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Interprocess communication (IPC), in particular IPC oriented towards local cornmzmzcation

(between address spaces on the same machine), has become central to the design of contemporary

operating systems. IPC has traditionally been the responsibility of the kernel, but kernel-based

IPC has two inherent problems First, its performance is architecturally limited by the cost of

invoking the kernel and reallocating a processor from one address space to another. Second,

applications that need inexpensive threads and must provide their own thread management

encounter functional and performance problems stemming from the interaction between kernel-

level communication and user-level thread management.

On a shared memory multiprocessor, these problems can be solved by moving the communica-

tion facilities out of the kernel and supporting them at the user level within each address space.

Communication performance is improved since kernel invocation and processor reallocation can

be avoided when communicating between address spaces on the same machine.

These observations motivated User-Level Remote Procedure Call (URPC) URPC combines a

fast cross-address space communication protocol using shared memory with lightweight threads

managed at the user level, This structure allows the kernel to be bypassed during cross-address

space communication. The programmer sees threads and RPC through a conventional interface,

though with unconventional performance,
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1. INTRODUCTION

Efficient interprocess communication is central to the design of contemporary

operating systems [16, 231. An efficient communication facility encourages

system decomposition across address space boundaries. Decomposed systems

have several advantages over more monolithic ones, including failure isola-

tion (address space boundaries prevent a fault in one module from “leaking”

into another), extensibility (new modules can be added to the system without

having to modify existing ones), and modularity (interfaces are enforced by

mechanism rather than by convention).

Although address spaces can be a useful structuring device, the extent to

which they can be used depends on the performance of the communication

primitives. If cross-address space communication is slow, the structuring

benefits that come from decomposition are difficult to justify to end users,

whose primary concern is system performance, and who treat the entire

operating system as a “black box” [181 regardless of its internal structure.

Consequently, designers are forced to coalesce weakly related subsystems

into the same address space, trading away failure isolation, extensibility, and

modularity for performance.

Interprocess communication has traditionally been the responsibility of the

operating system kernel. However, kernel-based communication has two

problems:

—Architectural performance barriers. The performance of kernel-based syn-

chronous communication is architecturally limited by the cost of invoking

the kernel and reallocating a processor from one address space to another.

In our earlier work on Lightweight Remote Procedure Call (LRPC) [10], we

show that it is possible to reduce the overhead of a kernel-mediated

cross-address space call to nearly the limit possible on a conventional

processor architecture: the time to perform a cross-address LRPC is only

slightly greater than that required to twice invoke the kernel and have it

reallocate a processor from one address space to another. The efficiency of

LRPC comes from taking a “common case” approach to communication,

thereby avoiding unnecessary synchronization, kernel-level thread man-

agement, and data copying for calls between address spaces on the same
machine. The majority of LRPC’S overhead (70 percent) can be attributed

directly to the fact that the kernel mediates every cross-address space call.

—Interaction between kernel-based communication and high-performance

user-level threads. The performance of a parallel application running on a

multiprocessor can strongly depend on the efficiency of thread manage-

ment operations. Medium and fine-grained parallel applications must use

a thread management system implemented at the user level to obtain
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satkfactory performance [6, 36]. Communication and thread management

have strong interdependencies, though, and the cost of partitioning them

across protection boundaries (kernel-level communication and user-

level thread management) is high in terms of performance and system

complexity.

On a shared memory multiprocessor, these problems have a solution:

eliminate the kernel from the path of cross-address space communication.

Because address spaces can share memory directly, shared memory can be

used as the data transfer channel. Because a shared memory multiprocessor

has more than one processor, processor reallocation can often be avoided by

taking advantage of a processor already active in the target address space

without involving the kernel.

User-level management of cross-address space communication results in

improved performance over kernel-mediated approaches because

–Messages are sent between address spaces directly, without invoking the

kernel.

–Unnecessary processor reallocation between address spaces is eliminated,

reducing call overhead, and helping to preserve valuable cache and TLB

contexts across calls.

–When processor reallocation does prove to be necessary, its overhead can be

amortized over several independent calls.

—The inherent parallelism in the sending and receiving of a message can be

exploited, thereby improving call performance.

User-Level Remote Procedure Call (URPC), the system described in this

paper, provides safe and efficient communication between address spaces on

the same machine without kernel mediation. URPC isolates from one an-

other the three components of interprocess communication: processor reallo-

cation, thread management, and data transfer. Control transfer between

address spaces, which is the communication abstraction presented to the

programmer, is implemented through a combination of thread management

and processor reallocation. Only processor reallocation requires kernel in-

volvement; thread management and data transfer do not. Thread manage-

ment and interprocess communication are done by application-level libraries,

rather than by the kernel.

URPC’S approach stands in contrast to conventional “small kernel” sys-

tems in which the kernel is responsible for address spaces, thread manage-

ment, and interprocess communication. Moving communication and thread

management to the user level leaves the kernel responsible only for the

mechanisms that allocate processors to address spaces. For reasons of perfor-

mance and flexibility, this is an appropriate division of responsibility for

operating systems of shared memory multiprocessors. (URPC can also be

appropriate for uniprocessors running multithreaded applications. )

The latency of a simple cross-address space procedure call is 93 psecs using

a URPC implementation running on the Firefly, DEC SRC’S multiprocessor

workstation [37]. Operating as a pipeline, two processors can complete one
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call every 53 psecs. On the same multiprocessor hardware, RPC facilities

that involve the kernel are markedly slower, without providing adequate

support for user-level thread management. LRPC, a high performance-

kernel-based implementation, takes 157 psecs. The Fork operation for the

user-level threads that accompany URPC takes 43 psecs, while the Fork

operation for the kernel-level threads that accompany LRPC take over a

millisecond. To put these figures in perspective, a same-address space proce-

dure call takes 7 psecs on the Firefly, and a protected kernel invocation (trap)

takes 20 psecs.
We describe the mechanics of URPC in more detail in the next section. In

Section 3 we discuss the design rationale behind URPC. We discuss perfor-

mance in Section 4. In Section 5 we survey related work. Finally, in Section 6

we present our conclusions.

