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Abstract 

Initial implementations of parallel programs typically yield disappointing performance. Tuning to improve performance is thus a 
significant part of the parallel programming process. The effort required to tune a parallel program, and the level of performance that 
eventually is achieved, both depend heavily on the quality of the instrumentation that is available to the programmer. 

This paper describes Quartz, a new tool for tuning parallel program performance on shared memory multiprocessors. The philosophy 
underlying Quartz was inspired by that of the sequential UNIX tool gprof: to appropriately direct the attention of the programmer by 
efficiently measuring just those factors that are most responsible for performance and by relating these metrics to one another and to the 
structure of the program. This philosophy is even more important in the parallel domain than in the sequential domain, because of the 
dramatically greater number of possible metrics and the dramatically increased complexity of program structures. 

The principal metric of Quartz is normalized processor time: the total processor time spent in each section of code divided by the number 
of other processors that are concurrently busy when that section of code is being executed. Tied to the logical structure of the program, this 
metric provides a “smoking gun” pointing towards those areas of the program most responsible for poor performance. This information 
can be acquired efficiently by checkpointing to memory the number of busy processors and the state of each processor, and then 
statistically sampling these using a dedicated processor. 

In addition to describing the design rationale, functionality, and implementation of Quartz, the paper examines how Quartz would be 
used to solve a number of performance problems that have been reported as being frequently encountered, and describes a case study in 
which Quartz was used to significantly improve the performance of a CAD circuit verifier. 

Index Terms - multiprocessor, performance, measurement, parallel programming, tuning 

1. Introduction 

The primary motivation behind building multiprocessors is to 
cost-effectively improve system performance. Even moderately 
increasing a uniprocessor’s power can require substantial 
additional design effort as well as faster, and thus more expensive, 
hardware components. By contrast, once a scheme for 
interprocessor communication has been added to a uniprocessor 
design, the system’s peak processing power can be increased 
linearly simply by adding processors. The incremental cost per 
processor has been reported to be as little as 15% of the initial 
system cost for small to moderate numbers of processors [Thacker 
et al. 19881, and larger but still close to linear for greater numbers 
of processors [BBN 1985; Pfister et al. 19851. 
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Of course, multiprocessors lose their advantage if this 
processing power is not effectively utilized, and while it is 
relatively easy to get good performance when there are multiple 
independent sequential job streams, it can be difficult to achieve 
good performance from parallel applications. The literature 
describes many attempts to parallelize algorithms and 
applications. (Burkhart and Millen [1989] survey some of this 
experience.) Typically, an initial implementation results in 
disappointing performance, but significant improvements can bc 
obtained with subsequent effort. Sequent, for example, tells of a 
major customer whose first attempt at parallelizing a “dusty deck” 
resulted in a program that, given 8 processors, executed only 50% 
as fast as the original sequential program. After considerable 
effort by skilled engineers, nearly perfect speedup (a factor of 
nearly 8 on an 8 processor machine) was achieved [Rodgers 
19861. 

A major factor contributing to the large amount of skilled effort 
typically required to achieve good parallel program performance 
is the shortage of good performance analysis tools. In the absence 
of such tools, performance problems must be identified through a 
combination of guesswork, folklore, and application-specific 
ins@urnentation. The subject of this paper is the design rationale, 
functionality, implementation, and use of a new tool for tuning 
parallel program performance. 

The philosophy underlying our work is that an effective tool for 
tuning parallel program performance must be based on a clear 
view of the causes of poor performance, and on a specific 
methodology for improving that performance. By being selective 
about what it measures and presents, the tool can focus the 
programmer’s attention on the information needed to tune 
performance, eliding details about second-order effects. 
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Measurement efficiency also is improved by designing the tool to 
record just the important behavior. 

Selectivity is possible because, although parallel performance in 
general is much more complex than sequential performance, 
experience (discussed in Section 3.2) suggests that poor parallel 
performance typically arises from a relatively small number of 
factors. For applications whose performance is dominated by 
periods of limited parallelism, the tool should identify those 
sections of code that account for most of this time so that these 
sections can either be re-structured to increase concurrency or 
optimized to reduce their impact on overall performance. Time 
spent spin- (or “busy”-) waiting must be correctly represented, 
since spinning processors appear to be busy even though they are 
not computing useful results. Finally, for applications with large 
amounts of real parallelism, performance can only be improved 
by optimizing (but not further parallelizing) the code that executes 
for the greatest proportion of time. 

Based on these observations, we propose a new way to view 
parallel program performance on shared memory multiprocessors. 
We focus on both the total processor time devoted to each section 
of code and the number of other processors concurrently busy (as 
opposed to idle or spin-waiting) when that section of code is being 
executed. Routines can be compared by considering their 
normalized processor time: their processor time divided by the 
concurrent parallelism (a precise definition is given in Section 3). 
This metric usually reflects the relative importance of different 
sections of code to the overall elapsed time of the program: a 
routine that executes while no other processors are busy can be 
responsible for a large percentage of the runtime of a program, 
even though it uses only a small fraction of the total processor 
time. Further, by measuring both parallelism and processor time, 
we can determine whether performance can be improved by re- 
structuring to increase parallelism, or only by simple 
optimization. 

We tie these measurements to the logical structure of the 
program’s procedures. Good engineering practice demands that 
large programs, whether sequential or parallel, be structured using 
hierarchical abstractions [Graham et al. 19821. We report our 
performance measures for each procedure and for all the work 
done on its behalf, either synchronously via a normal procedure 
call or asynchronously through parallelization. The programmer 
can use this to walk through the hierarchy, focusing on just those 
procedures that, along with their children, account for most of the 
poor performance. We expect that for parallel programs as for 
sequential ones, a relatively small proportion of the code will be 
responsible for most of the runtime. 

These measurements can be made efficiently on a shared 
memory multiprocessor by checkpointing to memory the number 
of busy processors and the state of each processor, and then 
statistically sampling this information using a dedicated 
processor. 

We have developed a tool to test these ideas, called @arlz. 
Quartz was built by modifying the application-level thread 
package described in [Anderson et al. 19891. Quartz uses only the 
normal profiling support available on UNIX-like shared memory 
multiprocessors; it currently runs on the Sequent Symmetry 
multiprocessor [Sequent 19881. 

