known and do not need to be estimated,
they become implicit in the kinematic model and are omitted
from x. This is the case when a virtual goniometer is used to
specify calibration data: since the instructed joint angles which
subjects were attempting to produce are known, they can be en-
tered directly in the vector y and the parameters can be set to
a=0b=1.

The other two sensor types, discussed in detail below, are 3-D
position and orientation sensors. These are the sensors most
commonly used in applications. Some motion capture devices
(usually optical) measure only position, while others (usually
electromagnetic) measure both position and orientation. One
could also use magnetometers which only measure orientation.
When both position and orientation data are available, they
will be treated as being generated by independent sensors.

27)
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Our framework allows any combination of such sensors to be
used simultaneously. In case of missing sensor data, the corre-
sponding elements of y, r, J are removed and the estimation
procedure remains formally identical.

A. Kinematic Modeling

The body is assumed to have the topology of a tree which is
composed of segments connected with joints. Each segment is
associated with a 3-D coordinate frame. The joints are spatial
transformations which determine the position and orientation
of each frame relative to the frame of the parent segment. Here
“segments” and “joints” refer not only to limb segments and
anatomical joints but also to other entities with the same kine-
matic properties. Any spatial transformation between a parent
and a child frame is called “joint” even if it is constant. For ex-
ample, forearm length is the parameter of a sliding joint which
translates the frame from the elbow to the wrist. Segments can
also have nonanatomical meaning: a virtual segment is created
for every sensor attached to the body. The sensor’s position and
orientation relative to the underlying limb segment are described
by the joint parameters, while the sensor’s expected measure-
ment corresponds to the position (respectively orientation) of
the virtual segment’s frame.

Kinematic trees are constructed by connecting segments with
joints. The allowed types of joints are chosen so as to achieve
a balance between expressive power and ease of derivation as
well as implementation. We define four types of joints as shown
in the table at the bottom of the page.

Joints of type T correspond to arbitrary 3-D translation of
the child frame relative to the parent frame. They have three
parameters (included in the state vector x) which specify the
translation vector. Joints of type R correspond to arbitrary 3-D
rotation. They have three parameters specifying an “angle-axis”
vector. The length of that vector is the rotation angle while its di-
rection is the rotation axis. Joints of type S correspond to sliding
in a predefined direction. They have one parameter specifying
the sliding distance. The direction is given by a unit vector which
is implicit in the kinematic model and is not part of the state
vector. Finally, joints of type H correspond to rotation around
a predefined axis. They have one parameter specifying the rota-
tion angle. The rotation axis is given by a unit vector implicit in
the kinematic model.

A simple example illustrating the use of these joint types is
given in Fig. 2. A rigid body rotates within the x—y plane around
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(b) global frame

rotation by o

body frame

translation by d

sensor frame
before O-rotation

rotation by 0

sensor frame

Fig.2. (a)Simple example of a kinematic mechanism and (b) its corresponding
kinematic tree. See text for details.

the z axis. The rotation angle is a. A 3-D position-and-orienta-
tion sensor is mounted on the body, at a distance d from the pivot
point on the x axis of the body (dashed). The sensor is rotated by
an angle # around the y axis of the body. Thus, the state vector is
3-D: x = [d;6; a]. The measurement vector y is 7-D and con-
tains the 3-D position followed by a quaternion specifying the
3-D orientation. The residual vector r is only 6-D because ori-
entation errors are expressed in the same format as the R-type
joint. Thus, the Jacobian J is a 6 X 3 matrix.

The corresponding kinematic tree is shown in Fig. 2(b).
Rectangles denote segments/frames while circles denote
joints/transformations. Each child segment is connected to its
parent segment with a joint specifying the spatial transforma-
tion between the parent and child frames. Joints are labeled
with their type. Sliding and hinge joints (S and H) are indexed
with the coordinate axis serving as their predefined direction. In
general this direction does not have to coincide with one of the
coordinate axes of the parent frame, however such generality
is not necessary here. Shaded circles correspond to constant
transformations (part of x*) while empty circles corresponds
to time-varying transformations (part of xP). Rectangles with
heavy outlines denote frames whose position or orientation are
being measured by 3-D sensors. Note that a single sensor is
represented with two virtual segments—one for the position
measurement and another for the orientation measurement. The
position measurement depends on d but not on 6, thus it can
be taken before the rotation by 6. In this way we avoid dummy
segments and keep the number of sensor types to a minimum.

joint type

T (translation)
R (rotation)

S (sliding)

H (hinge)

description
translation in any direction 3
rotation around any axis 3
translation in predefined direction 1

1

rotation around predefined axis
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Fig. 3. Schematic illustration of the relations between spatial frames. Super-
scripts indicate the frame with respect to which the quantity is measured. Sub-
scripts indicate the frame being described by the quantity.

