Tools for the Development of Application-Specific

Virtual Memory Management

Keith Krueger, David Loftesness, Amin Vahdat, and Thomas Anderson
Computer Science Division
University of California

Berkeley, CA 94720

Abstract

While many applications incur few page faults, some
scientific and database applications perform poorly
when running on top of a traditional virtual memory
implementation. To help address this problem, several
systems have been built to allow each program the flex-
ibility to use its own application-specific page replace-
ment policy, in place of the generic policy provided by
the operating system. This has the potential to improve
performance for the class of applications limited by vir-
tual memory behavior; however, to realize this perfor-
mance gain, application developers must re-implement
much of the virtual memory system, a non-trivial pro-
gramming task.

Our goal is to make it easy for programmers to de-
velop new application-specific page replacement poli-
cies. To do this, we have implemented (i) an extensible
object-oriented user-level virtual memory system and
(ii) a graphical performance monitor for virtual mem-
ory behavior. Together, these help the user to identify
problems with an application’s existing paging policy
and to quickly modify the system to fix these problems.
We have used our tools for tuning the virtual memory
performance of several applications; we present one case
study illustrating the benefits and the limitations of our
tools.

This work was supported in part by the National Science
Foundation (CDA-8722788), the Digital Equipment Corpo-
ration, the Xerox Corporation, and the AT&T Foundation.
Anderson was also supported by a National Science Foun-
dation Young Investigator Award. The authors’ e-mail ad-

dresses are keithk/dloft/vahdat/tea@cs.berkeley.edu.

1 Introduction

Recent technological advances have led to very
rapid increases in many areas of computer hard-
ware performance. Processor speed, network band-
width, memory and disk capacity are all improving
at exponential rates. However, not all parts of com-
puter systems are improving so quickly: because of
mechanical limitations, disk latencies have not kept
up with the advances in CPU speeds. On current
hardware, a single disk read can take the equiva-
lent of about one million machine instructions to
service, and this gap is likely to increase in the fu-
ture.

Operating systems have traditionally used vir-
tual memory to help hide the gap between CPU
speed and disk access time [Denning 1980]. Vir-
tual memory provides the illusion of a large, fast
address space for each application, by managing
physical memory as a cache for disk. To exploit
the temporal and spatial locality in the memory ac-
cess patterns of most programs, operating systems
commonly use an approximation of “least recently
used” (LRU) [Levy & Lipman 1982] as the page
replacement policy. This has been remarkably suc-
cessful: applications can be written independent of
the amount of physical memory available to each
job, yet the overhead associated with virtual mem-
ory is not an issue for most programs.

However, some applications can perform ex-
tremely poorly when running on top of virtual
memory — examples include scientific applications,
databases, garbage collected systems, and graphics

programs. These applications all have memory re-
quirements that can exceed the amount of physical
memory on the machine, but they do not display
the locality needed to maintain the illusion that
access to virtual memory is as fast as running di-
rectly on top of physical memory. Worse, this prob-
lem will not improve with time: the performance
of these applications will continue to deteriorate as
the relative performance of disks continues to get
slower.

One possible solution would be to try to develop
a “hero” virtual memory system that performs well
for these programs (see [Hagmann 1992] for an at-
tempt). The difficulty in developing such a system
is that the operating system page replacement pol-
icy must balance the needs of all applications. Any
change that benefits those programs that perform
poorly under LRU may have an adverse effect on
the performance of the vast majority of programs
that do well with LRU, and thus hurt overall sys-
tem performance.

Instead, we consider a different approach, one
which offers near-optimal performance for all pro-
grams. A number of systems have been built
which allow each application to specify its own
application-specific virtual memory policy. The op-
erating system kernel is responsible for allocating
the machine’s physical page frames among compet-
ing jobs; user-level pagers associated with each pro-
gram decide which of the program’s virtual pages
are to be cached in the available physical mem-
ory. Any program which performs well with LRU
can use the system’s default policy; other appli-
cations can use a policy tuned to their specific
needs. Mach [Young et al. 1987, Rashid et al.
1988], V4++ [Harty & Cheriton 1992], and Aper-
tos [Yokote 1992] are all systems that implement
this approach.!

While these systems have the potential for large
improvements in application performance, it can
be difficult for an ordinary application program-
mer to realize the potential performance gain. The

! Apertos takes this notion one step farther: the entire
operating system is reflective; all operating system policy
can, in theory, be made application-specific.

programmer must be able to diagnose the prob-
lem with the default page replacement policy and
then, to change the policy, implement a new virtual
memory system.

In this paper, we describe a toolkit we have
built to make it easy for programmers to develop
new application-specific page replacement policies.
First, we have implemented an extensible user-
level virtual memory system; this system is object-
oriented, with disciplined entry points for non-
expert programmers to easily modify key policy
choices. Second, we have developed VMprof, a
graphical debugging tool to allow a user to evaluate
competing policies. We have used the the combina-
tion of our extensible virtual memory system and
VMprof to tune the page replacement policy of sev-
eral applications, using an instruction-level simula-
tor to capture their paging behavior. We describe
a case study of one of these applications, successive
over-relaxation (SOR). This example illustrates a
key advantage of custom policies: graceful degra-
dation of performance when the system would oth-
erwise start to thrash.

The remainder of this paper discusses these is-
sues in more detail. In the next section, we moti-
vate the need for application-specific virtual mem-
ory management. Section 3 describes the kernel
support we need, while Sections 4 and 5 describe
our toolkit. Section 6 presents our case study. Sec-
tion 7 discusses our work in the context of related
work, and Section 8 summarizes our conclusions.

2 Motivation

In this section, we motivate the need for
application-specific virtual memory management
by first describing some common applications
which do not perform well under LRU, and then
outlining some of the problems with alternative so-

lutions.