The remainder of the paper discusses these ideas in more detail. 
Section 2 examines existing measurement tools for tuning 
program performance. Section 3 describes Quartz: its 
motivation, its functionality, its applicability to a number of 
performance problems that have been reported as being frequently 
encountered, and its implementation. Section 4 describes a case 

study in the use of Quartz to improve the performance of a 
specific parallel application, a CAD circuit verifier. Section 5 
considers the implications of our work for the monitoring of 
sequential programs and non-shared-memory multiprocessors. 
Section 6 summarizes our results. 

2. Existing Tools for Tuning Program Performance 

2.1. Tools for Sequential Programs 

The philosophy underlying Quartz owes much to the experience 
of UNIX gprof [Graham et al. 19821, a tool for tuning the 
performance of sequential programs running on uniprocessors. 

Years of experience tuning sequential programs indicate that the 
major difficulty is focus: it is relatively easy for the programmer 
to improve the processing time of a small section of code, but lots 
of effort is commonly wasted in the wrong places - tweaking 
code that has only a small impact on overall performance. 

Gprofs solution is to highlight the “hot spots” of the program, 
and to do so in a way that exploits the hierarchical structure of 
large programs. Gprof presents to the programmer the total 
processor time of each procedure, including time spent on its 
behalf if it calls other routines. With this information, the 
programmer can tune the program in a top-down fashion, focusing 
effort on those functions that have the greatest impact on 
performance. 

Gprof is relatively efficient. It periodically interrupts the 
program to sample the program counter, thereby estimating the 
execution time of each procedure. While sampling produces only 
an estimate, the approach is most accurate just where it needs to 
be: for those routines where the program spends most of its time. 
Gprof also collects the call graph: who called whom how many 
times. This is done by using compiler support that makes each 
procedure execute a monitoring routine during its prologue. 
Gprof then computes its central metric, the processor time spent 
on a procedure’s behalf, by making the assumption that all calls to 
the same procedure take the same amount of time. Processing 
time is propagated bottom-up from callee to caller according to 
the caller’s proportion of the total calls. 

Gprof seems so natural in retrospect that it is easy to forget the 
alternative approach taken by a number of other tools: to 
(expensively) measure everything that could conceivably be of 
relevance to program performance, and to report these 
measurements without concern for how they relate to each other 
or to the structure of the program. 

Our goal for Quartz was to achieve a tool for tuning parallel 
program performance that is analogous to gprof in that it 
efficiently measures exactly what is important, and relates these 
measurements to one another and to the structure of the program. 
This philosophy is even more important in the parallel domain 
than in the sequential domain, because of the dramatically greater 
number of performance metrics and the dramatically increased 
complexity of program structures. The next two sub-sections 
discuss, in this context, existing approaches to tools for tuning 
parallel program performance. 

2.2. Non-Integrated Tools for Parallel Programs 

Many useful measures of parallel program performance have 
been proposed. Each provides a view of some important aspect of 
program behavior. However, in many existing tools, their lack of 
integration with each other and with program structure limits their 
usefulness. 
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Perhaps the simplest approach to parallel program measurement 
is to extend sequential UNIX gprof to run on a multiprocessor. In 
place of processor time on one processor, multiprocessor gprof 
measures the sum of the time spent on each processor [Aral & 
Gertner 19881. Unfortunately, as we have noted, a procedure’s 
total processor time is not related in a simple way to parallel 
runtime. Something more than a straightforward adaptation of 
sequential UNIX gprof clearly is necessary. 

Another common tool displays the number of busy processors 
across time by periodically sampling the number of runnable 
processes. Assuming that all activity is due to the program in 
question, this allows the programmer to see if there are periods of 
time when there is too little parallelism to keep all the processors 
busy [Halstead 19861. A significant shortcoming of tools lie thii 
is that it can be difficult to relate the periods of poor parallelism to 
specific sections of code that can be changed. Further, the fact 
that some processors are not doing useful work can be concealed, 
since spin-waiting processors appear to be busy. 

The DEC SRC Firefly has a tool that measures the time spent 
waiting for each lock protecting a shared data structure Facker 
et al. 19881. A lock ensures that threads manipulating the shared 
data structure have mutually exclusive access to it. This serial 
execution can limit performance. By measuring the wait time, the 
tool can determine which critical sections are the worst 
bottlenecks; these can then be re-structured to increase 
parallelism. This information is useful, but long waits for a lock 
will not affect performance if there is always other work to do 
during the wait, and monitoring a lock can increase the length of 
time that the lock is held, creating “artificial bottlenecks” when 
monitoring is enabled. 

Quartz provides many of the same metrics as these tools, but 
correlates the metrics to one another and to the sbucture of the 
program. For example, Quartz measures not only how many 
processors are busy, but also which procedures execute during 
periods of low and high parallelism. 

2.3. Trace-Based Tools for Parallel Programs 

The issue of determining in advance exactly what information 
will be needed to tune the performance of a parallel program can 
be finessed by recording a trace of every interprocessor 
synchronization event with a timestamp of when the event 
occurred. The behavior of the program can be completely 
reconstructed from such a trace [Fowler et al. 19881. t Arbitrary 
metrics (whether general or application-specific) can be computed 
using a common interface to the trace data. Finally, the metrics 
obtained from the trace can be integrated with each other and with 
the structure of the program. 

One drawback to this approach is that both the collection and 
the post-processing of trace files is expensive. For programs that 
perform frequent synchronization, the trace files can be 
prohibitively large. Consider a program running on a hypothetical 
shared memory multiprocessor with 20 S-MIPS processors, each 
of which on average performs a monitorable event (such as 
acquiring or releasing a spin lock) every 500 instructions, and 
where each event record is 10 bytes. If the program being 
monitored executes for one minute, the trace file will be 100 
megabytes. Similar estimates appear in [Malony et al. 19891 to 

f Origidly, Fowler et al. impluwnwd trace coUe~ti~ to aid debugging the 
comctness of parallel pmgmnams; they then showed that the same support 
could be used for progmam tuning. An implication of our wodr is that the sup- 
port needed for correctness debugging is not necessary for performance tun- 
ing. 

justify hardware support for recording traces. 

Nevertheless, tools have been developed that collect trace data 
and post-process it into useful measures. We argue later that the 
much of the information provided by these tools can be measured 
or approximated more efficiently by sampling. 

