Thread Management for Shared-Memory

Multiprocessors

Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy

Department of Computer Science and Engineering
University of Washington
Seattle WA 98195

Abstract

Threads, or “lightweight processes,” have become a common and necessary component of new
languages and operating systems. Threads allow the programmer or compiler to express, create,
and control parallel activities, contributing to the structure and performance of programs.

In this article, we discuss the many alternatives that present themselves when designing a
support system for threads on a shared-memory multiprocessor. These alternatives influence the
ease, granularity, and performance of parallel programming. We conclude with a brief survey of
three contemporary thread management systems (Windows NT, Presto, and Multilisp), using

them to illustrate the issues raised in this article.

Index Terms — thread, multiprocessor, operating system, parallel programming, performance

1 Introduction

Disciplined concurrent programming can improve the structure and performance of computer pro-
grams on both uniprocessor and multiprocessor systems. As a result, support for threads, or
“lightweight processes,” has become a common element of new operating systems and program-
ming languages.

A thread is a sequential stream of instruction execution. A thread differs from the more tradi-

tional notion of a “heavyweight process” in that it separates the notion of execution from the other

state needed to run a program (e.g., an address space). A single thread executes a portion of a
program, while cooperating with other threads that are concurrently executing the same program.
Much of what is normally kept on a per-heavyweight-process basis can be maintained in common
for all threads in a single program, yielding dramatic reductions in the overhead and complexity of
a concurrent program.

Concurrent programming has a long history. The operation of programs that must handle
real-world concurrency (e.g., operating systems, database systems, and network file servers) can
be complex and difficult to understand. Dijkstra [Dijkstra 68] and Hoare [Hoare 74, Hoare 78]
showed that these programs can be simplified when structured as cooperating sequential threads
that communicate at discrete points within the program. The basic idea is to represent a single
task, such as fetching a particular file block, within a single thread of control, and to rely on the
thread management system to multiplex concurrent activities onto the available processor. In this
way, the programmer can consider each function being performed by the system separately, and
simply rely on automatic scheduling mechanisms to best assign available processing power.

In the uniprocessor world, the principal motivations for concurrent programming have been
improved program structure and performance. Multiprocessors offer an opportunity to use concur-
rency in parallel programs to improve performance, as well as structure. Moderately increasing a
uniprocessor’s power can require substantial additional design effort, as well as faster and more ex-
pensive hardware components. But, once a mechanism for interprocessor communication has been
added to a uniprocessor design, the system’s peak processing power can be increased by simply
adding more processors. A shared-memory multiprocessor is one such design in which processors
are connected by a bus to a common memory.

Multiprocessors lose their advantage if this processing power is not effectively utilized. If there
are enough independent sequential jobs to keep all of the processors busy, then the potential of a
multiprocessor can be easily realized: each job can be placed on a separate processor. However, if
there are fewer jobs than processors, or if the goal is to execute single applications more quickly,
then the machine’s potential can only be achieved if individual programs can be parallelized in a

cost-effective manner. Three factors contribute to the cost of using parallelism in a program:

Thread Overhead: The work, in terms of processor cycles, required to create and control a thread
must be appreciably less than the work performed by that thread on behalf of the program.
Otherwise, it is more efficient to do the work sequentially, rather than use a separate thread

on another processor.

Communication Overhead: Again in terms of processor cycles, the cost of sharing information

between threads must be less than the cost of simply computing the information in the context

of each thread.

Programming Overhead: A less tangible metric than the previous two, programming overhead

reflects the amount of human effort required to construct an efficient parallel program.

High overhead in any of these areas makes it hard to build efficient parallel programs. Costly
threads can only be used infrequently. Similarly, if arranging communication between threads is
slow, then the application must be structured so that little inter-thread communication is required.
Finally, if managing parallelism is tedious or difficult, then the programmer may find it wise to sac-
rifice some speedup for a simpler implementation. Few algorithms parallelize well when constrained
by high thread, communication, and programming costs, although many can flourish when these
costs are low.

Low overhead in these three areas is the responsibility of the thread management system, which
bridges the gap between the physical processors (the suppliers of parallelism) and an application
(its consumer). In this article, we discuss the issues that arise in designing a thread management
system to support low-overhead parallel programming for shared-memory multiprocessors. In the
next section, we describe the functionality found in thread management systems. Section 3 dis-
cusses a number of thread design issues. In Section 4, we survey three systems for shared-memory
multiprocessors, Windows NT [Custer 93], Presto [Bershad et al. 88], and Multilisp [Halstead 85],

focusing our attention on how they have addressed the issues raised in this article.