2. A USER-LEVEL REMOTE PROCEDURE CALL FACILITY

In many contemporary uniprocessor and multiprocessor operating systems,

applications communicate with operating system services by sending mes-

sages across narrow channels or ports that support only a small number of

operations (create, send, receive, destroy). Messages permit communication

between programs on the same machine, separated by address space bound-

aries, or between programs on different machines, separated by physical

boundaries.

Although messages are a powerful communication primitive, they repre-

sent a control and data-structuring device foreign to traditional Algol-like

languages that support synchronous procedure call, data typing, and shared

memory for communication within an address space. Communication be-

tween address spaces is with untyped, asynchronous messages. Programmers

of message-passing systems who must use one of the many popular Algol-like

languages as a systems-building platform must think, program, and struc-

ture according to two quite different programming paradigms. Consequently,

almost every mature message-based operating system also includes support

for Remote Procedure Call (RPC) [111, enabling messages to serve as the
underlying transport mechanism beneath a procedure call interface.

Nelson defines RPC as the synchronous language-level transfer of control

between programs in disjoint address spaces whose primary communication

medium is a narrow channel [301. The definition of RPC is silent about the

operation of that narrow channel and how the processor scheduling (realloc-

ation) mechanisms interact with data transfer. IJRPC exploits this silence in

two ways:

-Messages are passed between address spaces through logical channels kept

in memory that is pair-wise shared between the client and server. The

channels are created and mapped once for every client/server pairing, and

are used for all subsequent communication between the two address spaces

so that several interfaces can be multiplexed over the same channel. The

integrity of data passed through the shared memory channel is ensured by
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a combination of the pair-wise mapping (message authentication is implied

statically) and the URPC runtime system in each address space (message

correctness is verified dynamically).

—Thread management is implemented entirely at the user level and is

integrated with the user-level machinery that manages the message chan-

nels. A user-level thread sends a message to another address space by

directly enqueuing the message on the outgoing link of the appropriate

channel. No kernel calls are necessary to send a call or reply message.

Although a cross-address space procedure call is synchronous from the

perspective of the programmer, it is asynchronous at and beneath the level of
thread management. When a thread in a client invokes a procedure in a

server, it blocks waiting for the reply signifying the procedure’s return; while

blocked, its processor can run another ready thread in the same address

space. In our earlier system, LRPC, the blocked thread and the ready thread

were really the same; the thread just crosses an address space boundary. In

contrast, URPC always tries to schedule another thread from the same

address space on the client thread’s processor. This is a scheduling operation

that can be handled entirely by the user-level thread management system.

When the reply arrives, the blocked client thread can be rescheduled on any

of the processors allocated to the client’s address space, again without kernel

intervention. Similarly, execution of the call on the server side can be done

by a processor already executing in the context of the server’s address space,

and need not occur synchronously with the call.

By preferentially scheduling threads within the same address space, URPC

takes advantage of the fact that there is significantly less overhead involved

in switching a processor to another thread in the same address space (we will

call this context switching) than in reallocating it to a thread in another

address space (we will call this processor reallocation). Processor reallocation

requires changing the mapping registers that define the virtual address

space context in which a processor is executing. On conventional processor

architectures, these mapping registers are protected and can only be accessed

in privileged kernel mode.

Several components contribute to the high overhead of processor realloca-

tion. There are scheduling costs to decide the address space to which a

processor should be reallocated; immediate costs to update the virtual mem-

ory mapping registers and to transfer the processor between address spaces;

and long-term costs due to the diminished performance of the cache and

translation lookaside buffer (TLB) that occurs whefi locality shifts from one

address space to another [31. Although there is a long-term cost associated

with context switching within the same address space, that cost is less than

when processors are frequently reallocated between address spaces [201.

To demonstrate the relative overhead involved in switching contexts be-

tween two threads in the same address space versus reallocating processors
between address spaces, we introduce the concept of a minimal latency

same-address space context switch. On the C-VAX, the minimal latency

same-address space context switch requires saving and then restoring the
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machine’s general-purpose registers, and takes about 15 psecs. In contrast,

reallocating the processor from one address space to another on the C-VAX

takes about 55 psecs without including the long-term cost.

Because of the cost difference between context switching and processor

reallocation, URPC strives to avoid processor reallocation, instead context

switching whenever possible.

Processor reallocation is sometimes necessary with URPC, though. If a

client invokes a procedure in a server that has an insufficient number of

processors to handle the call (e. g., the server’s processors are busy doing

other work), the client’s processors may idle for some time awaiting the

reply. This is a load-balancing problem. URPC considers an address space

with pending incoming messages on its channel to be “underpowered.” An

idle processor in the client address space can balance the load by reallocating

itself to a server that has pending (unprocessed) messages from that client.

Processor reallocation requires that the kernel be invoked to change the

processor’s virtual memory context to that of the underpowered address

space. That done, the kernel upcalls into a server routine that handles the

client’s outstanding requests. After these have been processed, the processor

is returned to the client address space via the kernel.

The responsibility for detecting incoming messages and scheduling threads

to handle them belongs to special, low-priority threads that are part of a

URPC runtime library linked into each address space. Processors scan for

incoming messages only when they would otherwise be idle.