2.1 Examples

A database is the canonical example of a sys-
tem which performs poorly under an LRU pol-

icy [Kearns & DeFazio 1989]. Databases often scan
through large amounts of data in a sequential or
even random fashion. While the code implement-
ing the database should be managed with an LRU
policy, the ideal policy for the data changes from
operation to operation. Worse, the database is of-
ten aware of its access patterns ahead of time, but
it has no way of informing the operating system
of its needs. Typically, database management sys-
tems control their own buffer space in part to avoid
using the generic policy provided by the operating
system, but problems can still result if these buffers
are in fact mapped into virtual memory. [Stone-
braker 1981] estimates that using a page manager
designed for database access patterns could im-
prove performance by an order of magnitude.

A garbage collector is another application
that accesses memory in a way unsuitable for
LRU [Alonso & Appel 1990]. Once a page has been
garbage collected, it is not needed until the heap
swings around again, yet LRU will keep it in mem-
ory because the page has been recently touched. If
the number of garbage-collected pages is large, the
application’s own code and data can end up be-
ing swapped out. Ideally, a memory manager for
this application should give a high priority to the
garbage collector’s own code and data, so that re-
gions of collected memory are always swapped out
first. Further, the memory allocator should not re-
use parts of the heap that have been swapped out
until there is room for those pages to be swapped
back in.

Some of the interactive graphics programs cur-
rently being developed [Teller & Sequin 1991] also
require special virtual memory management tech-
niques. These programs often precompute vast
amounts of information to enable real-time inter-
action. Access to this information is often sequen-
tial and the size of the needed information is often
larger than physical memory, which means thrash-
ing will occur under an LRU page replacement pol-
icy. Such applications could produce more detailed
images and exhibit much higher throughput if the
page replacement policy of the operating system

were more finely tuned (e.g., through pre-fetching

based on the semantics of the program).

Finally, if applications know the number of
physical pages currently available to them, they
can modify their runtime behavior to make opti-
mal use of available resources [Harty & Cheriton
1992, Cheriton et al. 1991]. For example, certain
Monte Carlo simulations generate a final result by
averaging the results of a number of runs. Fewer
runs of the simulation can be made to produce the
same results if there is a larger sample size. Such
simulations could vary their sample size based on
the available physical memory, thus lowering the
number of page faults. Adapting application be-
havior to the amount of available physical memory
is straightforward if there is user-level control over
virtual memory, but nearly impossible if paging is
implemented in the kernel, transparent to the ap-
plication.

2.2 Alternative Solutions

Before discussing how to build an application-
specific virtual memory system, we consider some
alternatives. One would be to devise an ideal page
replacement policy which performs well for all of
the above applications, as well as for programs that
do well under an LRU policy. Such a policy does
not exist today, and moreover, we believe it is un-
likely to in the near future. Because of the large
gap between CPU and disk performance, even if
using a generic policy results in only a few extra
page faults relative to using an optimal application-
specific policy, there can be a large impact on ap-
plication performance. In the absence of an ideal
paging system, application programmers have been
faced with the following options, none of which are
always applicable:

e Purchase enough memory so that the appli-
While this

may appear attractive because memory is in-

cation fits in physical memory.

creasingly inexpensive, application program-
mers often would like to scale to even larger
data set sizes. So, irrespective of the amount
of physical memory, there will always be prob-
lems which require more memory than the

hardware can support [Hagmann 1992].

Bypass the operating system’s virtual mem-
ory system by pinning a pool of the appli-
cation’s pages into physical memory [Stone-
braker 1981]. User code explicitly manages
the buffer pool as a cache for disk by decid-
ing which disk pages get swapped into main
memory. This can require large changes to
application code since accesses to data struc-
tures must now indirect through the buffer
pool manager, and it is inflexible in a multi-
programmed environment [Harty & Cheriton
1993]. Worse, this essentially requires each ap-
plication programmer to re-implement the vir-
tual memory system. Our tools allow a sep-
aration of concerns: the application can be
written in terms of normal memory reads and
writes, while the paging policy can be easily
changed with no changes to the application
code.

Restructure the application to improve its spa-
tial and temporal locality. This technique,
known as “blocking”, is commonly used within
the scientific programming community to im-
prove processor cache performance, but it can
also be used to improve virtual memory be-
havior. While the result can be obscure code
bearing little resemblance to the original pro-
gram, a blocked program can have much bet-
ter performance. Our monitoring tool, VM-
prof, helps identify the places in the applica-
tion code where blocking would benefit perfor-
mance; moreover, even after an application is
re-written, there may still be a benefit to using
a custom paging policy in place of LRU. The
example SOR application described in Sec-
tion 6 illustrates the advantage of using our
tools on a blocked program.

3 Kernel Support for User-Level
Virtual Memory Management

Before describing our extensible virtual memory
manager, we first outline the kernel support nec-
essary to allow each application to set its own pag-
ing policy at user level. Support similar to what we
describe here is provided by Mach (as extended by
[McNamee & Armstrong 1990], V++, and Apertos.

The key observation is to appropriately divide
responsibility for virtual memory between the ap-
plication, the kernel, and a separate user-level pag-
ing system, specific to the application. This orga-
nization can be seen in Figure 1. In the simplest
case, the application sees no change: it can do nor-
mal reads and writes to its virtual memory loca-
tions, and the combination of the kernel and the
user-level pager handle any page faults that occur,
completely transparently to the application.

The operating system kernel is modified to hand
off control over paging policy to the user level. Un-
like a traditional organization, the kernel is respon-
sible only for allocating physical pages among com-
peting jobs and for providing a mechanism for user
level pagers to modify page tables. For reasons of
security, page tables cannot be modified directly
at the user level. Fach user-level manager is given
a set of physical pages to manage by the kernel,
and has complete control over which of the appli-
cation’s virtual pages are to be assigned to those
physical pages and which are to be on disk. In
this way, the mechanisms necessary to implement
virtual memory are separated from the application-
specific policy implemented at the user level.