Monit [Kerola & Schwetman 19871, for example, uses a trace 
file to compute the behavior of higher-level objects, such as the 
number of busy processors or the number of threads waiting to 
enter each critical section. The behavior of each object is then 
plotted on a timeline. After identifying those phases of execution 
with few busy processors, the programmer can visually correlate 
these phases to the behavior of other objects (discovering, for 
example, that parallelism is low while a specific critical section 
has a large number of waiting threads). 

Although Monit’s display is at a higher level than the raw trace 
data, it still can present a massive amount of data to the 
programmer. Only a few timelines will fit on a screen at a time, 
but Monit provides little help in identifying those containing 
information relevant to the measured lack of parallelism. As the 
complexity of the application increases, so does the number of 
objects to monitor, making focusing more important. 

IPS [Miller & Yang 19871 attempts both to guide the 
programmer to performance problems and to provide useful 
statistics about those problems. Its central focusing metric is the 
time each process and procedure spends executing the critical 
path. The critical path is the longest path through the task graph - 
the series of sequential pieces of code (that cannot be done in 
parallel because they communicate one to the next) that takes the 
longest to execute. By definition, the elapsed execution time of 
the program can be reduced only by shortening the length of the 
critical path. 

One drawback to critical path analysis is its expense: it requires 
a complete trace of all interprocessor communication. (To be fair, 
IPS was originally designed to measure programs running on local , 
area networks of uniprocessors. Because of the high latency and 
low bandwidth communication on these systems, only programs 
with relatively infrequent synchronization can run efficiently. 
Under these conditions, the size of the trace file would be 
manageable.) Yet critical path analysis is still just a heuristic: 
there is no guarantee that reducing the critical path will actually 
reduce the execution time of the program. There may be another 
path through the task graph with almost the same length that will 
be unaffected by the change. Critical path analysis also does not 
indicate how to reduce a procedure’s completion time. One way 
is to reduce its sequential execution time. Another is to 
parallelize it. But parallelization will only be of benefit if there 
are idle processors to exploit when the procedure runs. 

3. Quartz: Its Functionality, Applicability, and 
Implementation 

Our goals for a tool for tuning parallel program performance 
are: 

- It should identify the sections of source code most responsible 
for poor performance. 

- It should present its measurements hierarchically, to allow top- 
down tuning according to the logical structure of the program. 

-It should measure parallelism (properly representing spin- 
waiting as a loss of parallelism) and it should tie this to the 
source code, identifying where re-structuring to increase 
parallelism is necessary and where code optimization is 
appropriate. 
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-It should measure program behavior in sufficient detail to 
provide some insight into the type of re-structuring that will 
work. 

-It should do all this efficiently and without significantly 
affecting the behavior of the measured program. 

Quartz meets these criteria. Before describing it, we must 
define some terms. A thread (or “lightweight process”) is a 
sequential execution stream; it is the basic unit of parallel work. 
A thread starts another thread by giving it a procedure to run; the 
initial thread continues in parallel with the created thread. Thread 
creation is thus essentially an asynchronous procedure call. If 
threads are implemented as part of an application library, they can 
be within an order of magnitude of the cost of a procedure call 
[Anderson et al. 19891; they can thus be used for procedure-level 
parallelism. 

Threads can synchronize with one another. One type of 
synchronization object is a lock, used to ensure mutually 
exclusive access to a shared data structure. Another is a condition 
or barrier used to enforce a data dependency, as when one thread 
reads data produced by some other thread. In both cases, 
synchronization may cause the thread to wait, either because the 
lock is busy or because the data it requires has not been produced. 
Since there may be more threads than processors, a waiting thread 
has a choice: either spin until the lock is free or the data is 
available, or block, relinquishing the processor to run another 
thread. Thus, there is a difference between a program’s effective 
parallelism, the number of busy (not idle or spinning) processors, 
and its nominal parallelism, the number of runnable threads, some 
of which may be spinniig. Our measurements refer to the activity 
of just the processors executing the application, and not any 
processors concurrently executing other applications. 

The remainder of this section is divided into three sub-sections. 
The first describes the functionality of Quartz: the specific 
metrics that it reports. The second shows how these metrics can 
be used to detect and fix a number of performance problems that 
have been identified by others as commonly occurring. The third 
provides an overview of the implementation of Quartz. A case 
study in which Quartz was used to tune a specific application is 
described in Section 4. 

3.1. The Functionality of Quartz 
The principal measurement made by Quartz is normalized 

processor time, defined in Equation 1, where P is the number of 
processors. Measuring this weighting function for every 
procedure allows us to compare them according to their effect on 
overall performance. 

’ Processor time with i processors concurrently busy c 
i=l i 

Equation 1: Normalized Processor Time 

To understand the rationale for this metric, consider a program 
with two functions, one that always executes sequentially when 
no other processors are busy and one that computes its result 
completely in parallel. If each function takes the same total 
processor time, the sequential one requires a factor of P greater 
elapsed time (where P is the number of processors) and will have 
a much greater impact on program performance. If the two 
functions take the same elapsed time, then the same percentage 
improvements in either will have equal impact on performance. 

Further, knowing the concurrent effective parallelism while a 
routine executes is more important than knowing the effective 

parallelism it generates: a serial routine that is always overlapped 
with other computation will have little effect on performance 
compared to a serial routine that always executes by itself. This is 
despite the fact that the ehxpsed time of the two functions is the 
same. 

Normalized processor time reflects these observations. Quartz 
also measures other program behavior; the principal performance 
measurements in Quartz are summarized in Table 1. 

For each procedure, synchronization object, and thread, and 
for the work done on its behalf: 

Normalized processor time. Each term of the sum is 
measured separately. 

Elapsed time spent in each state (busy, spinning, blocked, or 
ready), along with the average and the distribution of the 
number of runnable threads while it is in each state. 

Table 1: Principal Performance Measurements in Quartz 

To focus the programmer’s attention on those areas of the 
program that have the greatest impact on performance. we sort 
procedures by their normalized processor time plus that of the 
work done on their behalf. This includes work done 
synchronously or asynchronously (via threads). The program’s 
top-level procedure, then, has a normalized processor time equal 
to the elapsed time of the program; the functions it calls to do the 
work of the program divide that weight among them. Quartz’s 
ordering is analogous to what gprof does with processor time, 
except that Quartz uses a weighting function related to parallel 
performance. In both Quartz and gprof, the programmer can trace 
performance top-down through the program. 