2 Thread Management Concepts

2.1 Address Spaces, Threads, and Multiprocessing

An address space is the set of memory locations that can be generated and accessed directly by a
program. Address space limitations are enforced in hardware to prevent incorrect or malicious pro-
grams in one address space from corrupting data structures in others. Threads provide concurrency
within a program, while address spaces provide failure isolation between programs. These are or-
thogonal concepts, but the interaction between thread management and address space management
defines the extent to which data sharing and multiprocessing are supported.

The simplest operating systems, generally those for older-style personal computers, support
only a single thread and a single address space per machine. A single address space is simpler and
faster since it allows all data in memory to be accessed uniformly. Separate address spaces are

not needed on dedicated systems to protect against malicious users; software errors can crash the

system but at least are localized to one user, one machine.

Even single-user systems can have concurrency, however. More sophisticated systems, such as
Xerox’s Pilot [Redell et al. 80], provide only one address space per machine, but support multiple
threads within that single address space. Because any thread can access any memory location,
Pilot provides a compiler with strong type-checking to decrease the likelihood that one thread will
corrupt the data structures of another.

Other operating systems, such as UNIX, provide support for multiple address spaces per ma-
chine, but only one thread per address space. The combination of a UNIX address space with one
thread is called a UNIX process; a process is used to execute a program. Since each process is
restricted from accessing data that belongs to other processes, many different programs can run at
the same time on one machine, with errors confined to the address space in which they occur. Pro-
cesses are able to cooperate by sending messages back and forth via the operating system. Passing
data through the operating system is slow, however; only parallel programs that require infrequent
communication can be written using threads in disjoint address spaces.

Instead of using messages to share data, processes running on a shared-memory multiprocessor
can communicate directly through the shared memory. Some UNIX systems allow memory regions
to be set up as shared between processes; any data in the shared region can be accessed by more
than one process without having to send a message by way of the operating system. The Sequent
Symmetry’s DYNIX [Seq 88] and Encore’s UMAX [Enc 86] are operating systems that provide
support for multiprocessing based on shared memory between UNIX processes.

More sophisticated operating systems for shared-memory multiprocessors, such as Microsoft’s
Windows NT and Carnegie Mellon University’s Mach operating system [Tevanian et al. 87] support
multiple address spaces and multiple threads within each address space. Threads in the same
address space communicate directly with one another using shared memory; threads communicate
across address space boundaries using messages. The cost of creating new threads is significantly
less than that of creating whole address spaces, since threads in the same address space can share
per-program resources. Figure 1 illustrates the various ways in which threads and address spaces

can be organized by an operating system.

2.2 Basic Thread Functionality

At its most basic level, a thread consists of a program counter (PC), a set of registers, and a stack
of procedure activation records containing variables local to each procedure. A thread also needs
a control block to hold state information used by the thread management system: a thread can

be running on a processor, ready-to-run but waiting for a processor to become available, blocked

U L0

one address space one address space
one threa multiple threads

U U U0 000

multiple address spaces multiple address spaces
one thread per address space multiple threads per address space

Figure 1: Threads and address spaces. MS-DOS is an example of a “one address
space, one thread” system. A Java runtime engine is an example of one address space
with multiple threads. The UNIX operating system is an example of multiple address
spaces, with one thread per address space. Windows NT is an example of a system

that has multiple address spaces and multiple threads per address space.

waiting for some other thread to communicate with it, or finished. Threads that are ready-to-run
are kept on a ready-list until they are picked up by an idle processor for execution. There are four

basic thread operations:

Spawn: A thread can create or “spawn” another thread, providing a procedure and arguments to
be run in the context of a new thread. The spawning thread allocates and initializes the new

thread’s control block and places the thread on the ready-list.

Block: When a thread needs to wait for an event, it may block (saving its PC and registers) and

relinquish its processor to run another thread.

Unblock: Eventually, the event for which a blocked thread is waiting occurs. The blocked thread

is marked as ready-to-run and placed back on the ready-list.

Finish: When a thread completes (usually by returning from its initial procedure), its control

block and stack are deallocated, and its processor becomes available to run another thread.