Figure 1 illustrates a sample execution timeline for URPC with time

proceeding downward. One client, an editor, and two servers, a window

manager (WinMgr) and a file cache manager (FCMW), are shown. Each is in
a separate address space. Two threads in the editor, T1 and T2, invoke

procedures in the window manager and the file cache manager. Initially, the

editor has one processor allocated to it, the window manager has one, and the

file cache manager has none. T1 first makes a cross-address space call into

the window manager by sending and then attempting to receive a message.

The window manager receives the message and begins processing. In the

meantime, the thread scheduler in the editor has context switched from TI

(which is blocked waiting to receive a message) to another thread T2. Thread
T2 initiates a procedure call to the file cache manager by sending a message

and waiting to receive a reply. T1 can be unblocked because the window

manager has sent a reply message back to the editor. Thread T1 then calls

into the file cache manager and blocks. The file cache manager now has two

pending messages from the editor but no processors with which to handle

them. Threads T1 and T2 are blocked in the editor, which has no other

threads waiting to run. The editor’s thread management system detects the

outgoing pending messages and donates a processor to the file cache man-

ager, which can then receive, process, and reply to the editor’s two incoming

calls before returning the processor back to the editor. At this point, the two
incoming reply messages from the file cache manager can be handled. 7’1 and

Tz each terminate when they receive their replies.
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Fig. 1. URPC timeline

URPC’S treatment of pending messages is analogous to the treatment of

runnable threads waiting on a ready queue. Each represents an execution

context in need of attention from a physical processor; otherwise idle proces-

sors poll the queues looking for work in the form of these execution contexts.

There are two main differences between the operation of message channels

and thread ready queues. First, URPC enables on address space to spawn

work in another address space by enqueuing a message (an execution context

consisting of some control information and arguments or results). Second,
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Fig,2 Thesoftware components of URPC

URPC enables processors in one address space to execute in the context of

another through an explicit reallocation if the workload between them is

imbalance.

2.1 The User View

It is important to emphasize that all of the URPC mechanisms described in

this section exist “under the covers” of quite ordinary looking Modula2 + [34]

interfaces. The RPC paradigm provides the freedom to implement the control

and data transfer mechanisms in ways that are best matched by the underly-

ing hardware.

URPC consists of two software packages used by stubs and application
code. One package, called FczstThreacis [5], provides lightweight threads that

are managed at the user level and scheduled on top of middleweight kernel

threads. The second package, called URPC, implements the channel manage-

ment and message primitives described in this section. The URPC package

lies directly beneath the stubs and closely interacts with FastThreads, as

shown in Figure 2.

3. RATIONALE FOR THE URPC DESIGN

In this section we discuss the design rationale behind URPC. In brief, this

rationale is based on the observation that there are several independent

components to a cross-address space call and each can be implemented

separately. The main components are the following:

– ‘Thread management: blocking the caller’s thread, running a thread through
the procedure in the server’s address space, and resuming the caller’s

thread on return,
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—Data transfer: moving arguments between the client and server address

spaces, and

–Processor reallocation: ensuring that there is a physical processor to handle

the client’s call in the server and the server’s reply in the client.

In conventional message systems, these three components are combined

beneath a kernel interface, leaving the kernel responsible for each. However,

thread management and data transfer do not require kernel assistance, only

processor reallocation does. In the three subsections that follow we describe

how the components of a cross-address space call can be isolated from one

another, and the benefits that arise from such a separation.

3.1 Processor Reallocation

URPC attempts to reduce the frequency with which processor reallocation

occurs through the use of an optimistic reallocation policy. At call time,

URPC optimistically assumes the following:

—The client has other work to do, in the form of runnable threads or

incoming messages, and a potential delay in the processing of a call will

not have serious effect on the performance of other threads in the client’s

address space.

—The server has, or will soon have, a processor with which it can service a

message.

In terms of performance, URPC’S optimistic assumptions can pay off in

several ways. The first assumption makes it possible to do an inexpensive

context switch between user-level threads during the blocking phase of a

cross-address space call. The second assumption enables a URPC to execute

in parallel with threads in the client’s address space while avoiding a

processor reallocation. An implication of both assumptions is that it is

possible to amortize the cost of a single processor reallocation across several

outstanding calls between the same address spaces. For example, if two

threads in the same client make calls into the same server in succession, then

a single processor reallocation can handle both.

A user-level approach to communication and thread management is appro-

priate for shared memory multiprocessors where applications rely on aggres-

sive multithreading to exploit parallelism while at the same time compensat-

ing for multiprogramming effects and memory latencies [2], where a few key

operating system services are the target of the majority of all application

calls [8], and where operating system functions are affixed to specific process-
ing nodes for the sake of locality [31].

In contrast to URPC, contemporary uniprocessor kernel structures are not

well suited for use on shared memory multiprocessors:

–Kernel-level communication and thread management facilities rely on

pessimistic processor reallocation policies, and are unable to exploit concur-

rency within an application to reduce the overhead of communication.
Handoff scheduling [13] underscores this pessimism: a single kernel opera-

tion blocks the client and reallocates its processor directly to the server.
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Although handoff scheduling does improve performance, the improvement

is limited by the cost of kernel invocation and processor reallocation.

–In a traditional operating system kernel designed for a uniprocessor, but

running on a multiprocessor, kernel resources are logically centralized, but

distributed over the many processors in the system. For a medium- to

large-scale shared memory multiprocessor such as the Butterfly [71, Alewife

[41, or DASH [251, URPC’S user-level orientation to operating system design
localizes system resources to those processors where the resources are in

use, relaxing the performance bottleneck that comes from relying on

centralized kernel data structures. This bottleneck is due to the contention

for logical resources (locks) and physical resources (memory and intercon-

nect bandwidth) that results when a few data structures, such as thread

run queues and message channels, are shared by a large number of

processors. By distributing the communication and thread management

functions to the address spaces (and hence processors) that use them

directly, contention is reduced.