Normalized processor time indicates where improvements can 
be made. Quartz also provides information about what can be 
done to improve performance. Part of this information comes 
from the measurement of concurrent parallelism needed for 
normalized processor time. This indicates whether performance 
can be improved by re-structuring to increase effective 
parallelism, or only by simple optimization. Certainly, procedures 
that always execute when all processors are busy will not benefit 
from further parallelism. 

Given that re-structuring is necessary, an accounting of the 
elapsed time spent by a procedure can help identify what kind of 
re-structuring is most likely to succeed. Quartz measures each 
procedure’s elapsed time spent busy, spinning, blocked, or ready 
to run, along with the average and the distribution of the number 
of threads that are available to run while the procedure is in each 
state. For example, if a procedure is busy executing and there are 
few other busy processors, then the nominal parallelism indicates 
whether the other processors are idle or spinning. If idle, then 
performance can be improved by parallelizing the procedure 
(creating threads to do its work), provided this is possible. If 
spinning, then there is no benefit to creating more threads. 
Similarly, threads that are blocked or spinning represent deferred 
work; if the program were re-structured to reduce or eliminate 
waiting, then parallelism would increase. 

Quartz makes the above measurements separately for each 
procedure, synchronization object, and thread. Measurement 
based purely on procedures would ignore the fact that parallel 
performance can depend more on the data object passed to a 
procedure than on the implementation of the procedure itself. It is 
only mildly interesting to know the total time spent waiting at all 
barriers; it is much more useful to know that some specific barrier 

118 



accounted for most of that time. As a special case, the time spent 
executing in a critical section is attributed to the lock on that 
critical section. (Quartz also measures queue length distributions 
for synchronization objects.) Per-thread information allows us to 
determine if different threads executing the same procedure (on 
different data objects) have different performance. 

By measuring synchronization objects and threads in the same 
way as procedures, we can present the programmer a uniform 
focusing metric. All are ranked in the same way to simplify 
tracing performance through the program. For example, if 
contention for a lock determines performance, the lock object will 
have a high normalized processor time since its critical section is 
always executing while few other processors are. (Spin time is 
factored out in computing normalized processor time.) 

An important difference from gprof is that we explicitly 
measure the work done on behalf of a procedure or lock object. 
Gprof explicitly measures only the work done within each 
procedure, making the assumption that the processor time of its 
children is independent of who called them. Gprof uses the call 
graph (who called whom, and how many times) to propagate 
processor times from callee to caller according to the caller’s 
percentage of the total calls to the callee. We cannot make a 
similar assumption. The effective and nominal parallelism while 
a procedure executes depend not only on what that procedure 
does, but also on the parallelism when it is called. Different calls 
to a low-level formatting routine might have vastly different 
concurrent parallelism. Still, even though it is not useful for 
propagating our measurements, Quartz does record the call graph 
(including calls to/from synchronization objects) to help the 
programmer in tracing performance top-down through the 
program. 

3.2. Detecting Frequently Encountered Performance 
Problems Using Quartz 

In this section, we argue by example that Quartz is useful for 
detecting and fixing a number of common parallel program 
performance problems. We asserted in Section 1 that although 
parallel performance in general is much more complex than 
sequential performance, experience suggests that poor parallel 
performance typically arises from a relatively small number of 
factors. One piece of evidence for this is Table 2, which lists the 
performance problems most frequently encountered by three 
“vendors” of parallel computing systems who participated in a 
working group concerned with “Sources of Performance 
Degradation” at the NSFKMU Workshop on Performance- 
E#icient Parallel Programming in 1986. The key observation is 
that none of the problems involve subtle timing issues that might 
require a complete trace of synchronization activity. 

The first issue in tuning any parallel program is to identify 
which segments are responsible for the poor performance. As 
with sequential programs, we would expect that of the large 
number of functions in a parallel program, a relative few will be 
responsible for most of the program’s runtime. By computing a 
weight based on both processor time and parallelism, and by 
accounting for all of the activity done on behalf of a function, 
Quartz allows the programmer to walk through the program 
hierarchy to find those few functions. Once the general area of 
difficulty has been located, the approach to tuning depends on the 
situation: 

3.2.1. Functional Decomposition 

Some computations have several functionally distinct parts, 
each assigned to a distinct processor. An example of this is a 
pipelined compiler: separate threads (and processors) execute the 

Sequent 

l.A problem decomposition that puts most of the work in 
one thread (e.g., the optimizing phase of a concurrent 
compiler or a “busy” region in a ray-tracing algorithm), so 
that little real concurrency can be realized. 

2.Memory thrashing due to a poor choice of operating 
system parameters. 

3.Excessive I/O that is not overlapped with computation. 

4.A synchronous software structure, such as might arise 
from a very large granularity, a producer-consumer 
relationship with a small number of buffers, or the use of 
an unnecessarily restrictive synchronization construct (e.g., 
barriers where critical sections would suffice). 

Harris 

l.Synchronization overhead. 

2.Contention for shared variables, including counting 
semaphores, task queues, and the “problem heap”. 

3.Starvation due to a small problem size. 

WaTp 
l.Excessive I/O that is not overlapped with computation. 

2.Data dependencies in loops. 

Table 2: Frequently Encountered Performance Problems 
(NSFICMU Workshop on Performance-Ejjkieti 

Parallel Programming) 

scanner, parser, optimizer, and code generator, streaming results 
one to the next (Sequent #l in Table 2). Performance difficulties 
usually relate to load imbalance. If one phase has more work to 
do than the others, the others must sit idle waiting for it. If the 
optimizer is the bottleneck, the scanner and parser will have to 
wait for buffer space to forward their partial results, while the 
code generator must also periodically wait for results to be 
completed. 

Quartz would identify this problem: the thread executing the 
optimizer would have a longer execution time, spend more time 
executing when few other processors are busy, and thus have a 
larger normalized processor time than the threads executing the 
other phases. Other tools would also handle this case. For 
example, a display of processor activity across time would show 
that the processor executing the optimizer was always busy, while 
the other processors sometimes wait. (Of course, many tools that 
display processor activity fail to relate processors to procedures.) 
Similarly, a critical path analysis would show that the execution 
of the optimizer constituted most of the critical path. 