B. Forward Kinematics

The segments in the kinematic tree are enumerated in depth-
first order. The root segment is 0 and the remaining segments
satisfy pa(s) < s where pa(s) is the parent of s. Each segment
s has an associated frame with position p, € R® and orienta-
tion Qs € SO(3) measured relative to the global (root) frame
Po = 0, Qo = I. Recall that SO(3) denotes the set of 3 x 3
orthonormal matrices which parameterize the space of 3-D rota-
tions. Composition of 3-D rotations corresponds to matrix mul-
tiplication in SO(3). The inverse rotation is Q7' = Q!. The
columns of () are the unit vectors specifying the axes of frame
s relative to the global frame. The relations between frames are
illustrated in Fig. 3.

Throughout this section we use the following indexing no-
tation. p} refers to a quantity (position in this case) which is
measured relative to frame n and is a feature of frame s. When
the superscript is zero it can be omitted, thus p; is a shortcut for
p". The vector composed of all elements of x specific to frame
s is denoted x ;. This notation is defined only for the “com-
posite” vectors X, y, r. For example, if s is the virtual segment
corresponding to a goniometer then Xy, is the vector [a; b; 0]
described earlier. Jy, ,,) denotes the corresponding sub-matrix
of the Jacobian. [z]2.4 denotes the vector composed of elements
2,3,4 of z. If the argument is a matrix, as in [Z]s.4, this notation
refers to the matrix composed of rows 2,3,4 of Z.

We now return to the construction of the kinematic model.
The joint connecting segments s and pa(s) specifies where
frame s is relative to frame pa(s). The parameters x ) define
a translation t(x,y) € R* and a rotation U(x(,;) € SO(3) of
frame s relative to its parent frame pa(s)

p]sm,(s) —t (X{s}) 7 Q;S)G(S) =U (X{S}) . (28)
Therefore, frames s and pa(s) are related as
Ps = Ppa(s) + QPG(S)t (X{S})
QS :Qpa(s)U (X{s}) . (29)

Given vectors x(} and functions t, U we can apply (29) for all
s in increasing order and obtain all ps, (5. At the end of this
computation we have the global positions and orientations of all
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frames. The functions t, U and their parameters x; depend on
the joint types and will be defined later.

Although (29) is mathematically correct, it is not the best
way to implement forward kinematics. For a long sequence of
matrix multiplications numerical errors tend to accumulate and
make the result nonorthonormal. Instead it is better to replace
the matrices (), U with the corresponding quaternions q, u and
to accumulate 3-D rotations via quaternion multiplication. To
this end, let us review the relevant properties of quaternions. A
unit quaternion q € R* with elements

Q e .o e
q = |cos —;v1 Sin —; Vg sin —; g sin —

2 2 2 2
= [cos %; vsin %} (30)

represents 3-D rotation by an angle « around the axis given by
the unit vector v = [vy; v2; v3]. The zero rotation corresponds to
q = [1;0; 0; 0]. Rotation opposite to q is given by the conjugate
quaternion q with elements

q = [q1;—q2; —q3; —qa). (31)

The vector q defined in (30) is a unit vector which lies on the

surface of the unit sphere S® C R*. Every 3-D rotation can be

represented in this way, so we can transform between S and

SO(3). The matrix @) corresponding to the quaternion q is
2(q294 + q193)
2(q3q4 — q142)

gt — 45 — g3 + di-

ad+a—a3—a  2(q2q3 — q1q4)
2(q2q3 + 194) G -G+ a3 — 4}
2(q2qa — q143) 2(q3q4 + q1q2)

The inverse transformation is

1
n=3 trace(Q) + 1
0 —a g 1
@ 0 —p|=—-(Q-Q7) (32)
—q3 g2 0 N

Composition of 3-D rotations corresponds to quaternion multi-
plication. If q and u are two quaternions, their product q * u in
component form is

q1U1 — q2U2 — q3U3 — q4U4
q1u2 + q2u1 + q3Us — qau3
q1u3 — ga2Ua + g3ty + qalz
q1u4 + q2u3 — q3u2 + qau

q*xu= (33)