URPC can also be appropriate on uniprocessors running multithreaded

applications where inexpensive threads can be used to express the logical and

physical concurrency within a problem. Low overhead threads and communi-

cation make it possible to overlap even small amounts of external computa-

tion. Further, multithreaded applications that are able to benefit from de-

layed reallocation can do so without having to develop their own communica-

tion protocols [191. Although reallocation will eventually be necessary on a

uniprocessor, it can be delayed by scheduling within an address space for as

long as possible.

3.1.1 The Optimistic Assumptions Won’ t Alulays Hold. In cases where the

optimistic assumptions do not hold, it is necessary to invoke the kernel to

force a processor reallocation from one address space to another. Examples of

where it is inappropriate to rely on URPC’S optimistic processor reallocation

policy are single-threaded applications, real-time applications (where call
latency must be bounded), high-latency 1/0 operations (where it is best to

initiate the 1/0 operation early since it will take a long time to complete),

and priority invocations (where the thread executing the cross-address space

call is of high priority). To handle these situations, URPC allows the client’s

address space to force a processor reallocation to the server’s, even though

there might still be runnable threads in the client’s.

3.1.2 The Kernel Handles Processor Reallocation. The kernel implements
the mechanism that support processor reallocation. When an idle processor

discovers an underpowered address space, it invokes a procedure called

Processor. Donate, passing in the identity of the address space to which the

processor (on which the invoking thread is running) should be reallocated.
Processor. Donate transfers control down through the kernel and then up to a

prespecified address in the receiving space. The identity of the donating

address space is made known to the receiver by the kernel.
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3.1.3 Voluntary Return of Processors Cannot Be Guaranteed. A service

interface defines a contract between a client and a server. In the case of

URPC, as with traditional RPC systems, implicit in the contract is that the

server obey the policies that determine when a processor is to be returned

back to the client. The URPC communication library implements the follow-

ing policy in the server: upon receipt of a processor from a client address

space, return the processor when all outstanding messages from the client

have generated replies, or when the server determines that the client has

become “underpowered” (there are outstanding messages back to the client,

and one of the server’s processors is idle).
Although URPC’S runtime libraries implement a specific protocol, there is

no way to enforce that protocol. Just as with kernel-based systems, once the

kernel transfers control of the processor to an application, there is no

guarantee that the application will voluntarily return the processor by

returning from the procedure that the client invoked. The server could, for

example, use the processor to handle requests from other clients, even though

this was not what the client had intended.

It is necessary to ensure that applications receive a fair share of the

available processing power. URPC’s direct reallocation deals only with the

problem of load balancing between applications that are communicating with

one another. Independent of communication, a multiprogrammed system

requires policies and mechanisms that balance the load between noncommu-

nicating (or noncooperative) address spaces. Applications, for example, must

not be able to starve one another out for processors, and servers must not be

able to delay clients indefinitely by not returning processors. Preemptive

policies, which forcibly reallocate processors from one address space to an-

other, are therefore necessary to ensure that applications make progress.

A processor reallocation policy should be work conserving, in that no

high-priority thread waits for a processor while a lower priority thread runs,

and, by implication, that no processor idles when there is work for it to do

anywhere in the system, even if the work is in another address space. The

specifics of how to enforce this constraint in a system with user-level threads

are beyond the scope of this paper, but are discussed by Anderson et al. in [61.

The direct processor reallocation done in URPC can be thought of as an

optimization of a work-conserving policy. A processor idling in the address

space of a URPC client can determine which address spaces are not respond-

ing to that client’s calls, and therefore which address spaces are, from the

standpoint of the client, the most eligible to receive a processor. There is no

reason for the client to first voluntarily relinquish the processor to a global

processor allocator, only to have the allocator then determine to which

address space the processor should be reallocated. This is a decision that can

be easily made by the client itself.

3.2 Data Transfer Using Shared Memory

The requirements of a communication system can be relaxed and its effi-

ciency improved when it is layered beneath a procedure call interface rather

than exposed to programmers directly. In particular, arguments that are part
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of a cross-address space procedure call can be passed using shared memory

while still guaranteeing safe interaction between mutually suspicious subsys-

tems.

Shared memory message channels do not increase the “abusability factor”

of client-server interactions. As with traditional RPC, clients and servers can

still overload one another, deny service, provide bogus results, and violate

communication protocols (e. g., fail to release channel locks, or corrupt chan-

nel data structures). And, as with traditional RPC, it is up to higher level

protocols to ensure that lower level abuses filter up to the application layer in

a well-defined manner (e. g., by raising a call-faded exception or by closing

down the channel).

In URPC, the safety of communication based on shared memory is the

responsibility of the stubs. The arguments of a URPC! are passed in message

buffers that are allocated and pair-wise mapped during the binding phase

that precedes the first cross-address space call between a client and server.

On receipt of a message, the stubs unmarshal the message’s data into

procedure parameters doing whatever copying and checking is necessary to

ensure the application’s safety.

Traditionally, safe communication is implemented by having the kernel

copy data from one address space to another. Such an implementation is

necessary when application programmers deal directly with raw data in the

form of messages. But, when standard runtime facilities and stubs are used,

as is the case with URPC, having the kernel copy data between address

spaces is neither necessary nor sufficient to guarantee safety.