Whenever the kernel would make a virtual mem-
ory policy decision, the kernel makes an upcall to
the user-level pager instead.? For instance, on a
page fault, a decision is needed as to which page
currently in memory will be swapped to disk to
make room for the incoming page. Instead of mak-
ing this decision itself, the kernel upcalls to the

2An upcall is the reverse of a system call. A system
call implements a procedure call from application code to a
kernel routine, while an upcall implements a procedure call
from the kernel to application code.

Figure 1: Operating System With Application-Specific Virtual Memory

user-level pager on each fault, providing the needed
information (such as hardware page reference in-
formation) to the user-level pager. The user-level
pager then chooses which page to replace. The ker-
nel is also responsible for informing the user-level
pager of changes in the number of pages assigned
to it.

In addition, a sophisticated application may have
a communication channel to the user-level pager.
The application can inform the virtual memory sys-
tem in advance of phase changes where a different
policy might be used; the virtual memory system
can inform the application of any increase or de-
crease in the amount of available physical memory,
to allow the application to adapt its behavior.

The interactions between the application, the op-
erating system kernel, and the user-level pager are
summarized as follows:

e Upon a page fault, a trap into the operating
system takes place. The kernel makes an up-
call to the application’s pager with the fault-
ing virtual address. This upcall dispatches a
procedure HandlePageFault within the user
level pager. This procedure is responsible for
bringing the missing page into physical mem-
ory (through system calls back into the oper-
ating system).

o If all of the process’s physical pages have been
allocated, the pager is responsible for choos-

ing a page to replace. The user-level pager
polls the operating system to obtain informa-
tion (for example, hardware page usage and
modified bits) regarding a process’s page ac-
cess patterns. This information is then used
to choose the page to replace.

If the page chosen for replacement has been
modified, it must be written to the backing
store. This is done through system calls into
the operating system.

If an application needs to change its virtual
memory policy during its execution, or if it
needs to know which of its pages are mapped,
a communication channel is established be-
tween the user-level pager and the application
to communicate such needs.

The operating system makes an upcall to the
pager to inform it of changes in the number
of available physical pages. A system call is
added to inform the kernel that the applica-
tion needs more/fewer pages of physical mem-
ory [Harty & Cheriton 1993].

The user-level pager can request that the ker-
nel unmap a page but not remove it from mem-
ory, causing the application to trap on read
or write references to selected pages. For in-
stance, this capability can be used to collect

more detailed page usage information [Levy &
Lipman 1982] or to provide other features such
as distributed virtual memory, transactional

memory, or automatic checkpointing [Appel &
Li 1991].

Moreover, there is not a one-to-one mapping be-
tween applications and paging policies. The same
default user-level pager can be used by the majority
of applications that perform acceptably well with
an LRU paging policy. By contrast, a single ap-
plication might have multiple policies, one for each
segment of memory and/or one for each phase of
its execution.

4 An Extensible User-Level

Pager

In this section, we describe our extensible user-level
paging system. We had two goals. First, we wanted
to provide the standard parts of a virtual memory
system that were unlikely to change for different
policies. A fair amount of the code for traditional
virtual memory systems is taken up with bookkeep-
ing and other infrastructure. Second, we wanted to
expose the key elements of the system’s policy deci-
sions to user change. We did this by structuring the
system in an object-oriented fashion, allowing pro-
grammers to tweak our code by building derived
objects that change only the parts of our imple-
mentation that truly needed to be changed [Ber-
shad et al. 1988]. In addition, by using an object-
oriented approach, we can allow multiple policies
to exist for the same application, for instance, for
different areas of memory and for different phases
of the program’s execution.

In the interest of brevity, we focus on the parts of
our system that an application programmer might
need to understand in order to implement a custom
page replacement policy. We leave out those details
needed to deal with sharing of memory segments,
sparse address spaces, portability, page coloring,
etc. We refer readers to [Young et al. 1987] for a
more complete description of the issues in building
a robust, general-purpose virtual memory system.

The simplified protocol we discuss here allows for
memory management on a per process basis; this
can be easily extended to allow paging policy to
be set on a per memory segment basis. At a high
level, the protocol consists of the following classes
and methods:

¢ A ResidentPageTable object is associated
with each process. It encapsulates informa-
tion about the physical pages assigned to the
process by the kernel, for instance, the vir-
tual page contained in the physical page, if
any. By default physical pages are divided into
three lists: a free list of all unallocated pages, a
list of all deallocated pages which have not yet
been unmapped (providing a sort of “second-
chance” cache [Levy & Lipman 1982]), and
a list of all mapped pages. The relative size
of these lists can be controlled by the user,
whereas the total number of pages assigned to
the process is controlled by the kernel.

e An AddressMap object also is associated with

each process. It encapsulates information
about the process’ virtual pages, for instance,
the physical page containing the virtual page,
if the page is in memory, and any hardware
reference information. In other words, the ad-

dress map is similar to a traditional page table.

o The method
AddressMap is called through an upcall from

HandlePageFault on

the kernel whenever a page fault occurs.

¢ The method FindPageToReplace is called by
HandlePageFault to select a page for removal.

e The method PollKernel is called to retrieve
the state information (most often, page usage
bits) necessary to implement the desired pag-
ing policy.