When threads can communicate with one another through shared memory, synchronization
is necessary to ensure that threads don’t interfere with each other and corrupt common data
structures. For example, if two threads each try to add an element to a doubly-linked list at the
same time, one or the other element may be lost, or the list could be left in an inconsistent state.
Locks can solve this problem by providing mutually exclusive access to a data structure or region
of code. A lock is acquired by a thread before it accesses a shared data structure; if the lock is held
by another thread, the requesting thread blocks until the lock is released. (The code that a thread
executes while holding a lock is called a critical section.) By serializing accesses, the programmer
can ensure that threads only see and modify a data structure when it is in a consistent state.

When a program’s work is split among multiple threads, one thread may store a result read by
another thread. For correctness, the reading thread must block until the result has been written.
This data dependency is an example of a more general synchronization object, the condition vari-
able, which allows a thread to block until an arbitrary condition has been satisfied. The thread
that makes the condition true is responsible for unblocking the waiting thread.

One special form of a condition variable is a barrier, which is used to synchronize a set of threads
at a specific point in the program. In the case of a barrier, the arbitrary condition is “have all
threads reached the barrier?” If not, a thread blocks when it reaches the barrier. When the final
thread reaches the barrier, it satisfies the condition and raises the barrier, unblocking the other

threads.

If a thread needs to compute the result of a procedure in parallel, it can first spawn a thread
to execute the procedure. Later, when the result is needed, the thread can perform a join to wait
for the procedure to finish and return its result. In this case, the condition is “has a given thread
finished?” This technique is useful for increasing parallelism, since the synchronization between
the caller and the callee takes place when the procedure’s result is needed, rather than when the
procedure is called.

Locks, barriers and condition variables can all be built using the basic block and unblock
operations. Alternatively, a thread can choose to spin-wait by repeatedly polling until an anticipated
event occurs, rather than relinquishing the processor to another thread by blocking. Although spin-
waiting wastes processor time, it can be an important performance optimization when the expected
waiting time is less then the time it takes to block and unblock a thread. For example, spin-waiting

is useful for guarding critical sections that contain only a few instructions.

3 Issues In Thread Management

This section considers the issues that arise in designing and implementing a thread management
system as they relate to the programmer, the operating system, and the performance of parallel

programs.

3.1 Programmer Issues
3.1.1 Programming Models

The flexibility to adapt to different programming models is an important attribute of thread sys-
tems. Parallelism can be expressed in many ways, each requiring a different interface to the thread
system and making different demands on the performance of the underlying implementation. At
the same time, a thread system that strives for generality in handling multiple models is likely to
be well-suited to none.

One general principle is that the programmer should choose the most restrictive form of synchro-
nization that provides acceptable performance for the problem at hand. For coordinating access to
shared data, messages are a more restrictive, and for many kinds of parallel programs, more appro-
priate form of synchronization than locks and condition variables. Threads share information by
explicitly sending and receiving messages to one another, as if they were in separate address spaces,
except that the thread system uses shared memory to efficiently implement message-passing.

There are some cases where explicit control of concurrency may not be necessary for good

parallel performance. For instance, some programs can be structured around a Single Instruction

Multiple Data (SIMD) model of parallelism. With SIMD, each processor executes the same in-
struction in lockstep, but on different data locations. Because there is only one program counter,
the programmer need not explicitly synchronize the activity of different processors on shared data,
thus eliminating a major source of confusion and errors.

Perhaps the simplest programmer interface to the thread system is none at all: the compiler is
completely responsible for detecting and exploiting parallelism in the application. The programmer
can then write in a sequential language; the compiler will make the transformation into a parallel
program. Nevertheless, the compiled program must still use some kind of underlying thread system,
even if the programmer does not. Of course, there are many kinds of parallelism that are difficult

for a compiler to detect, so automatic transformation has a limited range of use.

3.1.2 Language Support

Threads can be integrated into a programming language; they can exist outside the language as a
set of subroutines that explicitly manage parallelism; or they can exist both within and outside the
language, with the compiler and programmer managing threads together.

Language support for threads is like language support for object-oriented programming or
garbage collection — it can be a mixed blessing. On one hand, the compiler can be made re-
sponsible for common bookkeeping operations, reducing programming errors. For example, locks
can automatically be acquired and released when passing through critical sections. Further, the
types of the arguments passed to a spawned procedure can be checked against the expected types
for that procedure. This is difficult to do without compiler support.