Copying in the kernel is not necessary because programming languages

are implemented to pass parameters between procedures on the stack, the

heap, or in registers. When data is passed between address spaces, none of

these storage areas can, in general, be used directly by both the client and

the server. Therefore, the stubs must copy the data into and out of the

memory used to move arguments between address spaces. Safety is not

increased by first doing an extra kernel-level copy of the data.

Copying in the kernel is not sufficient for ensuring safety when using

type-safe languages such as Modula2 + or Ada [1] since each actual parame-

ter must be checked by the stubs for conformity with the type of its corre-

sponding formal. Without such checking, for example, a client could crash

the server by passing in an illegal (e. g., out of range) value for a parameter.

These points motivate the use of pair-wise shared memory for cross-address

space communication. Pair-wise shared memory can be used to transfer data
between address spaces more efficiently, but just as safely, as messages that

are copied by the kernel between address spaces.

3.2.1 Controlling Channel Access. Data flows between URPC packages in

different address spaces over a bidirectional shared memory queue with

test-and-set locks on either end. To prevent processors from waiting indefi-

nitely on message channels, the locks are nonspinning; i.e., the lock protocol

is simply if the lock is free, acquire it, or else go on to something else– never

spin-wait. The rationale here is that the receiver of a message should never
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have to delay while the sender holds the lock. If the sender stands to benefit

from the receipt of a message (as on call), then it is up to the sender to ensure

that locks are not held indefinitely; if the receiver stands to benefit (as on

return), then the sender could just as easily prevent the benefits from being

realized by not sending the message in the first place.

3.3 Cross-Address Space Procedure Call and Thread Management

The calling semantics of cross-address space procedure call, like those of

normal procedure call, are synchronous with respect to the thread that is

performing the call. Consequently, there is a strong interaction between the

software system that manages threads and the one that manages cross-

address space communication. Each underlying communication function (send

and receive) involves a corresponding thread management synchronization

function (start and stop). On call, the client sends a message to the server,

which starts a server thread. The client thread stops, waiting on a receive

from the server. When the server finishes, it sends a response back to the

client, which causes the client’s waiting thread to be started. Finally, the

server’s thread stops again on a receive, waiting for the next message.

In this subsection we explore the relationship between cross-address space

communication and thread management. In brief, we argue the following:

—High performance thread management facilities are necessary for fine-

grained parallel programs.

— While thread management facilities can be provided either in the kernel or

at the user level, high-performance thread management facilities can only

be provided at the user level.

—The close interaction between communication and thread management can

be exploited to achieve extremely good performance for both, when both are

implemented together at the user level.

3.3.1 Concurrent Programming and Thread Management. Multiple

threads within an address space simplify the management of concurrent

activities. Concurrency can be entirely internal to the application, as with

parallel programs for multiprocessors, or it can be external, as with an

application that needs to overlap some amount of its own computation with

activity on its behalf in another address space. In either case, the program-

mer needs access to a thread management system that makes it possible to

create, schedule, and destroy threads of control.

Support for thread management can be described in terms of a cost

continuum on which there are three major points of reference: heavyweight,

middleweight, and lightweight, for which thread management overheads are

on the order of thousands, hundreds, and tens of psecs, respectively.
Kernels supporting heavyweight threads [26, 32, 35] make no distinction

between a thread, the dynamic component of a program, and its address
space, the static component. Threads and address spaces are created, sched-

uled, and destroyed as single entities. Because an address space has a large

amount of baggage, such as open file descriptors, page tables, and accounting
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state that must be manipulated during thread management operations,

operations on heavyweight threads are costly, taking tens of milliseconds.

Many contemporary operating system kernels provide support for middle-

weight, or kernel-level threads [12, 361. In contrast to heavyweight threads,

address spaces and middleweight threads are decoupled, so that a single

address space can have many middleweight threads. As with heavyweight

threads, though, the kernel is responsible for implementing the thread

management functions, and directly schedules an application’s threads on

the available physical processors. With middleweight threads, the kernel

defines a general programming interface for use by all concurrent applica-

tions.

Unfortunately, the cost of this generality affects the performance of fine-

grained parallel applications. For example, simple features such as time

slicing, or saving and restoring floating point registers when switching

between threads contexts can be sources of performance degradation for all

applications, even those for which the features are unnecessary. A kernel-level

thread management system must also protect itself from malfunctioning or

malfeasant programs. Expensive (relative to procedure call) protected kernel

traps are required to invoke any thread management operation, and the

kernel must treat each invocation suspiciously, checking arguments and

access privileges to ensure legitimacy.

In addition to the direct overheads that contribute to the high cost of

kernel-level thread management, there is an indirect but more pervasive

overhead stemming from the effect of thread management policy on program

performance. There are a large number of parallel programming models, and

within these, a wide variety of scheduling disciplines that are most appropri-

ate (for performance) to a given model [25, 33]. Performance, though, is

strongly influenced by the choice of interfaces, data structures, and algo-

rithms used to implement threads, so a single model represented by one style

of kernel-level thread is unlikely to have an implementation that is efficient

for all parallel programs.

In response to the costs of kernel-level threads, programmers have turned

to lightweight threads that execute in the context of middleweight or heavy-

weight threads provided by the kernel, but are managed at the user level by

a library linked in with each application [9, 38]. Lightweight thread manage-

ment implies two-level scheduling, since the application library schedules

lightweight threads on top of weightier threads, which are themselves being

scheduled by the kernel.
Two-level schedulers attack both the direct and indirect costs of kernel

threads. Directly, it is possible to implement efficient user-level thread

management functions because they are accessible through a simple proce-

dure call rather than a trap, need not be bulletproofed against application

errors, and can be customized to provide only the level of support needed by a

given application. The cost of thread management operations in a user-level

scheduler can be orders of magnitude less than for kernel-level threads.