The conjugate quaternion plays the role of an inverse under
quaternion multiplication. Similarly to the matrix identity
(QU)~! = U=tQ~1, here we have

qrxu=ux*xq. (34)
A vector t € R? can be rotated via matrix multiplication, or
alternatively via quaternion multiplication as follows. If q is the
quaternion corresponding to (), then

Qt = [q* t * 2 (35)
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where the augmented vector t is defined as

t = [0;t]. (36)
This completes our review of quaternions. The forward kine-
matics (29) can now be expressed in quaternion form

Ps = Ppa(s) + [qpa(s) * 'E (X{S}) * qpa(s):| 9.4

Qs =dpa(s) ¥ U (X{s}) - (37)

This form not only allows more efficient and accurate numerical
computation, but also facilitates the derivation of formulas for
the Jacobians as shown below.

C. Position and Orientation Sensors

Once the forward kinematics are computed, it is straightfor-
ward to compute the residuals for 3-D position and orientation
sensors. Let s be a virtual segment for a position sensor whose
measurement is y 5y € R3. The measurement predicted by the
generative model is the frame’s position ps. Thus, the residual
vector rygy € R? is defined as

r{s:pos} = y{@} — Ps- (38)
The notation s : pos serves to remind us that s is a position
sensor and disambiguates from (39) below.

Next, let s be a virtual segment for an orientation sensor
whose measurement is y(;) € R*. The predicted measure-
ment is the frame’s orientation qs. Since both y .} and q5 are
real-valued vectors with the same dimensionality, one may be
tempted to subtract them and define the residual as y ;) — qs.
However, this does not make sense geometrically, and in prac-
tice leads to poor estimation performance. The problem is that
the length of the above vector depends not only on the magni-
tude of the orientation error but also on the coordinate frame
in which y(;; and qs are expressed. Ideally the length of the
residual vector would be fully determined by the amount of ro-
tation o needed to align the 3-D orientations y .} and q. This
alignment operation can be expressed as a quaternion z which
satisfies qs * z = y{,}. The solution is z = q, * y}. From
(30) we see that the last three elements of a unit quaternion
form a vector with length sin(«/2) independent of the coordi-
nate system. Thus, we define the orientation residual ris) € R3
as the last three elements of the vector z

T'{s:orient} = 2 I:GQ * Y{s}] 2.4 " (39
For small orientation error « this yields
ey = ZSiH% ~ a. (40)

For large « the function 2sin(«/2) saturates, making the esti-
mator robust to orientation outliers. Robustness with respect to
position outliers can also be incorporated. For example, one can
apply the nonlinear transformation ¢ tanh(r;/c¢) to the elements
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r; of the position residual defined in (38). The constant ¢ > 0
sets the amount of saturation.

Given the position and orientation residuals (38), (39), the Ja-
cobians can be computed by differentiating with respect to all
the state variables. Let s be a virtual segment for either a posi-
tion or an orientation sensor, and n be any other segment. As
before, let X,,) denote the part of the state vector x which pa-
rameterizes the 3-D translation t(xy,) and quaternion rotation
u(xyyy) of frame n relative to its parent pa(n). Our goal is to
compute the matrix

_ Orgsy
T vy
_ Oy Ot(xm) O Oulxgm) )
O (x(y) 0%y Ou(xgny)  OXpm)

The terms 9t /9% and du/9dx depend on the joint type and will
be described in the next section. Here we only describe the com-
putation of dr/9dt and Or/du. If n is not an ancestor of s, that
is, n is not in the path from s to the root of the tree, then r{)
does not depend on X} and we have Jy; ;3 = 0. Thus, we
only need to compute Jy, )y when n is an ancestor of s. Algo-
rithmically, all ancestors of s can be found by initializing n = s
and iterating n < pa(n) until n = 0.