On the other hand, language support for threads increases the complexity of the compiler, an
important factor if a multiprocessor is to support more than one programming language. Further,
the concurrency abstractions provided by a single parallel programming language may not do quite
what the programmer wants or needs, making it necessary to express solutions in ways that are
unnatural or inefficient.

A reasonable way of getting most of the benefits of language support without many of the
disadvantages is to define both a language and a procedural interface to the thread management
system. Common operations can be handled transparently by the compiler, but the programmer
can directly call the basic thread management routines when the standard language support proves

insufficient.

3.1.3 Granularity of Concurrency

The frequency with which a parallel program invokes thread management operations determines
its granularity. A fine-grained parallel program creates a large number of threads, or uses threads
that frequently block and unblock, or both. Thread management cost is the major obstacle to fine-
grained parallelism. For a parallel program to be efficient, the ratio of thread management overhead
to useful computation must be small. If thread management is expensive, then only coarse-grained
parallelism can be exploited.

More efficient threads allow programs to be finer-grained, which benefits both structure and
performance. First, a program can be written to match the structure of the problem at hand, rather
than the performance characteristics of the hardware on which the problem is being solved. Just
as a single-threaded environment on a uniprocessor can prevent the programmer from composing a
program to reflect the problem’s logical concurrency, a coarse-grained environment can be similarly
restrictive. For example, in a parallel discrete-event simulation, physical objects in the simulated
system are most naturally represented by threads that simulate physical interactions by sending
messages back and forth to one another; this representation is not feasible if thread operations are
too expensive.

Performance is the other advantage of fine-grained parallelism. In general, the greater the length
of the ready-list, the more likely it is that a parallel program will be able to keep all of the available
processors busy. When a thread blocks, its processor can immediately run another thread provided
one is on the ready-list. With few threads though, as in a coarse-grained program, processors idle
while threads do I/O or synchronize with one another.

The performance of a fine-grained parallel program is less sensitive to changes in the number of
processors available to an application. For example, consider one phase of a coarse-grained parallel
program that does fifty CPU-minutes worth of work. If the program creates five threads on a five
processor machine, the phase finishes in just ten minutes. But, if the program runs with only four
processors, then the execution time of the phase doubles to twenty minutes: ten minutes with four
processors active followed by ten minutes with one processor active. (Preemptive scheduling, which
could be used to address this problem, has a number of serious drawbacks, which are discussed in
Section 3.2.2.) If the program had originally been written to use fifty threads, rather than five, then
the phase could have finished in only thirteen minutes — a reasonable degradation in performance.

Of course, one could argue that the programmer erred in writing a program that was dependent
on having exactly five processors. The program should have been parameterized by the number
of processors available when it starts. But, even so, good performance can’t be ensured if that

number can vary, as it can on a multiprogrammed multiprocessor. We consider further the issues

of multiprogramming in the next section.

3.2 Operating System Issues
3.2.1 Multiprogramming

Multiprogramming on a uniprocessor improves system performance by taking advantage of the
natural concurrency between computation and I/O. While one program waits for an 1/0O request,
the processor can be running some other program. Because the processor and 1/O devices are kept
busy simultaneously, more jobs can be completed per unit time than if the system ran only one
program at a time.

A multiprogrammed multiprocessor has an analogous advantage. Ideally, periods of low par-
allelism in one job can be overlapped with periods of high parallelism in another job. Further,
multiprogramming allows the power of a multiprocessor to be used by a collection of simultane-

ously running jobs, none of which by itself has enough parallelism to fully utilize the multiprocessor.

3.2.2 Processor Scheduling

Processor scheduling can be characterized by whether physical processors are assigned directly to
threads or are first assigned to jobs and then to threads within those jobs. The first approach,
called one-level scheduling, makes no distinction between threads in the same job and threads
in different jobs. Processors are shared across all runnable threads on the system so that all
threads make progress at relatively the same rate. In this case, threads from all jobs are placed
on one ready-list that supplies all processors, as shown in Figure 2. Although this scheme makes
sense for a uniprocessor operating system, it has some unpleasant performance implications on a
multiprocessor.