3.3.2 The Problem with Having Functions at Two Levels. Threads block

for two reasons: (1) to synchronize their activities within an address space
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(e.g., while controlling access to critical sections], and (2) to wait for external

events in other address spaces (e. g., while reading keystrokes from a window

manager). If threads are implemented at the user level (necessary for inex-

pensive and flexible concurrency), but communication is implemented in the

kernel, then the performance benefits of inexpensive scheduling and context

switching are lost when synchronizing between activities in separate address

spaces. In effect, each synchronizing operation must be implemented and

executed at two levels: (1) once in the application, so that the user-level

scheduler accurately reflects the scheduling state of the application, and then

again (2) in the kernel, so that applications awaiting kernel-mediated com-

munication activity are properly notified.

In contrast, when communication and thread management are moved out

of the kernel and implemented together at user level, the synchronization

needed by the communication system can control threads with the same

efficient user-level synchronization and scheduling primitives that are used

by applications.

3.4 Summary of Rationale

This section has described the design rationale behind URPC. The main

advantages of a user-level approach to communication are that calls can be

made without invoking the kernel and without unnecessarily reallocating

processors between address spaces. Further, when kernel invocation and

processor reallocation do turn out to be necessary, their cost can be amortized

over multiple calls. Finally, user-level communication can be cleanly inte-

grated with user-level thread management facilities, necessary for fine-

grained parallel programs, so that programs can inexpensively synchronize

between, as well as within, address spaces.

4. THE PERFORMANCE OF URPC

This section describes the performance of URPC on the Firefly, an experi-

mental multiprocessor workstation built by DEC’s Systems Research Center.

A Firefly can have as many as six C-VAX microprocessors, plus one

MicroVAX-11 processor dedicated to 1/0. The Firefly used to collect the

measurements described in this paper had four C-VAX processors and 32

megabytes of memory.

4.1 User-Level Thread Management Performance

In this section we compare the performance of thread management primitives

when implemented at the user level and in the kernel. The kernel-level

threads are those provided by Taos, the Firefly’s native operating system.

Table I shows the cost of several thread management operations imple-

mented at the user level and at the kernel level. PROCEDURE CALL

invokes the null procedure and provides a baseline value for the machine’s

performance. FORK creates, starts, and terminates a thread. FORK;JOIN is

like FORK, except that the thread which creates the new thread blocks until
the forked thread completes. YIELD forces a thread to make a full trip

through the scheduling machinery; when a thread yields the processor, it is

blocked (state saved), made ready (enqueued on the ready queue), scheduled
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Table 1. Comparative Performance of Thread Management Operations

URPC FastThreads Taos Threads

Test (psecs) (ysecs)

PROCEDURE CALL 7 7

FORK 43 1192

FORK;JOIN 102 1574

YIELD 37 57

ACQUIRE, RELEASE 27 27

PINGPONG 53 271

Table II Component Breakdown of a URPC

Client Server

Component (~secs) (ysecs)

send 18 13

poll 6 6

receme 10 9

dispatch 20 25

Total 54 53

again (dequeued), unblocked (state restored), and continued. ACQUIRE;

RELEASE acquires and then releases a blocking (nonspinning) lock for

which there is no contention. PING-PONG has two threads “pingpong” back

and forth on a condition variable, blocking and unblocking one another by

means of paired signal and wait operations. Each pingpong cycle blocks,

schedules, and unblocks two threads in succession.

Each test was run a large number of times as part of a loop, and the

measured elapsed time was divided by the loop limit to determine the values

in the table. The FastThreads tests were constrained to run on a single

processor. The tests using the kernel-level threads had no such constraint;

Taos caches recently executed kernel-level threads on idle processors to

reduce wakeup latency. Because the tests were run on an otherwise idle

machine, the caching optimization worked well and we saw little variance in

the measurements. The table demonstrates the performance advantage of

implementing thread management at the user-level, where the operations

have an overhead on the order of a few procedure calls, rather than a few

hundred, as when threads are provided by the kernel.

4.2 URPC Component Breakdown

In the case when an address space has enough processing power to handle all

incoming messages without requiring a processor reallocation, the work done

during a URPC can be broken down into four components: send (enqueuing a

message on an outgoing channel); poll (detecting the channel on which a

message has arrived); receive (dequeueing the message); and dispatch (dis-

patching the appropriate thread to handle an incoming message). Table II

shows the time taken by each component.

The total processing times are almost the same for the client and the

server. Nearly half of that time goes towards thread management (dispatch),
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demonstrating the influence that thread management overhead has on com-

munication performance.

The send and receive times do not reflect the cost of data copying and

marshaling that is incurred when parameters are passed between address

spaces. On the Firefly, each word of data passed in the shared memory

buffers adds about one additional psec of latency. Because the amount of data

passed in most cross-address space procedure calls is small [8, 16, 17, 24],

average call performance is most influenced by the components shown in

Table II, and not the cost of data transfer.

4.3 Call Latency and Throughput

The figures in Table II are independent of client and server load, provided

there is no need for processor reallocation. Two other important metrics, call

latency and call throughput, are load dependent, though. Both latency and

throughput depend on the number of client processors, C, the number of

server processors, S, and the number of runnable threads in the client’s

address space, T.

To evaluate latency and throughput, we ran a series of tests using different

values for T, C, and S in which we timed how long it took the client’s T

threads to make 100,000 “Null” procedure calls into the server inside a tight

loop. The Null procedure call takes no arguments, computes nothing, and

returns no results; it exposes the performance characteristics of a round-trip

cross-address space control transfer.