The following C+42 classes outline the interface to
our implementation:

For brevity’s sake, we do not include accessor functions,
constructors, or destructors.

class RPTE { // Resident Page Table Entry
public:
int physicalFrame;
// Address Map Entry
AME *virtualPage;
Bool free;

};

class ResidentPageTable {

public:
// Upcalls from the kernel
void AddPageToAllocation(int pageNum);
void RemovePageFromAllocation(int pgNum);
// Calls FindPageToReplace if none avail
int FindFreePage();
int GetNumFreePages();

private:
int tableSize;
// Following are lists of RPTE
List *allocatedPages;
List *unmappedPages;
List *freePages;

};

There is an instance of RPTE (resident page table
entry) for each physical page allocated to a pro-
cess. The member physicalFrame is the num-
ber of the page in system memory; it is used as
a tag for communication between the pager and
the kernel.
list of physical pages allotted to a particular pro-

The ResidentPageTable class is a

cess. The list of pages available to a process may
change dynamically; AddPageToAllocation and
RemovePageFromAllocation are called by the ker-
nel (via an upcall) to notify the user-level system
of these changes.

class AME { // Address Map Entry

public:
RPTE *physicalFrame;
Bool wvalid;

Bool modified;
Bool used;

};

class AddressMap {
public:
virtual int FindPageToReplace();
virtual void HandlePageFault(int faultPg);
virtual void
FetchPage(int targPage, int faultPage);

// Get page usage information
virtual void PollKernel(...);

private:
AME *pageTable;
int pageTableSize;
ResidentPageTable coremap;
int LRUClockHand;

};

An AddressMap encapsulates both a process’s vir-
tual memory and state information for its page
replacement policy. FEach page of virtual mem-
ory has a AME (Address Map Entry). The pager
periodically calls PollKernel to retrieve the pro-
cess’s recent page access patterns. PageIn reads
faultPage from the backing store and stores it
in pageToReplace, writing pageToReplace to the
backing store if modified.

In the simplest case, the user-level virtual mem-
ory manager consists of instances of an AddressMap
and a ResidentPageTable object. A programmer
can create a new paging policy by changing the
methods for these objects, compiling a new mem-
ory manager and asking the kernel to use the new
manager for the application. Multiple policies can
also be coded into the same manager so that ap-
plications can change their page replacement pol-
icy “on the fly” (as their memory access patterns
change). The following methods are provided with
the memory managers and implement the default
approximation to LRU.

void
AddressMap: :HandlePageFault (int faultPage)
{

int pageToReplace;

if (coremap.GetNumFreePages() == 0)
pageToSwap = FindPageToSwapOut();
else
pageToSwap = coremap.FindFreePage();
PageIn(pageToSwap, faultPage);
}

// Implementation of a one-bit clock
// algorithm approximating LRU

int

AddressMap: :FindPageToReplace()

{

while (1) { // loop until page is found
LRUClockHand++;
if (pageTable[LRUClockHand].valid)
if (!pageTable[LRUClockHand].used)
return LRUClockHand;
else
pageTable[LRUClockHand] .used = FALSE;
if (LRUClockHand == pageTableSize)
LRUClockHand = 0;

We now demonstrate how our implementation
can be specialized. If a programmer decides that
a Most Recently Used (MRU) page replacement
policy is more appropriate for his application, as
might be the case if the application scans linearly
through a large data structure, the following defi-
nitions could be added to the default pager:

class MRUAddressMap
: public AddressMap {
public:
// Override base class definition
void FindPageToReplace();
private:
int MRUClockHand;
3

// Assumes at least one page referenced since
// last fault. One bit approximation of MRU.
int
MRUAddressMap: :FindPageToReplace()
{
while (1) { // loop until page is found
MRUClockHand++;
if (pageTable[MRUClockHand].valid)
if (pageTable[MRUClockHand].used) {
for (int i=0; i<pageTableSize;i++)
pageTable[i] .used = FALSE;
return MRUClockHand;
}
if (MRUClockHand == pageTableSize)
MRUClockHand = 0;

The new method on FindPageToReplace is now
called when a page fault occurs in a process run-
ning in an MRUAddressSpace. In order to imple-
ment an MRU policy through the protocol, the pro-

grammer simply created one new class and modi-
fied one documented function. The details of other
functions and classes were unchanged. In a similar
vein, HandlePageFault could be modified to allow
for pinning and pre-fetching of pages.

In order to provide multiple page replacement
policies for different memory segments of a pro-
cess (as is necessary for databases: a different pol-
icy is needed to manage the code as opposed to
the data), the user would simply create a sub-
class of the ResidentPageTable which breaks up
the allocated physical pages into lists correspond-
ing to the process’s different logical segments.
Then, HandlePageFault determines which seg-
ment caused the fault and calls an appropriate spe-
cialization of FindPageToReplace. For databases,
an LRU policy might be used for the code segment,
while an MRU-like policy might be optimal for the
data segment if the process is scanning through
large amounts of data. Thus, the user-level mem-
ory manager provides very fine-grained control over
the desired page replacement policy based both the
faulting segment and the process’s current access
patterns.

5 VMprof — The Virtual Mem-
ory Profiler

Given the complex tradeoffs involved with the vir-
tual memory system, it is not enough to sim-
ply give the user control over the implementa-
tion. Tools must also be provided to identify
performance problems with the particular applica-
tion/policy combination, to help identify ways to
improve performance. Further, the user needs to
be able to quickly evaluate the performance effect
of changes to the application and/or the paging
policy.

To address this, we have designed a visual per-
formance tool, VMprof, to allow the programmer
to easily identify problems with virtual memory
performance by displaying the dynamic behavior
of the paging system. The user-extensible virtual
memory manager and VMprof complement each

Y Prof

a
a
a
M 13
u 1z
o1
b ia
L
ro.
ol
F o e
5
F . a
a @ 3
u. -
L
< | ®
a

End Time

1

Begin Time

Total Page Faults:

2

Page Mumber

3 3+ 5 & 2 =]

23
144

Figure 2: The VMprof Graphical Display

other by decreasing the time needed to tune vir-
tual memory performance.