The most serious problem with one-level scheduling occurs when the number of runnable threads
exceeds the number of physical processors, because preemptive scheduling is necessary to allocate
processor time to threads in a fair manner. With preemption, a processor can be taken away
from one thread and given to another at any time. In a sequential program, preemption has a
well-defined effect: the program goes from the running state to the not-running state as its one
thread is preempted. The effect of preemption on the performance of a sequential program is
also well-defined: if n CPU-intensive jobs are sharing one processor in a preemptive, round-robin
fashion, then each job receives 1/nth the processor and is slowed down by a factor of n (modulo
the preemption and scheduling overhead).

For a parallel program, though, the effects of “untimely” processor preemption on performance

10

Processors

P 2 P3 P4

0 P1 P
Job A: thread 3

Job C: thread 2

Job A: thread 5 Common thread
ready-list

Job B: thread 9
Job G: thread 4

Figure 2: One-level thread scheduling

can be more dramatic. In the previous section, we saw how a coarse-grained program can be
slowed down by a factor of two when the number of processors is decreased from five to four. That
program exemplified a problem that occurs more generally with preemption and barrier-based
synchronization. The program had an implicit barrier, which was the final instruction in the phase.
Until all threads reached that instruction, the program could not continue. When one processor
was removed, it took twice as long to reach the barrier because not all threads within the job could
make progress at an equal rate.

Preemptive multiprocessor scheduling also affects program performance when locks are used,
but for a different reason than with barriers. Suppose a thread holding a lock while in a critical
section is unexpectedly preempted by the operating system. The lock will remain held until the
thread is rescheduled. As threads on other processors try to acquire the lock, they will find it held
and be forced to block. It is even possible that, as more threads block waiting for the lock to be
freed, the number of that job’s runnable threads drops to zero and the application can make no
progress until the preempted thread is rescheduled. The overhead of this unnecessary blocking and
unblocking slows down the program’s execution.

In the previous section, we saw how fine-grained parallelism can improve a program’s perfor-
mance by increasing the chance that a processor will find another runnable thread when its current

thread blocks. Unfortunately, a fine-grained parallel program that “packs” the ready-list interacts

11

Processors

PO P1 P2 P P4

3

Joh A: thread 8
Job A: thread 3
Job A: thread 7
Job D: thread 9 Job A: thread 10
Job D: thread 5

Job D: thread 16

Job D: thread 1
Job D: thread 12

Job-specific

thread ready-lists

Figure 3: Two-level thread scheduling

badly with the behavior of a one-level scheduler. In particular, when a program’s thread blocks
in the kernel on an I/O request, the parallelism of the program can only be maintained if the
kernel can schedule another of the program’s threads in place of the one that blocked. This benefit,
though, comes at the cost of increased preemption activity and diminished overall performance.

The problems of one-level scheduling are addressed by two-level schedulers. With a two-level
scheduler, processors are first assigned to a job, and then threads within that job are executed
only on the assigned processors. FEach job has its own ready-list, which is used only by the job’s
processors, as shown in Figure 3. Thread preemption may no longer be necessary with a two-level
scheduler since a preempted thread will only be replaced by another thread from the same job.
Further, for long intervals, a processor runs only threads from the same application, so the cost of
switching between threads is kept low.

In a two-level scheduling system, processors can be allocated to jobs either statically or dy-
namically. A static two-level scheduler never changes the number of processors given to a job from
its initial allocation; if some of those processors are needed by another job, the operating system
must preempt all of the job’s processors. A dynamic scheduler can adapt the number of processors
assigned to each job according to changing conditions.

Dynamic two-level scheduling can give better performance, because it overlaps periods of poor
parallelism in one job with periods of high parallelism in another. One difficulty with a dynamic
scheduler is that it requires more information from an application describing the current processor

requirements. As a result, though, dynamic scheduling can also more easily handle changes in the

12

number of running jobs. For example, when a job finishes, its processors can be re-allocated to a
running job whose parallelism is increasing. To avoid the problems of one-level scheduling, though,
it is crucial that the operating system coordinate with each application when it needs to preempt
processors (e.g., to avoid preempting a processor when it would seriously affect performance). A
dynamic scheduler always has the option, when it needs processors and no application has any

available, of reverting to a static policy.

3.2.3 Kernel- vs. User-Level Thread Management

Processor scheduling controls the allocation of processors to jobs. The operating system must
be responsible for processor scheduling because processors are a hardware resource and shifting a
processor from one job to another involves updating per-processor address space hardware registers.
Spawning a thread so that it runs on an already allocated processor, however, does not require
modifying privileged state. Thus, thread management and scheduling within a job can be done
entirely by the application instead of by the operating system. In this case, thread management
operations can be implemented in an application-level library. The library creates virtual processors
using the operating system’s processor scheduling interface, and schedules the application’s threads
on top of these virtual processors.