Figures 3 and 4 graph call latency and throughput as a function of T. Each

line on the graphs represents a different combination of S and C. Latency is

measured as the time from when a thread calls into the Null stub to when

control returns from the stub, and depends on the speed of the message

primitives and the length of the thread ready queues in the client and server.

When the number of caller threads exceeds the total number of processors

(T> C + S), call latency increases since each call must wait for a free

processor in the client or the server or both. Throughput, on the other hand,

is less sensitive to T. Except for the special case where S = 0, as long as the

call processing times in the client and server are roughly equal (see Table II),

then throughput, as a function of T, improves until T > C + S. At that

point, processors are kept completely busy, so there can be no further

improvement in throughput by increasing T.

When the number of calling threads, client processors, and server proces-

sors is 1 (T = C = S = 1), call latency is 93 ~secs. This is “pure” latency, in

the sense that it reflects the basic processing required to do a round-trip

message transfer. 1 Unfortunately, the latency includes a large amount of

wasted processing time due to idling in the client and server while waiting

1The 14 psec discrepancy between the obseved latency and the expected latency (54 + 53, cf.,

Table II) is due to a low-level scheduling optimization that allows the caller thread’s context to

remain loaded on the processor if the ready queue is empty and there is no other work to be done
anywhere in the system. In this case, the idle loop executes in the context of the caller thread,
enabling a fast wakeup when the reply message arrives. At 2’ = C = S, the optimization is
enabled. The optimization is also responsible for the small “spike” in the throughput curves
shown in Figure 4.
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for the next call or reply message. At T = 2, C = 1, S = 1, latency increases

by only 20 percent (to 112 Wsecs), but throughput increases by nearly 75

percent (from 10,300 to 17,850 calls per second). This increase reflects the

fact that message processing can be done in parallel between the client and

server. Operating as a two-stage pipeline, the client and server complete one

call every 53 psecs.

For larger values of S and C, the same analysis holds. As long as T is

sufficiently large to keep the processors in the client and server address

spaces busy, throughput is maximized.

Note that throughput for S = C = 2 is not twice as large as for S = C = 1

(23,800 vs. 17,850 calls per second, a 33 percent improvement). Contention

for the critical sections that manage access to the thread and message queues

in each address space limits throughput over a single channel. Of the 148

instructions required to do a round-trip message transfer, approximately half

are part of critical sections guarded by two separate locks kept on a per-

channel basis. With four processors, the critical sections are therefore nearly

always occupied, so there is slowdown due to queueing at the critical sec-

tions. This factor does not constrain the aggregate rate of URPCS between

multiple clients and servers since they use different channels.

When S = O throughput and latency are at their worst due to the need to

reallocate processors frequently between the client and server. When T = 1,

round-trip latency is 375 psecs. Every call requires two traps and two proces-

sor reallocations. At this point, URPC performs worse than LRPC (157 psecs).
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We consider this comparison further in Section 5.5. Although call perfor-

mance is worse, URPC’S thread management primitives retain their superior

performance (see Table I). As T increases, though, the trap and reallocation

overheads can be amortized over the outstanding calls. Throughput im-

proves steadily, and latency, once the initial shock of processor reallocation

has been absorbed, worsens only because of scheduling delays.

4.4 Performance Summary

We have described the performance of the communication and thread

management primitives for an implementation of URPC on the Firefly

multiprocessor. The performance figures demonstrate the advantages of mov-

ing traditional operating system functions out of kernel and implementing

them at the user level.

Our approach stands in contrast to traditional operating system methodol-

ogy. Normally, operating system functionality is pushed into the kernel in

order to improve performance at the cost of reduced flexibility. With URPC,

we are pushing functionality out of the kernel to improve both performance

and flexibility.

5. WORK RELATED TO URPC

In this section we examine several other communication systems in the light

of URPC. The common theme underlying these other systems is that

ACM Transactions on Computer Systems, Vol. 9, No, 2, May 1991



194 . B N Bershad et al

they reduce the kernel’s role in communication in an effort to improve

performance.

5.1 Sylvan

Sylvan [141 relies on architectural support to implement the Thoth [151

message-passing primitives. Special coprocessor instructions are used to ac-

cess these primitives, so that messages can be passed between Thoth tasks

without kernel intervention. A pair of 68020 processors, using a coprocessor

to implement the communication primitives, can execute a send-receiue-reply

cycle on a zero-byte message (i. e., the Null call) in 48 ~secs.

Although Sylvan outperforms URPC, the improvement is small consider-

ing the use of special-purpose hardware. Sylvan’s coprocessor takes care of

enqueueing and dequeueing messages and updating thread control blocks

when a thread becomes runnable or blocked. Software on the main processor

handles thread scheduling and context switching. As Table II shows, though,

thread management can be responsible for a large portion of the round-trip

processing time. Consequently, a special-purpose coprocessor can offer only

limited performance gains.

5.2 Yackos

Yackos [22] is similar to URPC in that it strives to bypass the kernel during

communication and is intended for use on shared memory multiprocessors.

Messages are passed between address spaces by means of a special message-

passing process that shares memory with all communicating processes. There

is no automatic load balancing among the processors cooperating to provide a

Yackos service. Address spaces are single threaded, and clients communicate

with a process running on a single processor. That process is responsible for

forwarding the message to a less busy process if necessary. In URPC, address

spaces are multithreaded, so a message sent from one address space to

another can be fielded by any processor allocated to the receiving address

space. Further, URPC on a multiprocessor in the best case (no kernel

involvement) outperforms Yackos by a factor of two for a round-trip call (93

VS. 200 psecs).2 The difference in communication performance is due mostly

to the indirection through the interposing Yackos message-passing process.