VMprof supplements other program perfor-
mance analysis tools such as UNIX gprof [Graham
et al. 1982] and MemSpy [Martonosi et al. 1992].
Given a trace of page faults, VMprof allows the
user to analyze both spatial and temporal aspects
of virtual memory management. VMprof’s graphs
may be used to identify regions of the address space
with high page fault rates. By adjusting the time
frame, a user may also investigate how fault be-
havior develops with respect to time. The graphi-
cal nature of VMprof facilitates quick analysis and
improvement of virtual memory performance.

Figure 2 shows the output of the VMprof virtual
memory profiler. The top graph is a histogram of
page faults in virtual memory. The horizontal di-
mension reflects sections of virtual memory, from
low memory on the left to high memory on the
right. The vertical dimension represents the fre-
quency of page faults for each section of virtual
memory. Because there can be a large number
of virtual pages under consideration, each point
on the graph refers to the aggregate number of
faults for a contiguous range of pages. The bottom
graph displays fault behavior at a (configurable)
finer level of detail than the global view of the top
graph. If a user notices that there is an interesting

pattern in the global display, the scroll bar may
be moved to focus the local display on the desired
region.

Behavior with respect to time may be displayed
by moving a pair of sliders: begin-time and end-
time. Only the page faults occurring in this time
frame are displayed in the two graphs. Program-
mers use this feature to isolate portions of the pro-
gram and judge whether they would benefit from
modifications to the paging policy. The time slid-
ers may be used to move slowly through time to see
how page-fault patterns develop. The spatial and
temporal aspects of memory access patterns may
be evaluated by adjusting the local view of page
fault behavior and the time frame under consider-
ation.

Based on experience using VMprof, we have
identified improvements that would make it more
useful. One would be to more closely connect the
application’s symbolic program constructs and the
output of the virtual memory profiler. Currently,
VMprof’s display offers enough information for a
rough view of memory access patterns. A more use-
ful tool would allow the user to select the particular
memory objects to observe and to place “break-
points” in the program code that would separate
segments of the code that exhibit different mem-
ory access patterns.

In addition, the user should be able to easily se-
lect memory objects to observe, using their sym-
bolic names or icons, and associate a virtual mem-
ory policy with each one. Also, it should be pos-
sible to see how multiple programs interact when
sharing the same physical memory resources, for
those programs that adjust their memory usage
based on run-time conditions. For instance, [Harty
& Cheriton 1993] suggest that programs “bid” for
physical memory; the kernel can then use a market
approach to system memory allocation. Using VM-
prof, experiments may be performed interactively
with the profiler to see how different virtual mem-
ory policies perform in isolation and in tandem,
with different memory allocation arbitration.

6 SOR — A Case Study

We now describe a case study of how our techniques
were used to tune the virtual memory performance
of an implementation of successive over-relaxation
(SOR). We generated memory reference traces for
a basic implementation of the SOR application for
several different problem sizes; we then determined
the application’s paging behavior by feeding these
traces through a simulator which invoked the user-
level policy module on each page fault. The re-
sulting page fault sequence was fed to VMprof to
allow us to quickly identify problems with the ap-
plication’s virtual memory performance.

In successive over-relaxation, each element of a
matrix is averaged with its four immediate neigh-
bors (called a “relaxation step”). This operation is
repeated on the matrix until a steady state for the
matrix’s values is reached. The following code frag-
ment is a simplified (ignoring boundary conditions)

version of SOR:

while (!converged) // Outer loop
for (r = 0; r < matrixRows; r++)
for (¢ = 0; ¢ < matrixCols; c++)
matrix[r] [c]l=(matrix[r-1][c] +
matrix[r][c+1] +
matrix[r+1] [c] +
matrix[rl[c-11) / 4;

To illustrate the process of tuning virtual mem-
ory behavior, Figure 3 displays the output of the
VMprof tool, profiling our initial SOR implemen-
tation with an LRU page replacement policy.* The
matrix size was chosen to be 1K by 1K, with each
element being a double precision floating point
number; in other words, the matrix consumed 8
megabytes of virtual memory. To illustrate pag-
ing behavior, we assumed there were 8 megabytes
(2048 4KByte pages) of physical memory available.
Since the application code takes a small but non-
zero amount of space, the program barely does not
fit in physical memory.

As shown in Figure 3, the cyclic access pattern of
SOR, combined with LRU, results in a large num-
ber of faults. The row labeled faults indicates that

* A 1-bit clock algorithm was used to approximate LRU.

[ol T |

VMProf

[y
I =—_—

L T S

79 §8 51 52 53 &9 55 &6 &7 55 &9 90 91 92 93 94 95 96 97 95 Q¢

Page Humber

Begin Time #

|
End Time °* -
9
Total Page Faults: 20476

Figure 3: SOR with a LRU Page Replacement Policy

page faults are frequent: there is one fault per it-
eration of the loop per page of data whenever the
size of virtual memory is larger than the amount
of physical memory. A user watching the number
of page faults updated with respect to time sees
a continuous left-to-right cascading of faults. This
suggests that thrashing is occurring.

The performance of LRU is much worse than op-
timal in this situation. The access pattern for SOR
can be seen graphically in Figure 4. On the first
iteration of the outer loop, there are 2K compul-
sory page faults, since none of the pages have been
previously accessed; this is independent of the page
replacement policy, unless pre-fetching techniques
are employed.

On subsequent iterations of the outer loop, how-
ever, the number of page faults does depend on

the virtual memory policy. If calculating the value
for matrix[r] [c] causes a page fault in reading
matrix[r+1][c], then an LRU policy will choose
the physical page which has not been used for the
longest period of time (page n 4 6 in Figure 4, as-
suming each row of the matrix takes 2 pages of
memory). Unfortunately, given the cyclic sequen-
tial access to memory, this will be the very next
page accessed in the matrix, and this access will
once again cause a page fault. As indicated by
VMprof, LRU results in a page fault on every page
of the matrix for each iteration through the outer
loop.