Unlike processor allocation, where a single system-wide scheduling policy can be used, thread
scheduling policies benefit from being application-specific. Some applications perform well if their
threads are scheduled according to some fixed policy, such as first-in-first-out or last-in-first-out,
but others need to schedule threads according to fixed, or even dynamically changing priorities.
For example, consider a parallel simulation where each simulation object is represented by its own
thread. Different objects become sequential bottlenecks at different times in the simulation; the
amount of parallelism can be increased by preferentially scheduling these objects’ threads.

It is difficult to provide sufficient thread scheduling flexibility with kernel-level threads. While
the kernel could define an interface that allows each application to select its thread scheduling
policy, it is unlikely that the system designer could foresee all possible application needs.

Thread management involves more than scheduling. A tradeoff exists between user- and kernel-
level thread management. A user-level implementation provides more flexibility and better perfor-
mance; implementing threads in the kernel guarantees a uniformity that eases the integration of
threads with system tools.

The downside of having many custom-built thread management systems is that there is no
“standard” thread. By implication, a kernel-level thread management system defines a single,

system-wide thread model that is used by all applications. Operating systems that support only

13

one thread model, like those that support only one programming language, can more easily provide
sophisticated utilities, such as debuggers and performance monitors. These utilities must rely on
the abstraction and often the implementation of the thread model, and a single model makes it
easier to provide complete versions of these tools since their cost can be amortized over a large
number of applications. Peripheral support for multiple models is possible, but expensive.

A standard thread model also makes it possible for applications to use libraries, or “canned”
software utilities. In the same sense that a standard procedure calling sequence sacrifices speed for
the ability to call into separately compiled modules, a standard thread model allows one utility to
call into another since they both share the same synchronization and concurrency semantics.

It is important to point out that two-level scheduling does not imply that threads are imple-
mented at the application level; the job-specific ready queues shown in Figure 3 could be main-
tained either within the operating system or within the application. Also, a user-level thread
implementation does not imply two-level scheduling, even though threads are being scheduled by
the application. This implication only holds in the absence of multiprogramming, or in cases where
processors are explicitly allocated to jobs. For example, a user-level thread implementation built on
top of UNIX processes that share memory suffers from the same problems relating to preemption

and I/0 as do one-level kernel threads because both are scheduled in a job-independent fashion.

3.3 Performance

The performance of thread operations determines the granularity of parallelism that an application
can effectively use. If thread operations are expensive, then applications that have inherently
fine-grained parallelism must be re-structured (if that is even possible) to reduce the frequency of
those operations. As the cost of thread operations begins to approach that of a few procedure calls,
several issues become performance-critical that, for slower operations, would merely be second-order
effects.

Simplicity in the thread system’s implementation is crucial to performance [Anderson et al. 89].
There is a performance advantage to building multiple thread systems, each tuned for a single type
of application. Even simple features that are needed by only some applications, such as saving and
restoring all floating point registers on a context switch, will markedly affect the performance of
applications that do not need the functionality. Each context switch takes only tens of instructions;
a feature that adds even a few more instructions must have a large compensating advantage to be
worthwhile. For example, the ability to preemptively schedule threads within each job makes the
thread management system more sluggish at several levels, because preemption must be disabled

(and then reenabled) whenever scheduling decisions are being made. These scheduling decisions

14

are on the critical path of all thread management operations.

Although kernel-level thread management simplifies the generation and maintenance of system
tools, it increases the baseline cost of all thread management operations. Just trapping to the
operating system can cost as much as the thread operation itself, making a kernel implementation
unattractive for high-performance applications. Further, the generality that must be provided by a
kernel-level thread scheduler hurts the performance of those applications needing only basic service.
Kernel-level threads are less able to “cut corners” by exploiting application-specific knowledge.
With a user-level thread system, the thread management system can be stripped down to provide
exactly the functions needed by an application and no more. User-level thread operations also
avoid the cost of trapping to the kernel.