It is also easy with Quartz to identify the phase that is the 
secondary bottleneck - in the compiler example, the one that 
would limit performance if the optimizer were improved. If the 
code generator ran for almost as long as the optimizer, then it 
would have slightly less normalized processor time, indicating 
that attention should be focused on improving both phases. It is 
difficult to extract this information from a timeline. since all 
phases but the optimizer periodically block. Critical path analysis 
only identifies the primary bottleneck, so iteration would b=e 
required. 

Another performance problem with pipelines is starvation 
(Harris #3). This occurs if the problem size is small relative to the 
time for each phase to start streaming results. In this case, the 
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later phases spend much of the total time waiting to start; the 
earlier phases finish well before the program completes. Quartz 
would show that each phase spends much of its elapsed time idle. 
(Normalized processor time would highlight the first and last 
stages, since their work is the least overlapped with other stages.) 
A solution is to reduce the time before each phase starts streaming 
its first results. 

3.2.2. Data Decomposition 

Some programs compute the same function on many pieces of 
data. These programs can be parallelized by assigning different 
pieces of data to different processors. Unlike functional 
decomposition, each processor executes the same function at the 
same time. Again, a frequent issue is load balancing: the 
required computation may vary widely for different pieces of 
data. An example of this is ray-tracing where part of the picture 
has the majority of the activity (Sequent #l); another is a fluid 
dynamics computation where turbulence is concentrated in certain 
regions. In such situations, performance is limited by the 
processor assigned to the data regions with the longest execution 
times. 

Whether a different thread is used to run the function on each 
object, or on collections of objects, Quartz will show if the 
execution times are balanced. If they are not, one of the threads 
will execute while other processors are idle, and there will be long 
average queue lengths at the barrier that checks that all threads 
have completed before continuing. 

It can be difficult to relate the performance of a thread to the 
symbolic names of the data objects it works on, particularly in 
conventional (non-object-oriented) languages. For instance, the 
procedure a thread is to execute can be passed an index that only 
implicitly refers to the object it is to work on. As a result, we rely 
on the programmer to make this connection by providing a 
symbolic name when each thread is created. In an object-oriented 
language such as C++ we could extend Quartz not only to keep 
track of the symbolic names of data objects passed to threads, but 
also to explicitly take measurements for each procedure-data 
object pair, to allow both an object-oriented and a procedure- 
oriented view of performance. We intend to port Quartz to Presto 
[Bershad et al. 19881, a C++ based parallel programming system, 
to further explore this topic. 

3.2.3. Synchronization 

The need to synchronize the work of different processors can 
cause another class of performance problems. For instance, 
execution time is increased by the overhead of parallelizing the 
job: distributing work to various processors, serializing access to 
shared data structures, and enforcing data dependencies (Harris 
#I). Even if the program is perfectly parallel, this time can 
dominate. Fortunately, it is easy to measure. If there is a 
sequential version of the program, many of its functions will 
correspond to equivalent functions in the parallel version, and the 
execution time of each function can be directly compared to 
determine the effect of overhead. (The execution time added by 
monitoring must of course be factored out.) Alternately, given 
measurements of the performance of the thread package, the 
number of calls to each thread function, such as to create a thread 
or to acquire a lock, can be used to compute overhead. 

Performance can also be affected by waiting for data 
dependencies to be satisfied (Warp #2; Sequent #4) or for access 
to a busy critical section (Harris #2). Waiting threads represent 
deferred parallelism; Quartz identifies this by measuring queue 
lengths and the average wait time (the total elapsed time spent 
waiting divided by the number of accesses to that synchronization 

object). For example, if a loop data dependency limits 
parallelism, there will be a long queue length at the point where 
the data dependency is enforced. Note that two of the examples 
of contention cited in Table 2 are for locks within the thread 
package; we measure contention for these locks in the same way 
that we measure locks in the application code. 

Even if there are many threads waiting on a synchronization 
object, the question of whether it makes sense to re-structure the 
program to release that parallelism depends on whether the time is 
spent spinning or blocked, and on the nominal parallelism. When 
there are at least as many runnable threads as processors, blocked 
threads have no impact on Performance beyond the initial context 
switch. Re-structuring to increase the number of ready threads 
does not help in this case. By contrast, spin-waiting always 
wastes processing cycles, regardless of the number of runnable 
threads, but if there are excess runnable threads then performance 
could be improved by blocking instead of spinning. 

If re-structuring is necessary, the number of threads waiting at a 
lock can be decreased by any of: reducing the number of accesses 
(from the call graph), thereby reducing contention; decreasing the 
size of the critical section (its busy time); distributing accesses 
more evenly across time (if the queue length is sometiies zero 
and sometimes very long); or modifying the protected data 
structure to allow parallel accesses (for example, by giving each 
processor a separate copy). 

Waiting for data dependencies can be reduced by computing the 
data earlier, or, if an overly restrictive synchronization construct 
was used, by allowing the thread to continue temporarily without 
it. Fuzzy barriers are a special case of the latter [Gupta 19891. 

3.2.4. Input/Output 

The time spent doing I/O was mentioned twice in Table 2 
(Sequent #2, Warp #l). If a program reads a significant amount 
of data from an I/O device, then the reads should be overlapped 
with the computation; in other words, the reads should be started 
early so that they complete before the data is needed. The natural 
style, however, is synchronous: when the data is referenced, start 
a disk read and wait until it returns. 

As a result of the operating system interface on the Sequent, the 
current implementation of Quartz measures time spent doing I/O 
as processor time, attributed to the procedure that performs the 
I/O. If the I/O is not overlapped, the relative importance of the 
time spent waiting in the kernel will be increased because 
processors will be idle waiting for the I/O to finish. Given kernel 
support for threads, Quartz could monitor the kernel disk queue as 
a normal synchronization object. 

If a program spends a lot of time doing disk accesses, it may 
benefit from exploiting parallelism in the disk sub-system. 
Tuning a program’s use of parallel disks is in many ways similar 
to tuning its use of parallel processors, although initial file 
placement is an issue as well. We expect that some of the 
techniques we have described in this paper could be applied to 
this problem. 

3.2.5. Limitations 

We have designed Quartz to measure only those aspects of 
program behavior that are needed to detect and fix frequently 
occurring parallel performance problems. The tradeoff is that 
Quartz therefore does not help with every performance problem 
that can occur in parallel applications. 