An ideal page replacement policy replaces the
page which will not be needed for the longest time
in the future. If reading matrix[r+1][c] causes
a page fault, then the page which will not be ref-

Figure 4: SOR Access Pattern — access to matrix[r+1] [c] on page n + 5 causes a page fault.

erenced for the longest time is the first full page
immediately before matrix[r-1][c]. Thus, a cus-
tom page handler should choose virtual page n
from Figure 4 for replacement. A custom page
replacement policy to effect this algorithm may
be quickly created by writing a new version of
FindPageToReplace. The custom policy has to be
tailored to the size of the array and the machine’s
page size. In this example, if a page fault occurs
in accessing virtual page v, then the ideal page to
replace is the physical page containing virtual page
v — 5 (since there are 2 pages per row). The cus-
tom policy has the flavor of the most-recently-used
(MRU) page replacement policy; however, MRU
does not perform well in this case because the MRU
page is almost certain to still be needed.

We implemented this custom replacement policy
by slightly modifying the implementation of MRU
described in Section 4. We then re-ran the address
trace through our simulator, invoking the new pag-
ing policy. The resulting VMprof output is dis-

played in Figure 5. Using this policy, after the ini-
tial start-up costs of faulting the array into main
memory, there is only one fault per iteration of the
outer loop (as opposed to one fault per page per
iteration). The result is a large reduction in the
number of page faults.

However, the amount of the advantage of our
custom paging policy relative to LRU depends on
the difference between the virtual memory needed
and the available physical memory. With LRU,
we thrash as soon as we need more virtual than
physical memory. With our custom policy, perfor-
mance degrades more gracefully, but eventually if
the matrix size is much larger than will fit in vir-
tual memory, even our custom policy will perform
poorly. Figure 6 shows the number of page faults
incurred by SOR (z-axis) as a function of the num-
ber of iterations of the outer loop (x-axis) and the
difference between available physical memory and
required virtual memory (y-axis). From the plot,
we see that the number of page faults for the cus-

VMProf

End Time

F. 2

a

u 1

1 @

t

N

72 73 74 976 96 27 73 99 548 51 52 §3 594 56 56 &9 55 £9 98 491 92 ¢
Page Humber
Redraw |
vt
Begin 'I'|meg

Total Page Faults: 2068

0

982342

Figure 5: SOR with a Customized Page Replacement Policy

tom policy is dependent on the relative amount of
physical and virtual memory. The performance of
the LRU policy is uniformly poor, independent of
the number of available physical pages. LRU pro-
vides an upper bound for the number of page faults;
as the number of available physical pages decreases,
the customized policy’s performance begins to ap-
proach that of LRU.

Modifying the paging policy by itself does not
help when the matrix is very large with respect to
the amount of physical memory; instead, in order
to have good performance in this case, we need to
modify the application implementation to exhibit
more spatial and temporal locality. Our original
implementation scanned the entire matrix from be-
ginning to end for every relaxation step. For exam-
ple, if it took 10 relaxation steps for the matrix to
converge, each page of memory would be crossed
10 times using the original code.

Instead, we can use a “blocked” implementation
of SOR, where several relaxation steps are per-
formed during a single sweep through the array.
For instance, once we have computed the relax-
ation for rows 1 to r during iteration i, we can

immediately compute the next iteration for rows
1 to r — 1, without changing the original data de-
pendency ordering of the application. As long as
we choose r to be smaller than the size of physi-
cal memory, we can compute more relaxation steps
for the same number of page faults relative to the
original implementation.

Even the blocked version of SOR can benefit
from a custom page replacement policy in some
cases. The blocked implementation must still scan
multiple times through the entire array to com-
plete the relaxation. As with the original version
of SOR, if the size of the matrix is slightly big-
ger than the amount of physical memory, LRU
will tend to throw out pages that are about to be
scanned, while a custom policy can be easily de-
vised to throw out pages that are not needed for
the longest time into the future.

Pre-fetching can further improve the perfor-
mance of the SOR application. Pre-fetching is most
useful when an application accesses a large number
of pages in sequence. Rather than having to fault
each new page in turn, pages can be brought into
physical memory before they are needed. The ap-

Virtual Memory Performance of SOR

LRU Policy —<—
Custom Policy -+-

Page Faults (z) »
80000 |- /
60000 - |
40000 - /
»»»»»»»»»»»»»»»»» 7{»
20000 F, L ’
= e % 77777777777777777777777777777777 ertual Memory Delta (y)
[/ R . + 1200
1000
800
600
400
L Vi L L / / , , 200

5 10 15 20 25 30 35 40
Number of iterations (Xx)

45 50

Figure 6: Number of Page Faults with SOR

plication would still be limited by disk bandwidth,
but it would incur less overhead waiting for faults
to be serviced.

In summary, the following steps are typically
needed to tune a program to decrease the number

of page faults:

e Identify and isolate phase transitions in the
program using the visual cues provided by the

VMprof performance tool.

o Experiment with different page-replacement
policies by modifying the extensible user-level
paging system. Use VMprof to determine the
policy most appropriate for the observed ac-
cess pattern for each phase of the program.

o [f performance is still not good enough, write a
blocked version of the program. Use VMprof
to determine whether it performs well using
LRU or still requires a custom policy.