Other performance issues have less to do with what a thread system does, than with how
it goes about doing it. For example, using a centralized ready-list can limit performance for
applications that have extremely fine-grained parallelism. The ready-list is a shared data structure
that must be locked to prevent it from being modified by multiple processors simultaneously. Even
if the ready-list critical sections consist only of simple enqueue and dequeue operations, they can
become a sequential bottleneck, since there is little other work involved in spawning/finishing or
blocking /unblocking a thread. An application for which thread overhead is twenty percent of the
total execution time, and half of that overhead is spent accessing the ready-list, then its maximum
speedup (the time of the parallel program on P processors divided by the time of the program on
one processor) is limited to ten.

The bottleneck at the ready-list can be relieved by giving each processor its own ready-list. In
this way, enqueueing and dequeueing of work can occur in parallel, with each processor using a
different data structure. When a processor becomes idle, it checks its own list for work, and if that
list is empty, it scans other processors’ lists so that the workload remains balanced.

Per-processor ready-lists have another nice attribute: threads can be preferentially scheduled
on the processor on which they last ran, thereby preserving cache state. Computer systems use
caches to take advantage of the principle of locality, which says that a thread’s memory references
are directed to or near locations that have been recently referenced. By keeping references close
to the processor in fast cache memory, the average time to access a memory location can be kept
low. On a multiprocessor, a thread that has been re-scheduled on a different processor will initially
find fewer of its references in that processor’s cache. For some applications, the cost of fetching
these references can exceed the processing time of the thread operation that caused the thread to
migrate.

The role of spin-waiting as an optimization technique changes in the presence of high-performance

15

Basic Windows NT Presto Multilisp
Spawn | thread_create;thread resume | Thread::new; Thread::start (future...)

Block thread_suspend Thread::sleep Touch unresolved future.
Unblock thread_resume Thread::wakeup When future is resolved.
Finish thread_terminate Thread::terminate Resolve this future.

Table 1: The Basic Operations of Thread Management Systems

thread operations. If a thread needs to wait for an event, it can block, relinquishing its processor,
or spin-wait. A thread must spin-wait for low-level scheduler locks, but in application code a thread
should block instead of spin if the event is likely to take longer than the cost of the context switch.
Even though context switches can be implemented efficiently, reducing the need to spin-wait, a

hidden cost is that context switches also reduce cache locality.

4 Three Modern Thread Systems

We now outline three modern thread management systems for multiprocessors: Windows NT,
Presto, and Multilisp. The choices made in each system illustrate many of the thread management
issues raised in the previous section.

The thread management primitives for each of these systems are shown in Table 1. The table
is organized to indicate how the primitives in one system relate to those in the others, as well as
those provided by the basic thread interface outlined in Section 2.2.

Windows NT is an operating system designed to support Microsoft Windows applications on
uniprocessors, shared memory multiprocessors, and distributed systems. Windows NT supports
multiple threads within an address space. Its thread management functions are implemented in
the Windows NT kernel. Since NT’s underlying thread implementation is shared by all paral-
lel programs, system services such as debuggers and performance monitors can be economically
provided.

Windows N'T’s scheduler uses a priority-based one-level scheduling discipline. Because Windows
NT allocates processors to threads in a job-independent fashion, a parallel program running on
top of the Windows NT thread primitives (or even a user-level thread management system based
on those primitives) can suffer from anomalous performance profiles due to ill-timed preemptive
decisions made by the one-level scheduling system.

Presto is a user-level thread management system originally implemented on top of Sequent’s

DYNIX operating system, but later ported to DEC workstations. DYNIX provides a Presto pro-

16

gram with a fixed number of UNIX processes that share memory. The Presto run-time system
treats these processes as virtual processors and schedules the user’s threads among them. Presto’s
thread interface is nearly identical to Windows NT’s.

Presto is distinguished from most other thread systems in that it is structured for flexibility.
Presto is easy to adapt to application-specific needs because it presents a uniform object-oriented
interface to threads, synchronization, and scheduling. The object-oriented design of Presto encour-
ages multiple implementations of the thread management functions and so offers the flexibility to
efficiently accommodate differing parallel programming needs.

Presto has been tuned to perform well on a multiprocessor; it tries to avoid bottlenecks in
the thread management functions through the use of per-processor data structures. Presto does
not provide true two-level scheduling, even though the thread management functions (e.g., thread
scheduling) are implemented in an application library accessible to the user, DYNIX, the base oper-
ating system, schedules the underlying virtual processors (UNIX processes) any way that it chooses.
Although a Presto program can request that its virtual processors not be preempted, the operat-
ing system offers no solid guarantee. As a result, kernel preemption threatens the performance of
Presto programs in the same was as it does Windows NT programs.