When threads execute at the same time, Quartz weights each 
equally even though only one is on the critical path. As an 
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example, consider a program with a critical section that restricts 
parallelism. The processor time spent executing outside of the 
critical section can appear important, because there are few other 
processors concurrently executing, even though reducing or 
parallelizing it will have no effect on program’s performance. 
Although this can seem anomalous, Quartz’s metric can help in 
this case by identifying code that may be a secondary bottleneck. 
We are currently investigating ways of augmenting Quartz’s 
measurements to address this limitation. For instance, each time a 
processor goes idle, we could measure how long it stays idle, and 
then add that time to processor time of the code that causes the 
processor to become busy. This metric correctly handles busy 
critical sections (the time spent waiting for the lock would be 
attributed to the critical section), but it does worse than 
normalized processor time in other situations. 

Quartz also does not measure thread scheduling decisions 
(although problems can sometimes be identified, for instance, if a 
thread spends a long time waiting for a processor and then 
executes serially) or contention for the bus or memory, even 
though these can affect performance. 

33. The Implementation of Quartz 

We have implemented Quartz on a Sequent Symmetry shared 
memory multiprocessor [Sequent 19881. The Sequent runs 
DYNIX, a multiprocessor adaptation of UNIX. Since DYNIX 
processes are too expensive to use directly as threads, we built our 
system by adding monitoring code to the thread package 
described in [Anderson et al. 19891. That thread package works 
by creating a DYNIX process for each processor, and then 
multiplexing threads onto the DYNIX processes. Our 
implementation did not modify DYNIX or the C compiler; it used 
only the support they provide for gprof. 

Our implementation addresses the twin concerns of efficiency 
and accuracy. Because program tuning is iterative and interactive, 
a tool’s usability depends on the elapsed time from program 
compilation to report production. Accuracy is trickier. Unlike 
sequential programs where the execution overhead due to 
monitoring is easily factored out, a change to a parallel program 
can alter its behavior in subtle ways. For instance, monitoring 
code that increases the time that a lock is held may increase the 
contention for the lock. Analogously, instrumentation added 
outside of a critical section will cause a net decrease in the 
contention for that critical section, 

Our approach is to use statistical sampling by a dedicated 
processor. A set of processors executes the program normally, 
maintaining their state in shared memory by special code executed 
during thread operations and at procedure entry and exit. This 
state is then sampled by a dedicated processor that does not 
participate in executing the program. We impose no 
synchronization beyond hardware interlocks between the 
sampling processor and the other processors; rarely-accessed 
locks are used by the normally executing processors in building 
the call graph. 

We sample by means of a dedicated processor rather than 
interrupts because interrupts cannot provide accurate correlations 
between processor state and overall program state. On the 
Sequent, as with most multiprocessors, interrupts are fielded by 
each processor asynchronously; by the time the program state is 
sampled, it may have changed in a way affected by the fact that 
there was an interrupt. For example, if the interrupted processor 
is holding a lock, the queue length at the lock will be greater than 
a purely random sample would indicate. Similarly, measuring a 
procedure’s execution time directly with timestamps does not 
allow us to correlate that time to the number of busy processors. 

Of course, although it reduces the effect of monitoring on the 
measured program, sampling by a dedicated processor does not 
eliminate distortion. Updating state adds time to the computation, 
and even the recording of samples by the dedicated processor can 
increase bus and cache coherence traffic, thereby slowing other 
processors. 

The nominal and effective parallelism are maintained in 
centralized counters, updated when a thread is added to the ready 
queue and when a processor becomes idle or starts or stops 
spinning. The counters are maintained with atomic increment and 
decrement instructions, to avoid making access to them a 
bottleneck. Most multiprocessors, including the Sequent, support 
such instructions. 

In addition to the execution stack, we maintain a profile stack of 
monitored procedures for each thread. This allows us to record 
both the time spent in a procedure and the time spent on behalf of 
the procedure. The dedicated processor copies the number of 
busy and ready threads, copies the profile stack, and then bumps 
the appropriate measurement record for each different procedure 
on the stack. (Recursive procedures are counted only once.) 
While the stack may have changed between recording the number 
of busy threads and copying the stack, reducing consistency, 
sampling itself is only an approximation. In particular, we do not 
lock the profile stack to prevent changes from occurring; this 
would unnecessarily perturb the execution of the program. Note 
that locking would be harder to avoid if we were to sample 
directly from the execution stack since that would require tracing 
the chain of frame pointers. 

The profile stacks are of fixed size, established at compile time. 
Overflows are caught, prevented, and later reported to the 
programmer. We expect that overflows will occur only rarely, 
since we push a procedure onto the stack only if the previous 
entry is different, eliminating immediately recursive calls, the 
most common cause of arbitrarily deep stacks. This also has the 
effect of reducing the work of the sampling processor. 

We use only the normal compiler support provided for gprof. A 
monitoring routine is called in the prologue of each profiled 
procedure. Exactly as gprof does, we use this routine to update 
the count of calls to the procedure from its caller; we also push the 
procedure onto the profile stack. Because the compiler inserts 
only a prologue call, we manipulate the execution stack so that 
when the procedure returns, it returns first to our code that pops 
the profile stack, and then to the caller procedure. This is a bit 
inefficient, but easy to implement. 

To simplify mapping from the entries on the profile stack to the 
measurement data for each procedure, we assign each procedure a 
unique ID. The gprof monitoring routine is passed a pointer to a 
procedure-specific location; this was originally used to count the 
number of calls to the procedure. After the program has been 
linked, we modify the object file so that each procedure’s location 
holds a unique ID; this ID is what is pushed onto the stack and 
used to index the procedure’s data record. Gprof, by contrast, 
uses the address in the program counter to index the data record 
for a procedure; this requires space proportional to the size of the 
code segment. By using procedure IDS, Quartz requires space 
proportional to the number of procedures times the number of 
processors. 

The synchronization routines in our thread library are specially 
modified. Each object has a data record containing the call graph 
and execution time information. When the object is accessed, the 
call graph is updated and a pointer to the synchronization object is 
pushed, the pointer is popped when the thread no longer must 
wait. Locks are handled as a special case. Normally, the 
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procedure that acquires a lock is the one that releases it, in which 
case we are safe to push the lock before it is accessed and pop it 
after it is released. This attributes the time spent waiting for and 
holding the lock to the lock object, and only adds two instructions 
to the inside of the critical section: setting the state of the thread 
to no longer spinning, and incrementing the number of busy 
processors. 