Computing the partial derivatives of r with respect to t is
straightforward. Translation t of frame n affects the position of
frame s but not its orientation. Therefore, when s is an orienta-
tion sensor, we have

ar{s:oriont} o

—o. (42)
9t (x(ny)

When s is a position sensor, its predicted measurement p; is
affected by xy,} via translation by Qpq(n)t(X(,}). Since ps
appears with a negative sign in the residual (38), we have

(43)

Computing the partial derivatives of r with respect to u is
more complicated. First, let s be an orientation sensor. From
(37), the predicted measurement is

Qs = Qn * Q% = Qpa(n) * U (X(n)) * Q5 (44)
and so the orientation residual (39) can be written as
s} =2 [G? W (X{n)) * Tpan) * Y{s}} byt G
Then, the derivative is
81‘{S'oricnt} ou
— = =2 |qQ'*x—xq s . 46
ou (X{n}) q, * ou * qpa(n) * Y{ } vis ( )

This notation means that we treat each column of the 4 x 4 ma-
trix Ju/0du as a quaternion, apply the rules of quaternion mul-
tiplication, assemble the four resulting quaternions into another
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4 x 4 matrix, and keep the last three rows. From the definition
of the quaternion conjugate it follows that 9u/du is a diagonal
matrix with elements (1, —1, —1, —1).

Finally, let s be a position sensor. Its predicted measurement
can be written as

Ps = Pn + [An * PY * Tyl 47)
Q» depends on u(x,}) as in (37), thus the derivative is
Or{spos) ou _,
Ju () (X{n}) = — |9pa(n) * ou *Ps *¥qy,
+qn * Py * g—z * Qpa(n) " (48)

This notation is the same as in (46), the summation is performed
element-wise, and du/du = 1.

D. Joint Types

Here we define the translation and rotation functions t (X, ),
u(xy,y) as well as their parameterizations x,,y, and compute
the derivatives 0t /0x and Ju/9x. Note that for joints of type
T or S, there is no rotation, so u = [1; 0; 0; 0]. For joints of type
R or H there is no translation, so t = [0;0;0].

For joints of type T, the parameterization X, € R3 is a
vector specifying the translation directly

9t (x(ny)

=1
0X{n}

t (X(n1y) = X(n} 49)

For joints of type S, x(,,; € R is a scalar specifying the
sliding distance. The sliding direction is given by a joint-specific
unit vector v measured relative to frame pa(n). It is an implicit
parameter of the kinematic model and is not included in the state
vector. Thus, the translation and its derivative are

8t(xn)
thﬁZ%W7—&iL=V

(50)

For joints of type H, x¢,3; € R is a scalar specifying the
rotation angle. The rotation axis is given by a joint-specific unit
vector v. From the quaternion definition (30), we have

u (X{n:H}) = [COS X{;} ;v sin %]
M = {—lsm X{n},EVCOS ﬁ} - 5D
0X () 2 2 2 2

For joints of type R, x(,} € R3 is a vector specifying both
the rotation angle and the rotation axis. In particular, the rotation
angle is o = ||x,} || and the rotation axis is given by the unit
vector X1 /. The transformation from this angle-axis vector
X{n} to the corresponding quaternion u(x{n}) is called the ex-
ponential map. It has a number of appealing properties [18],
which is why we have chosen it to parameterize arbitrary 3-D
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rotations. One can verify that the exponential map and its deriva-
tive are

u (x{n:R}) = [cos %;x{n}s(a)}

Ou (X(n}) s(a)
Coxpy [‘TXE}% c(@)X(nyX{,y + s(a)l} (52)

where the shortcuts s(«), ¢(«) are defined as

s(a) = ésin %, cla) = % (% COS% — s(a)> . (53)

The functions s(«) and ¢(«) involve division by « and cannot
be computed directly when « is very small. Nevertheless they
are well-behaved in the limit « — 0 and can be approximated
via a Taylor series expansion. Using the fact that

o’ o’

oo o 7
sina =a - — +120+0(a)
(YZ Ol4
=1-2 4+ 2 6 4
cos o 5 +24+0(a) (54)
the Taylor series expansions of s(«) and ¢(«) are
1 a? 4
s(a) 5T’ T o(a”)
1 a? 4
R B . 55
c(a) 24-i-960-i-0(oz) (55)

This completes the computation of the residual vector r(y, x)
and the Jacobian matrix J(y, x) given the state vector x and the
measurement vector y.

IV. SIMULATION RESULTS

We now illustrate the numerical accuracy of the above es-
timation method with three examples. The first example uses
synthetic data, obtained by simulating the noisy outputs of 3-D
position-and-orientation sensors attached to a simulated kine-
matic chain. The second example uses real data from two elec-
tromagnetic sensors (Polhemus Liberty), which are attached to
the forearm and hand, and measure 3-D position and orienta-
tion. The third example uses real data from 14 optical sensors
(Vicon), which are attached to the hand and fingers and only
measure 3-D position. The Matlab code used to generate these
numerical results is part of the software package.