Although Windows NT and Presto are implemented differently, the interfaces to each represents
a similar style of parallel programming in which the programmer is responsible for explicitly spawn-
ing new threads of execution and for synchronizing their access to shared data. This style is not
accidental, but reflects the basic function of the underlying hardware — processors communicating
through shared memory. One criticism often made of this style is that it forces the programmer to
think about coordinating many concurrent activities, which can be a conceptually difficult task.

Multilisp demonstrates how thread support can be integrated into a programming language in
order to simplify writing parallel programs. In Multilisp, a multiprocessor extension to LISP, the
basic concurrency mechanism is the future, which is a reference to a data value that has not yet
been computed. The future operator can be included in any Multilisp expression to spawn a new
thread which computes the value of the expression in parallel. Once the value has been computed,
the future resolves to that value. In the meantime, any thread that tries to use the future’s value
in an expression automatically blocks until the future is resolved. The language support provided
by Multilisp can be implemented on top of a system like Windows NT or Presto using locks and
condition variables.

With Multilisp, the programmer does not need to include any synchronization code beyond
the future operator; the Multilisp interpreter keeps track of which futures remain unresolved. By

contrast, using the Windows NT or Presto thread primitives, the programmer must add calls to

17

the appropriate synchronization primitives wherever the data is needed. Multilisp, like Presto, uses

per-processor ready-lists to reduce contention in scheduling operations.

5 Summary

This article has examined some of the key issues in thread management for shared-memory multi-
processors.

Shared-memory multiprocessors are now commonplace in both commercial and research com-
puting. These systems can easily be used to increase throughput for multiprogrammed sequential
jobs. However, their greatest potential — as yet not fully realized — is for accelerating the execution
of single, parallelized programs.

As programmers make use of finer-grained parallelism, the design and implementation of the
thread management system becomes increasingly crucial. Modern thread management systems
must address the programmer interface, the operating system interface, and performance optimiza-
tions; language support and scheduling techniques for multiprogrammed multiprocessors are two

areas that require further research.

References

[Anderson et al. 89] Anderson, T. E., Lazowska, E. D., and Levy, H. M. The Performance Implica-
tions of Thread Management Alternatives for Shared Memory Multiprocessors. In 1989
ACM SIGMETRICS and Performance 89 Conference on Measurement and Modeling of
Computer Systems, pages 49-60, May 1989.

[Bershad et al. 88] Bershad, B., Lazowska, E., and Levy, H. PRESTO: A System for Object-
Oriented Parallel Programming. Software Practice and FExperience, 18(8):713-732, Au-
gust 1988.

[Custer 93] Custer, H. Inside Windows NT. Microsoft Press, 1993.

[Dijkstra 68] Dijkstra, E. W. Cooperating Sequential Processes. In Programming Languages, pages
43-112. Academic Press, 1968.

[Enc 86] Encore Computer Corporation. UMAX /.2 Programmer’s Reference Manual, 1986.

[Halstead 85] Halstead, R. Multilisp: A Language for Concurrent Symbolic Computation. ACM
Transaction on Programming Languages and Systems, 7(4):501-538, October 1985.

[Hoare 74] Hoare, C. A. R. Monitors: An Operating System Structuring Concept. Communications
of the ACM, 17(10):549-557, October 1974.

[Hoare 78] Hoare, C. A. R. Communicating Sequential Processes. Communications of the ACM,
21(8):666-677, August 1978.

[Redell et al. 80] Redell, D. D., Dalal, Y. K., Horsley, T. R., Lauer, H. C., Lynch, W. C., McJones,
P. R., Murray, H. G., and Purcell, S. C. Pilot: An Operating System for a Personal
Computer. Communications of the ACM, 23(2):81-92, February 1980.

18

[Seq 88] Sequent Computer Systems, Inc. Symmetry Technical Summary, 1988.

[Tevanian et al. 87] Tevanian, A., Rashid, R. F., Golub, D. B., Black, D. L., Cooper, E., and Young,
M. W. Mach Threads and the Unix Kernel: The Battle for Control. In Proceedings of
the 1987 USENIX Summer Conference, pages 185-197, 1987.

19