When a thread is created, we copy the profile stack from the 
creating thread to the new thread. This allows the sampling 
processor to attribute execution time across asynchronous 
procedure calls. 

Quartz has two other useful features. More than one processor 
can be dedicated to sampling to improve measurement accuracy 
and resolution. Quartz automatically removes from its 
measurements most of the time spent by the normally executing 
processors in updating their monitored state. 

Our system does not currently provide for interactive control of 
which routines are to be profiled. This would be easy to add, but 
in truth, we doubt that it is the right approach. Aral and Germer 
[1988] argue that gprofs overhead is too high to allow only 
compile-time control. They use this to motivate Parasight, a 
system for execution-time code modification and re-linking. But 
the overhead of gprof. and of our system, could be dramatically 
reduced with a small amount of compiler support. For example, 
most of the time in gprof is spent building the call graph; it crawls 
up the execution stack to find the caller address, hashes on it, 
checks the callee address, etc. A simpler method is to determine 
caller-callee pairs at compile time and to simply bump a statically 
allocated counter before each call. Calls made via function 
pointers, a rarer case, could use the current, slower approach. 

4. A Case Study: Using Quartz to Tune a CAD Circuit 
Verifier 

We argued “abstractly” in Section 3.2 that Quartz is well-suited 
to detecting and fixing a spectrum of parallel program 
performance problems that have been identified by others as 
commonly occurring. Of course, the crucial question is whether 
Quartz is an effective tool in practice. In this section, we describe 
our experience in using Quartz to tune an existing parallel 
application. 

The application we tuned, called Verify [Ma et al. 19871, 
compares two different circuit implementations to determine 
whether they are functionally (Boolean) equivalent. It was 
written for a dissertation to demonstrate that an existing 
production CAD program could be parallelized with good 
speedup. The program has 2900 lines of C code, and was written 
for a Sequent Balance with twelve processors. The circuits we 
used as inputs in our teats were combinational benchmarks for 
evaluating test generation algorithms. 

The initial speedup of Verify on our Sequent Symmetry was 
already good: 9.2 using 18 processors. (Because no sequential 
version of the program was available, speedup was measured as 
the time to run the program, including process creation and I/O, 
on one processor divided by the time to run it on 18 processors.) 
Even though neither of us was familiar with the program or with 
CAD algorithms in general, over the course of several hours we 
were able to improve its performance by 40%. Its initial runtime 
was 114.4 seconds on one processor and 12.4 seconds on 18; with 
our changes, the runtime dropped to 7.7 seconds on 18 processors. 
Most of this improvement came within the first few minutes of 
using Quartz, demonstrating the utility of using normalized 
processor time as a weighting function. 

Figure 1 shows a portion of the Quartz outnut when run on the 
initial version of Verify. After the data has been collected, Quartz 
can interactively draw a graph (on an X Window display) of the 
total normalized processor time of any monitored procedure or 
synchronization object as a function of the number of 
concurrently busy processors. Normalized processor time is 
based on each routine’s processor time divided by its wncurrent 
parallelism, whether the parallelism is due to that routine or to 
other activity in the program. The top-level routine “main”, 
however, is responsible for all of the activity in the program; its 
graph of normalized processor time is equivalent to the elapsed 
time the program spent with each number of busy processors. 
Different shadings highlight the role of the routine itself, and its 
children, in the routine’s total normalized processor time. 

Procedure: main 
Normalized processor time: 16.36 sec. (100%) 

8 

1 

1 2 3 . . . 15 16 17 18 
number of concurrently busy processors 

Name Normalized Calls 
processor time 

awork 10.43 (64%) 18 

f$#/ create - cone 3.62 (22%) 2 

q input 1.93 (12%) 2 

n main self .31 ( 2%) 

Figure 1: Initial Quartz Output for Verify “main” 

The Quartz output for Verify shows that although most of the 
program is indeed highly parallel, a significant portion of its 
runtime is spent executing serial code. Further, Quartz identifies 
“create-cone” as being responsible for most of this serial 
execution time. By examining the graph for “create-cone”, and in 
turn the graph for its child with the largest normalized processor 
time, we found that the program was spending a quarter of its time 
executing print routines in order to log a trace of shared data 
structures as they were created. 

While Quartz easily identified this performance problem, gprof 
would not have. The logging routines accounted for less than 2% 
of the program’s sequential processor time, but because they 
occurred during the serial initialization phase of the program, they 
accounted for a much larger share of the parallel performance. 
Before Quartz pointed it out, we did not know that the program 
was even doing logging. 

Quartz allowed us to make an informed choice about a 
performance tradeoff: we could substantially improve 
performance by removing logging, or if this functionality was 
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central to the program, at least we would know by how much it 
reduced performance. Hypothesizing that it was not important, 
we made logging a command line option. With logging turned 
off, the program’s parallel performance improved by close to the 
amount predicted by Quartz, while its serial performance 
improved only slightly. As a result, the program’s speedup 
improved from 9.2 to 12.2. 

When we re-profiled the modified program, Quartz showed that 
a significant fraction of the program’s runtime was still spent in 
the sequential initialization phase. To reduce this, we read in and 
allocated data structures for the two input circuits in parallel with 
each other and with the operating system process creation needed 
to start the program running on all 18 processors. This improved 
performance somewhat to a speedup of 12.9. 

At this point, we stopped trying to further pamllelize the 
program. Once a program’s speedup is high, further 
improvements become much more difficult. The routines 
responsible for the difference from ideal speedup account for only 
a small fraction of the total program runtime; thus even radical 
improvements to these routines can reduce overall runtime only 
slightly. 

In our case, Quartz showed that virtually all of the program’s 
runtime was now being spent executing entirely in parallel. The 
remaining time was split between processor starvation during 
initialization and termination. During initialization, Quartz 
showed that performance was limited by the fact that the input 
files were not balanced (one circuit was larger and therefore took 
longer to read in than the other). During termination, the problem 
was that some processors finished early and had to wait for the 
rest to finish; dividing the problem into smaller size sub-problems 
might help this problem. Fixing these problems seemed to be 
more effort than it was worth. 

Instead, we noted that small changes in the routines that account 
for most of the parallel execution time would have a large relative 
effect on runtime. According to Quartz, two routines accounted 
for over half the execution time of the modified program, and we 
were able to improve performance somewhat with a few quick 
tweaks to these routines. (These routines were already highly 
tuned from the original sequential program.) 