A. Synthetic Movement

The simulated body [Fig. 4(a)] has 3 links connected with
2 hinge joints with orthogonal axes. Simulated 3-D position-
and-orientation sensors are attached to links 1 and 3. The kine-
matic tree is shown in Fig. 4(b). The convention is the same as
in Fig. 2. There are ten segments and nine joints in the tree even
though the body only has three physical links and two physical
joints. The extra segments correspond to the sensors (denoted
with thick outlines), the root (which is the stationary global
frame), and to dummy segments needed to construct more com-
plex joints from the primitive joint types defined above. As be-
fore, position and orientation measurements are modeled with
separate virtual segments. Note that the sensor data contains
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sensor 1

sensor 2

position of link 1

dummy segment needed to
create universal joint

orientation of link 1

angle between link 1 and link 2

length of link 2

dummy segment needed to
concatenate transformations

angle between link 2 and link 3

Fig. 4. Illustration of the model used in the synthetic example. (a) The kine-
matic mechanism. (b) The corresponding kinematic tree. Same convention as in
Fig. 2.

no information about the lengths of links 1 and 3 and so these
lengths are not estimated (otherwise the model would be unob-
servable). Instead we estimate the distances from the sensors to
the axes of the hinge joints, assuming the sensors are attached
on the long (x) axis of the corresponding links. We use a 7" and
an R joint to connect the root to the rest of the tree. This yields
a universal joint allowing the body to have any global position
and orientation. There are four time-varying joints (empty cir-
cles) and five fixed joints (gray circles) with a total of 8 and 9
degrees of freedom, respectively. Thus, the state vector is 17-D.

Synthetic sensor data were generated as follows. The
time-varying degrees of freedom were set to low-pass-filtered
white noise sequences with smoothness similar to human
movement. The constant degrees of freedom were fixed to
prespecified values. The expected values of the sensor mea-
surements given the state variables were computed using the
generative model. White Gaussian noise was then added, with
standard deviation similar to estimates obtained from real data
below (2-mm position and 2-deg orientation). Quaternion data
was renormalized to unit length. Fifty sequences of sensor
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Fig. 5. Results on synthetic data. (a) The estimates of the constant parameters
converge to the correct values on multiple runs. (b) The estimated joint angles
are close to the correct angles. (c) The standard errors computed by the method,
for the constant parameters, agree with the actual estimation errors. (d) The same
holds for the time-varying parameters.

measurements were simulated, each lasting 20 s at a sampling
rate of 20 Hz, and fed into the estimation method. The initial
estimates of the constant parameters were sampled from Gaus-
sians centered around the correct values. The initial estimates
of the time-varying parameters were set to 0. The sensor noise
covariance V' was set to the correct value and was not estimated.

Fig. 5(a) (left) shows how the estimates of the three constant
position parameters (gray S joints) evolved over time. Despite
the initial discrepancy, the estimates converged rapidly to the
correct values. Similar behavior was seen in the estimates of the
angle parameters. The three components of the constant R joint
corresponding to sensor 2 are shown in Fig. 5(a) (right).

In assessing the accuracy of the time-varying parameter es-
timates as well as the magnitude of the residuals, it is impor-
tant to keep in mind that our method has the freedom to make

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 25, 2009 at 05:13 from IEEE Xplore. Restrictions apply.



TODOROV: MULTIJOINT MOVEMENTS, SKELETAL PARAMETERS AND MARKER ATTACHMENTS

—~~
&
o W

'
W

position estimate (cm)
angle estimate (rad)
(=]

(=]

10 20 0 10 20
time (sec)

~
o
~

estimated observed

~
(=]

pos. (cm)

-0.8 I 1 I |
0 5 10 15 20

time (sec)

Fig. 6. Results on wrist movement data. (a) Estimates of the constant parame-
ters on five runs with different motion sequences. (b) Comparison of estimated
and observed sensor data; one position reading and one orientation reading are
shown.

all residuals zero—by rapidly adjusting the constant parame-
ters. The latter is of course discouraged by the dynamics model
prior, and indeed we see in Fig. 5(a) that the estimates of the
constant parameters do not change once they converge. Nev-
ertheless this is a serious concern, because if the method gets
trapped in a local minimum it may choose to violate the prior in
order to explain the sensor data. Thus, a conservative assessment
would use fixed estimates of the constant parameters. Here and
in the remaining examples, we run the method once to obtain
the fixed estimates and then run it again to assess performance
on time-varying quantities. This is how Figs. 5(b), 6(b), 7(a) are
generated. In Fig. 5(b), we see accurate estimation of the two
hinge joint angles.