This indirection results in increased latency due to message queueing, polling,

and data copying. By taking advantage of the client/server pairing implicit

in an RPC relationship, URPC avoids the indirection through the use of

pair-wise shared message queues. In the pessimistic case (synchronous pro-
cessor allocation on every message send), URPC is over thirteen times more

efficient (375 vs. 5000 psecs) than Yackos.

5.3 Promises

Argus [28] provides the programmer with a mechanism called a Promise [271

that can be used to make an asynchronous cross-address space procedure call.

2 Yackos runs the Sequent Symmetry, which uses 80386 processors that are somewhat faster

than the C-VAX processors used in the Firefly.
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The caller thread continues to run, possibly in parallel with the callee, until

the time that the call’s results are needed. If a thread attempts to “collect”

on a Promise that has not yet been fulfilled (i. e., the cross-address space call

has not yet completed), the collecting thread blocks.

A Promise is used to compensate for the high cost of thread management in

the Argus system. Although an asynchronous call can be simulated by

forking a thread and having the forked thread do the cross-address space call

synchronously, the cost of thread creation in Argus [29] (around 20 procedure

call times) precludes this approach. In URPC, the cost of thread creation is on

the order of six procedure call times, and so the issue of whether to provide

explicit language support for asynchronous cross-address space calls becomes

one largely of preference and style, rather than performance.

5.4 Camelot

Camelot [19] is a high-performance distributed transaction processing sys-

tem. Key to the system’s performance is its use of recoverable virtual

memory and write-ahead logging. Because of the cost of Mach’s communica-

tion primitives [18], data servers use shared memory queues to communicate

virtual memory control information and log records to the disk manager on

each machine. When the queues become full, data servers use Mach’s kernel-

level RPC system to force a processor reallocation to the disk manager so that

it can process the pending messages in the queue.

URPC generalizes the ad hoc message-passing approach used by Camelot.

Camelot’s shared memory queues can only be used between the data servers

and the disk manager. URPC’S channels are implemented beneath the stub

layer, allowing any client and any server to communicate through a standard

RPC interface. Camelot’s thread management primitives are not integrated

with those that access the shared memory queues. Finally, Camelot’s shared

memory queues support only unidirectional communication, whereas commu-

nication in URPC is bidirectional, supporting request-reply interaction.

At the lowest level, URPC is simply a protocol by which threads in

separate address spaces access shared memory in a disciplined fashion.

Programmers have often used shared memory for high-bandwidth cross-

address space communication, but have had to implement special-purpose

interfaces. URPC formalizes this interface by presenting it in the frame-

work of standard programming abstraction based on procedure call and inex-

pensive threads.

5.5 LRPC

LRPC demonstrates that it is possible to communicate between address

spaces by way of the kernel at “hardware speed. ” Like URPC, LRPC passes

parameters in shared memory that is pair-wise mapped between the client

and server. Unlike URPC, though, LRPC uses kernel-level threads that pass

between address spaces on each call and return. LRPC greatly reduces the

amount of thread management that must be done on each call, but is still

performance limited by kernel mediation.
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In the worst case, when there are no processors allocated to the server, one

to the client, and there is one client thread, the latency for the Null URPC is

375 ,usecs. On the same hardware, LRPC takes 157 ~secs. For both URPC

and LRPC, each call involves two kernel invocations and two processor

reallocations. There are two reasons why LRPC outperforms URPC in this

case; the first is an artifact of URPC’S implementation, while the second is

inherent in URPC’s approach:

—Processor reallocation in URPC is based on LRPC. URPC implements

processor allocation using LRPC, which is a general cross-address space

procedure call facility for kernel-level threads. We used LRPC because it

was available and integrated into the Firefly operating system. The over-

head of LRPC-based processor reallocation is 180 psecs, but we estimate

that a special-purpose mechanism would be about 30 percent faster.

— URPC is integrated with two-level scheduling. Processor reallocation oc-

curs after two distinct scheduling decisions are made: (1) Is there an idle

processor, and (2) is there an underpowered address space to which it can

be reallocated? In contrast, a call using LRPC makes no scheduling deci-

sions (one of the main reasons for its speed). Making these two decisions is

more expensive than not making them, but is necessary to take advantage

of the inexpensive synchronization and scheduling functions made possible

by user-level thread management. The overhead of these two scheduling

decisions is about 100 ~secs per round-trip call (only in the case where

processor reallocation is required, of course).

It should not be surprising that indirecting through a second-level sched-

uler, which manages threads, increases the cost of accessing the scheduler at

the first level, which manages processors. The trick is to infrequently inter-

act with the first-level scheduler. When the first-level scheduler must be

used, the overhead of having to pass through the second-level mechanism will

inevitably degrade performance relative to a system with only a single level

of scheduling.

6. CONCLUSIONS

This paper has described the motivation, design, implementation, and perfor-

mance of URPC, a new approach that addresses the problems of kernel-based

communication by moving traditional operating system functionality out of

the kernel and up to the user level.

We believe that URPC represents the appropriate division of responsibility

for the operating system kernels of shared memory multiprocessors. While it

is a straightforward task to port a uniprocessor operating system to a
multiprocessor by adding kernel support for threads and synchronization, it

is another thing entirely to design facilities for a multiprocessor that will

enable programmers to fully exploit the processing power of the machine.

URPC demonstrates that one way in which a multiprocessor’s performance

potential can be greatly increased is by designing system facilities for a

multiprocessor in the first place, thereby making a distinction between a
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multiprocessor operating system and a uniprocessor operating system that

happens to run on a multiprocessor.
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