7 Discussion

Application-specific virtual memory is an instance
of a larger trend towards structuring system soft-
ware to allow application control over policy de-
Other examples include thread schedul-
ing [Anderson et al. 1992}, interprocess commu-
nication [Bershad et al. 1991], compiler opti-
mizations [Steele Jr. 1990], database access rou-
tines [DeWitt & Carey 1984, Stonebraker 1987],
and desktop publishing [Ald 1992, Clark 1992,
Dyson 1992]. In all of these cases, an application-
specific structure offers the potential for more flex-
ibility and better performance, in part because it is
difficult to design a complex system to be optimal
for all users of the system. In our view, a key in-
gredient to exploiting the potential of this general
approach is to provide tools to simplify the job of
developing application-specific system software.
One way of viewing this trend is in terms of
meta protocols [Kiczales et al. 1991, Kiczales et al.

cisions.

1992, Vahdat 1993]. Using virtual memory as an
example, there is a very simple base protocol: reads
and writes of the process’s virtual address space.
As we have argued, the choice of implementation
of this abstraction (the virtual memory system)
sometimes has a large impact on the performance
seen by the user of the abstraction (the applica-
tion). One approach is to leave the original inter-
face alone, and instead to define a meta protocol,
by which the user of the interface can select an im-
plementation more suited to its needs.

Prior to our work, a number of systems al-
ready provided a meta protocol for virtual memory.
Mach, V++4, and Apertos all allow applications to
select their own virtual memory managers, with no
change to application code. Our work is aimed at
making it easy for application programmers to ex-
ploit this flexibility, essentially by defining a higher
level meta protocol. Application programmers still
have the flexibility to completely re-write the vir-
tual memory system, but usually it will be the case
that they only need to modify a few lines of code of
our extensible virtual memory system to adjust the
paging policy. In this, we are essentially providing
a meta object protocol, a meta protocol built using
object-oriented techniques.

Prior work has identified four desirable charac-
teristics for meta protocols [Kiczales et al. 1991]:

o Incrementality— making a small change to an
implementation should require the user of the
implementation to write only a small amount
of code [Kiczales & Lamping 1992]. In the vir-
tual memory domain, changing from an LRU
to an MRU policy should only require writing
new policy code — the actual mechanism for
swapping pages in and out of main memory
should be able to be reused.

o Scope Control — the effect of policy changes
should be local to the application making the
changes. This is automatically the case with
application-specific virtual memory. Ideally,
the scope of changes can be further restricted
to applying to only the relevant parts of the
application.

o Interoperability — if an application chooses to
use its own implementation of an interface, it
should be able to freely interact with other
applications (or other parts of the same appli-
cation) using the original implementation.

e Robustness — the behavior of the system
should be graceful in the face of bugs in the
application-specific code.

In our work, incrementality and interoperability
are provided by our object-oriented extensible de-
sign. Scope control and robustness result simply
from moving virtual memory management policy
to the user level.

It is also important to note the limitations as-
sociated with meta protocols: one cannot always
turn to the meta protocol to modify implemen-
tation decisions in the face of inadequate perfor-
mance. With virtual memory, there are instances
when lack of available memory causes very poor
performance of an application irrespective of the
paging policy (even the optimal page replacement
policy for a given application results in poor perfor-
mance). In these cases, it is necessaryto rewrite the
application to use a smaller working set. Tools such
as VMprof can be used to identify such instances
and to suggest ways in which the application can
be rewritten to improve performance.

In work related to our own are several research
efforts in the operating system community which
have looked at making various pieces of the oper-
ating system customizable. Apertos [Yokote 1992]
is designed to be entirely reflective to allow every
part of the operating system to be under applica-
tion control. Perhaps most analogous to our work,
Presto [Bershad et al. 1988] is a user-level thread
system linked into parallel applications as a run-
time library. Because different applications might
need different thread scheduling policies, Presto
was structured to make scheduling easy for users
to change.

8 Conclusions

In conclusion, we have described an extensible user-
level virtual memory system and a graphical tool
to help programmers tune virtual memory perfor-
mance. Together, these allow users to easily exper-
iment with various page replacement policies and
to get immediate feedback from the user interface.
This feedback may be used to develop a paging pol-
icy that better meets the application’s demands, or
sometimes to modify the application to exhibit bet-
ter paging behavior. Qur structured virtual mem-
ory implementation allows users to easily modify a
complex system, and the user interface provides a
facility to evaluate the different tradeoffs involved
with modifying operating system policy.

9 Acknowledgements

We wish to thank David Cheriton, Doug Ghorm-
ley, Kieran Harty, Paul Hilfinger, Gregor Kiczales,
John Lamping, Luis Rodriguez, and the referees for
providing many helpful comments on drafts of this

paper.

References

[Ald 1992] Aldus Corporation, Seattle, WA. Page-
maker Additions Developer Toolkit, February
1992.

[Alonso & Appel 1990] Alonso, R. and Appel, A. An
Advisor for Flexible Working Sets. In Pro-
ceedings of the 1990 ACM SIGMETRICS
Conference on Measurement and Modeling of
Computer Systems, pp. 1563-159, May 1990.

[Anderson et al. 1992] Anderson, T., Bershad, B., La-
zowska, E., and Levy, H. Scheduler Activa-
tions: Effective Kernel Support for the User-
Level Management of Parallelism. In ACM
Transactions on Computer Systems, pp. 53—

79, February 1992.
[Appel & Ti 1991] Appel, A. W. and Li, K. Virtual

Memory Primitives for User Programs. In
Proceedings of the 4th ACM Symposium on
Architectural Support for Programming Lan-
guages and Operating Systems, pp. 96-107,
Santa Clara, California, April 1991.

[Bershad et al. 1988] Bershad, B., Lazowska, E., and
Levy, H. PRESTO: A System for Object-
Oriented Parallel Programming. Software—
Practice and Experience, 18(8):713-732, Au-
gust 1988.