Next, we assess the accuracy of the confidence intervals or
standard errors, defined as the square roots of the diagonal terms
in the posterior covariance matrix. The thin lines in Fig. 5(c)
show the standard errors computed by our method for the con-
stant parameters. Results are averaged over all positional (top)
and angular (bottom) parameters. The thick lines show the cor-
rect standard errors. They are obtained by subtracting the cor-
rect from the estimated values of the constant parameters at
each point in time, and computing the standard deviation over
the 50 repetitions. The close correspondence seen in the figure
would be guaranteed for a linear-Gaussian system, but here the
nonlinear relation between latent variables and sensor measure-
ments makes it difficult to derive any theoretical guarantees. Yet
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Fig. 7. Results on hand movement data. (a) Comparison of estimated and ob-
served position of one sensor. (b) Comparison of the estimates of constant pa-
rameters obtained from two runs on different movement sequences. (¢) Graceful
degradation in the face of missing data.

the standard errors computed by our method turn out to be ac-
curate, at least in this example.

Similar accuracy is demonstrated in Fig. 5(d) (albeit in a dif-
ferent format) for the estimates of the time-varying quantities.
Here we divided the actual estimation error at each time step by
the standard error computed by our method, and plotted a his-
togram of the resulting values (thin line). If the calculation of
standard errors was correct, this histogram should be a Gaussian
with mean 0 and variance 1. Such a Gaussian is plotted with a
thick line and indeed matches the histogram.

The results shown in Fig. 5 exclude 8% outlier trials on which
the method diverged. Divergence is easily diagnosed: both the
standard errors and residuals increase over time. This occurs be-
cause of the local minima problem: at each time step we ini-
tialize the minimization process at the previous solution, and
if that solution is poor the next solution also tends to be poor.
The obvious way to alleviate the problem is to restart the min-
imization process multiple times when divergence is detected.
We have not yet implemented this, partly because we did not
encounter such problems on real data.

B. Wrist Movement

Two Polhemus Liberty sensors were attached to the forearm
and hand of one subject, on the dorsal side near the wrist. Each
sensor measured 3-D position and orientation (expressed as a
quaternion) at 60 Hz. The subject performed random arm and
wrist movements. Five data sequences were recorded, each
lasting 20 s. The structure of the kinematic model here is similar
to the synthetic example, except that we now have two physical
links (forearm and hand) connected with two hinge joints. The
joint axes can be nonorthogonal and nonintersecting, therefore
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the distance and angle between them are estimated. The other
estimated parameters are the distances of the sensors from the
wrist and the sensor orientations relative to the limb segments.
This model has eight time-varying parameters and ten constant
parameters, yielding an 18-D state vector.

The estimates of the position parameters from all five runs are
shown in Fig. 6(a) (left). They converge to the same values even
though the motion sequences are very different. The middle
curve corresponds to the distance between the two axes of wrist
rotation. Note that the estimate converges to a positive value,
inducating nonintersecting axes. Fig. 6(a) (right) shows conver-
gences for three of the seven angle parameters.

In a real application there is no way to independently mea-
sure the correct joint angles (which is why synthetic examples
are very useful in assessing the accuracy of such estimation
methods). However, one can compare the observed sensor data
to the predicted sensor data. The difference between the two is
the residual, which we are trying to minimize. Fig. 6(b) shows
one position component and one orientation component of the
data generated by the hand sensor on a typical run. Note the
excellent agreement. As in the previous example, the results in
Fig. 6(b) are computed by first obtaining asymptotic estimates of
the constant parameters and then repeating the procedure while
keeping those estimates fixed.