Table 3 summarizes the changes that we made to Verify and 
their effects on sequential and parallel performance. Note that our 
last improvement in fact decreased the program’s speedup. By 
reducing the execution time of the parallel portion of the program, 
we increase the relative importance of the program’s sequential 
component. 

Table 3: Performance Effect of Changes to Verify 

A major motivation behind Quartz is efficiency. We measured 
the overhead Quartz added to this application. Quartz increased 
the elapsed runtime of Verify by roughly the same amount as 
gprof: about 70%. (While Quartz is able to remove most of this 
overhead from its measurements, some overhead does appear in 
the graph in Figure 1.) Quartz is as fast as gprof because even 
though Quartz does more work on each procedure call and 
synchronization event, it need not periodically interrupt (and 

thereby slow) the execution of the program, because a dedicated 
processor is used for sampling instead. Verify makes stringent 
demands on Quartz: it generates roughly 9 million procedural and 
synchronization events (roughly 1 million per second when 
running on 18 processors). Even with 18 processors running, a 
single dedicated sampling processor was able to sample each 
processor’s activity every 6 milliseconds, faster than gprof’s 
sampling rate on DYNIX. 

Something that we did not expect was demonstrated by using 
Quartz on a real application: there is less “performance locality” 
in parallel programs than in sequential ones. The top eight 
procedures account for 95% of the elapsed time of Verify on one 
processor. With 18 processors, though, it takes over 20 
procedures to reach the same 95% level. In retrospect, the reason 
is obvious. The routines that account for most of the time on one 
processor are parallel&d and therefore account for much less of 
the program’s runtime on multiple processors; at the same time, 
routines that take only a small amount of processor time can 
become important if they run sequentially. 

5. Implications for Other Systems 

While we have implemented Quartz on a shared memory 
multiprocessor, our work has implications for other systems. 

On multiprocessors with distributed memory, such as the Intel 
Hypercube, a dedicated sampling processor would not have 
efficient access to the state of other processors. Explicit messages 
would have to be used to update the counts of effective and 
nominal parallelism, as well as the procedures each processor was 
executing. A further problem is that programs on these systems 
are often explicitly written to use a specific number of processors 
because of the need to explicitly control the communication 
pattern; removing one for sampling might require re-writing the 
program. 

Alternative approaches also have significant drawbacks on such 
systems. In particular, recording and post-processing a complete 
trace may already be impractical for some programs, and will 
become more so as distributed memory multiprocessors support 
faster rates of interprocessor communication. 

Efficient sampling could be implemented given hardware 
support for stopping all processors at close to the same time (i.e., 
by allowing a host computer to send parallel interrupts each 
processor). One of the reasons for using a dedicated processor is 
that interrupting any single processor to do sampling can distort 
the behavior being measured. If all were stopped together, the 
sample could be taken from that snapshot without measurement 
error. The sampling could be implemented efficiently by using 
the processing power of the stopped processors. 

Absent hardware support, it may be possible to exploit the 
characteristics of parallel programs on distributed memory 
multiprocessors. Because of the requirement that interprocessor 
communication be explicitly programmed using messages, these 
systems are most commonly used for highly data-parallel 
applications with regular communication patterns. For these types 
of programs, at any point during the computation, each processor 
executes roughly the same section of code, although one may 
finish before another. As a result, sampling the behavior of each 
individual processor, and not the global state, may yield a 
sufficiently detailed picture of program performance. 

The techniques used in Quartz also solve some problems with 
traditional approaches to tuning sequential program performance. 
One limitation to gprof is that it cannot be used to tune the 
implementation of operating system kernel-level routines, since 
interrupt-driven sampling cannot measure code that runs with 
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interrupts disabled. By using a separate processor to do sampling, 
however, we would be able to accurately measure kernel-level 
execution. Note that by avoiding synchronization between the 
executing processors, or between them and the sampling 
processor, the processor in the kernel can execute the profiling 
code even if it holds the low level scheduler lock. 

Similarly, by using a profile stack for sampling, we are able to 
account correctly for execution time spent out of the monitored 
address space. Because of the way gprof propagates execution 
time spent on behalf of a procedure, it carmot accurately attribute 
time spent executing in non-profiled code, or in the operating 
system on behalf of the program. However, a trend in the design 
of operating systems and large applications is to decompose them 
into separate modules in different address spaces, so that 
hardware protection mechanisms can be used for failure isolation. 
Much of the execution time of an editor, for instance, might be 
spent in another address space responsible for updating the 
display. The Performance of the entire decomposed system could 
be measured by sampling profile stacks shared among all address 
spaces. 

Data-oriented measurement can be helpful for tuning sequential 
programs as well as parallel programs. For some programs, 
knowing that a particular procedure accounts for a large 
proportion of the processing time may not be as useful as knowing 
that a particular object is expensive. For example, there is better 
graphics resolution in a more finely tiled sphere, but it also costs 
more to draw. Gprof introduces a systematic bias in measuring 
object-oriented program behavior because it assumes that a 
procedure call always takes the same amount of time to execute 
(i.e., that the time does not depend on the data that is passed). 
Quartz avoids this bias by propagating execution times explicitly. 
While we currently make only limited measurements of data- 
oriented performance behavior, our design is extensible to a more 
thorough object-oriented implementation. 

6. Conclusions 
Achieving good performance from parallel applications is both 

crucial and challenging. We have discussed the design rationale, 
functionality, implementation, and use of Quartz, a tool for tuning 
parallel program performance on shared memory multiprocessors. 

The philosophy underlying our work is that an effective tool for 
tuning parallel program performance must be based on a clear 
view of the causes of poor performance, and on a specific 
methodology for improving that performance. By being selective 
about what it measures and presents, Quartz can focus the 
programmer’s attention on the information needed to tune 
performance. Measurement efficiency also results from designing 
the tool to record just the important behavior. 

By relating the execution of sections of code and the use of 
certain data objects with the concurrent behavior of other 
processors, Quartz assists in identifying areas of the program 
where re-structuring is necessary to improve performance, and in 
gaining insight into the types of re-structuring that will work. 
Because Quartz organizes performance information according to 
the logical structure of the program, the programmer can tune 
performance in a top-down fashion. 
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