[Bershad et al. 1991] Bershad, B., Anderson, T., La-
zowska, E.; and Levy, H. User-Level Inter-
process Communication for Shared-Memory
Multiprocessors. ACM Transactions on

Computer Systems, 9(2):175-198, May 1991.

[Cheriton et al. 1991] Cheriton, D. R., Goosen, H. A.,
and Machanick, P. Restructuring a Parallel
Simulation to Improve Shared Memory Mul-
tiprocessor Cache Behavior: A First Experi-
ence. In Shared Memory Multiprocessor Sym-
positum, Tokyo, Japan, April 1991.

[Clark 1992] Clark, J. Window Programmer’ Guide To
OLE/DDE. Prentice-Hall, 1992.

[Denning 1980] Denning, P. Working Sets, Past and
Present. IEFE Transactions on Software En-
gineering, 6(1):64-84, January 1980.

[DeWitt & Carey 1984] DeWitt, D. and Carey, M. Ex-
tensible Database Systems. In Proc. 1st In-
ternational Workshop on Expert Data Bases,
October 1984.

[Dyson 1992] Dyson, P. Xtensions for Xpress: Modular
Software for Custom Systems. Seybold Re-
port on Desktop Publishing, 6(10):1-21, June
1992.

[Graham et al. 1982] Graham, S., Kessler, P., and
McKusick, M. gprof: A Call Graph Exe-
cution Profiler. In Proceedings of the ACM
SIGPLAN Symposium on Compiler Con-
struction, pp. 120-126, June 1982.

[Hagmann 1992] Hagmann, R. Medium Term Virtual
Memory Replacement. In Proceeding of the
Third Workshop on Workstation Operating
Systems, pp. 142-147, April 1992.

[Harty & Cheriton 1992] Harty, K. and Cheriton,
D. R. Application-Controlled Physical Mem-
ory Using External Page-Cache Manage-
ment. In Proceedings of the 5th ACM Sympo-
stum on Architectural Support for Program-
ming Languages and Operating Systems, pp.
187-197, 1992.

[Harty & Cheriton 1993] Harty, K. and Cheriton, D. R.
A Market Approach to Operating System
Memory Allocation. Submitted For Publi-
cation., April 1993.

[Kearns & DeFazio 1989] Kearns, J. P. and DeFazio, S.
Diversity in Database Reference Behavior. In
Performance Fvaluation Review, 1989.

[Kiczales & Lamping 1992] Kiczales, G. and Lamping,
J. Issues in the Design and Documentation of
Class Libraries. In Proceedings of the Confer-
ence on Object-Oriented Programming: Sys-
tems, Languages, and Applications, pp. 435—
451, 1992.

[Kiczales et al. 1991] Kiczales, G., des Riviéres, J., and
Bobrow, D. G. The Art of the Metaobject
Protocol. MIT Press, 1991.

[Kiczales et al. 1992] Kiczales, G., Ashley, M., Ro-
driguez, L., Vahdat, A., and Bobrow, D. G.
Metaobject Protocols — Why We Want
Them and What Else They Can Do. In
Paepcke, A. 5 editor, Object-Oriented Pro-
gramming: The CLOS Perspective. MIT

Press, 1992.

[Levy & Lipman 1982] Levy, H. and Lipman, P. Vir-
tual Memory Management in the VAX/VMS
Operating System. IFEE Computer, pp. 35—
41, March 1982.

[Martonosi et al. 1992] Martonosi, M., Gupta, A., and
Anderson, T. MemSpy: Analyzing Memory
System Bottlenecks in Programs. In Proceed-
wmgs of the 1992 ACM SIGMETRICS and
PERFORMANCE 92 Conference on Mea-
surement and Modeling of Computer Sys-
tems, pp. 1-12, June 1992.

[McNamee & Armstrong 1990] McNamee, D. and
Armstrong, K. Extending the Mach External
Pager Interface to Accommodate User-Level
Page Replacement Policies. In Proceedings
of First USENIX Mach Symposium, Burling-
ton, Vermont, October 1990.

[Rashid et al. 1988] Rashid, R., Tevanian, A., Young,
M., Golub, D., Baron, R., Black, D.
Bolosky, W. J., and Chew, J. Machine-
Independent Virtual Memory Management
for Paged Uniprocessor and Multiprocessor
Architectures. IEEF Transactions on Com-
puters, 37(8):896-908, August 1988.

[Steele Jr. 1990] Steele Jr., G. L. Common LISP: The
Language. Digital Press, second edition,

1990.

[Stonebraker 1981] Stonebraker, M. Operating System
Support for Database Management. In Com-
munications of the ACM, 1981.

[Stonebraker 1987] Stonebraker, M. FExtensibility in
POSTGRES. IEFE Database Engineering,,
September 1987.

[Teller & Sequin 1991] Teller, S. J. and Sequin, C. H.
Visibility Preprocessing For Inter-
active Walkthroughs. In Proceedings of the
25th Annual ACM Symposium on Computer
Graphics, pp. 61-69, July 1991.

[Vahdat 1993] Vahdat, A. The Design of a Metaob-
ject Protocol Controlling the Behavior of a
Scheme Interpreter. Technical report, Xerox

PARC, March 1993.

[Yokote 1992] Yokote, Y. The Apertos Reflective Op-
erating System: The Concept and Its Imple-
mentation. In Proceedings of the Conference
on Object-Oriented Programming: Systems,
Languages, and Applications, pp. 414-434.
ACM, October 1992.

[Young et al. 1987] Young, M., Tevanian, A., Rashid,
R., Golub, D., Eppinger, J., Chew, J.
Bolosky, W., Black, D., and Baron, R.
The Duality of Memory and Communica-
tion in the Implementation of a Multiproces-
sor Operating System. In Proceedings of the
11th ACM Symposium on Operating Systems
Principles, pp. 63-76, November 1987.