C. Hand Movement

Fourteen Vicon markers were attached to the dorsal surface
of the hand and fingers of one subject. The markers were dis-
tributed as follows: four on the back of the hand over the index
and middle finger metacarpals, two on each of the proximal and
medial phalanges of the index and middle fingers, and one on
each of the distal phalanges. The kinematic model had seven
physical segments including the hand and the three phalanges
of the index and middle fingers. There were eight hinge joints at
the fingers and one universal joint “connecting” the free-floating
hand to the fixed global frame. The kinematic tree had 30 seg-
ments. The state vector was 61-D and incorporated 14 time-
varying parameters and 47 constant parameters. The latter cor-
responded to the lengths of the proximal and medial phalanges,
the distance between the proximal joints of the index and middle
fingers, and the 3-D positions of the 14 markers relative to the
underlying limb segments. The motion capture data consisted of
two sequences of random hand and finger movements, sampled
at 66 Hz and lasting 1 min each.

Despite the increased model complexity, estimation accuracy
was as high as in the previous examples. Fig. 7(a) compares
observed and estimated data from the position sensor attached
to the distal phalange of the index finger. Note the almost per-
fect agreement. As before, the constant parameters are fixed.
Fig. 7(b) demonstrates that the estimates of the constant parame-
ters converged to similar values on the two runs of the algorithm,
even though the two movement sequences were unrelated. Each
circle in the figure corresponds to one of the 47 parameters; the
horizontal axis is the estimate on the first run, the vertical axis
is the estimate on the second run.

Finally we assessed the impact of missing data, by running the
algorithm on ten additional datasets obtained from the original
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by randomly removing a certain amount of data (5%, 10%, . ..
50%). The data from each sensor at each point in time had equal
probability of being removed. For each new dataset we found the
asymptotic estimates of the constant parameters, fixed them, and
repeated the estimation process to obtain the time-varying pa-
rameters. The latter were used to compute the results in Fig. 7(c).
The dashed line shows the similarity between the state estimates
obtained from the new datasets and those obtained from the orig-
inal dataset. To measure similarity we took the pair of time se-
ries corresponding to each parameter, found the R2? between the
two, and then plotted the median of the R? values over the 14
time-varying parameters. The same procedure was repeated for
the observed and estimated sensor data (42 pairs of time series in
each dataset), and included the data, which were removed when
forming the new datasets. This is possible because our method
yields estimates for all state variables regardless of how much
data are missing, and these estimates can be used to predict the
missing data. The result is shown with the solid line in Fig. 7(c).

V. DISCUSSION

This paper described a probabilistic inference method for
computing movement trajectories, skeletal parameters and
marker attachments from motion capture data. Accurate results
were demonstrated on both synthetic and real data. Direct
comparison to alternative methods is difficult due to the lack
of publicly-available implementations and benchmark datasets.
However, because of the multiple sources of noise inherent in
motion capture applications, we expect our method to outper-
form alternatives, which ignore uncertainty.

Although we focused on position and orientations sensors and
goniometers, other modalities can be incorporated in a similar
fashion. Of particular interest are gyroscopes and accelerome-
ters—which are becoming more compact and less expensive due
to advances in MEMS technology. Such an extension requires
the more elaborate dynamics model (6), as well as differentia-
tion of the segments’ velocities and accelerations with respect
to the joint parameters. The latter may require a finite difference
approximation.

Another extension worth considering is automatic discovery
of correlations between sensor residuals and joint angles. Such
correlations can arise due to soft-tissue deformation. For ex-
ample, consider a sensor attached to the forearm. The rotation
of the skin surface is significantly smaller than the rotation of
the humerus, which results in correlation between the humeral
rotation and the forearm sensor residual. These effects can be
captured by augmenting the definition of sensor residuals with
terms linear in the relevant joint angles. The coefficients of the
extra terms would be inferred in the same way as the other con-
stant parameters. Note that such correlations become explicit
only if the residuals are expressed in the coordinate frame of the
underlying limb segment. Currently all residuals are expressed
in the global coordinate frame, however it is not difficult to
transform them into local coordinates.

A reader familiar with the robotics literature may have no-
ticed the similarity between our kinematic modeling approach
and the Denavit—Hartenberg convention. Indeed our convention
was chosen not because it is the most intuitive one but because it
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facilitates the construction of minimal kinematic models. Min-
imal models are more likely to be observable (although observ-
ability should always be checked). The drawback of this ap-
proach is the nonintuitive nature of the kinematic tree. To aid
the user we plan to develop a high-level description language as
well as a tool for automatic generation of kinematic trees. In the
meantime, the User’s Manual included in the software package
explains the details of our current modeling convention.
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