
High Performance Data Center
Operating Systems

Tom	Anderson	
Antoine	Kaufmann,	Youngjin	Kwon,	Naveen	Kr.	Sharma,	
Arvind	Krishnamurthy,	Simon	Peter,	Mothy	Roscoe,	and	

Emmett	Witchel	

An OS for the Data Center

•  Server	I/O	performance	matters	
•  Key-value	stores,	web	&	file	servers,	databases,	mail	
servers,	machine	learning,	…	

• Can	we	deliver	performance	close	to	hardware?	
•  Example	system:	Dell	PowerEdge	R520	

Intel	X520	
10G	NIC	

Intel	RS3	RAID	
1GB	flash-backed	cache	

Sandy	Bridge	CPU	
6	cores,	2.2	GHz	

+	 +	

Today’s	I/O	devices	are	fast	
and	getting	faster	

2	us	/	1KB	packet	 25	us	/	1KB	write	

40G	NIC:	500	ns	/	1KB	packet	
NVDIMM:	500	ns	/	1KB	write	

Can’t we just use Linux?

Kernel	

Linux I/O Performance

Redis	
HW	
13%	

HW	18%	

Kernel	84%	

Kernel	62%	

App	
3%	

App	20%	

SET	

GET	

%	OF	1KB	REQUEST	TIME	SPENT	

API	 Multiplexing	

Naming	 Resource	limits	

Access	control	 I/O	Scheduling	

I/O	Processing	 Copying	

Protection	

Data	
Path	

10G	NIC	
2	us	/	1KB	packet	

RAID	Storage	
25	us	/	1KB	write	

9	us	

163	us	

Kernel	mediation	
is	too	heavyweight	

Arrakis: Separate the OS control and
data plane

Kernel	
Naming	 Resource	limits	

Access	control	

Redis	

How to skip the kernel?

Redis	

I/O	Devices	

API	 Multiplexing	

I/O	Scheduling	

I/O	Processing	 Copying	

Protection	

Data	
Path	

Kernel	

Naming	

Resource	limits	

Access	control	

Kernel	

Naming	

Resource	limits	

Access	control	

Redis	

Arrakis I/O Architecture

Redis	

I/O	Devices	

API	

Multiplexing	

I/O	Scheduling	

I/O	Processing	

Protection	

Data	Path	

Control	Plane	 Data	Plane	

•  Streamline	network	and	storage	I/O		
•  Eliminate	OS	mediation	in	the	common	case	
•  Application-specific	customization	vs.	kernel	one	size	fits	all	

• Keep	OS	functionality	
•  Process	(container)	isolation	and	protection	
•  Resource	arbitration,	enforceable	resource	limits	
•  Global	naming,	sharing	semantics	

• POSIX	compatibility	at	the	application	level	
•  Additional	performance	gains	from	rewriting	the	API	

Design Goals

This Talk

Arrakis	(OSDI	14)	
•  OS	architecture	that	separates	the	control	and	data	plane,	
for	both	networking	and	storage	

	

Strata	(SOSP	17)	
•  File	system	design	for	low	latency	persistence	(NVM)	and	
multi-tier	storage	(NVM,	SSD,	HDD)		

	

TCP	as	a	Service/FlexNIC/Floem	(ASPLOS	15,	OSDI	18)	
•  OS,	NIC,	and	app	library	support	for	fast,	agile,	secure	
protocol	processing	

	 8	

Storage diversification

Be
tt
er
	p
er
fo
rm

an
ce
	

Hi
gh
er
	c
ap
ac
ity

	

9	

Large	erasure	block:	hardware	GC	overhead	
Random	writes	cause	5-6x	slowdown	by	GC		

Byte-addressable:	cache-line	granularity	IO	
Direct	access	with	load/store	instructions	

Latency	 Throughput	 $/GB	
DRAM	 							80	ns	 200	GB/s	 10.8	
NVDIMM	 					200	ns	 		20	GB/s	 		2	
SSD	 10	us	 				2.4	GB/s	 		0.26	
HDD	 10	ms	 				0.25	GB/s	 		0.02	

Let’s Build a Fast Server

Key	value	store,	database,	file	server,	mail	server,	…	
	
Requirements:	

•  Small	updates	dominate	
• Dataset	scales	up	to	many	terabytes	
• Updates	must	be	crash	consistent		

10	

A fast server on today’s file system

11	

Small,	random	IO	is	slow!	

• Small	updates	(1	Kbytes)	dominate	
• Dataset	scales	up	to	100TB		
• Updates	must	be	crash	consistent	

Even	with	an	optimized	kernel	file	system,	
NVM	is	too	fast,	kernel	is	the	bottleneck	

91%	

Application	

Kernel	file	system	

NVM	 0
 1.5
 3
 4.5
 6

1 KB

IO latency (us)

Write to device
 Kernel code

91%	

Kernel	file	system:	
NOVA	[FAST	16,	SOSP	17]	

A fast server on today’s file system

12	

• Small	updates	(1	Kbytes)	dominate	
• Dataset	scales	up	to	100TB		
• Updates	must	be	crash	consistent	

Using	only	NVM	is	too	expensive!	
$200K	for	100TB	

Kernel	file	system	

NVM	

Application	

To	save	cost,	need	a	way	to	use	multiple	
device	types:	NVM,	SSD,	HDD	

A fast server on today’s file system

13	

• Small	updates	(1	Kbytes)	dominate	
• Dataset	scales	up	to	10TB		
• Updates	must	be	crash	consistent	

Block-level	caching	

NVM	
SSD	
HDD	

Block-level	caching	manages	data	in	
blocks,	but	NVM	is	byte-addressable!	

Kernel	file	system	

0 3 6 9 12 15

1 KB

IO latency (us)

Byte-addressed NVM

Better	

Application	

For	low-cost	capacity	with	high	performance,	
must	leverage	multiple	device	types	

A fast server on today’s file system

14	

• Small	updates	(1	Kbytes)	dominate	
• Dataset	scales	up	to	10TB		
• Updates	must	be	crash	consistent	

Pillai	et	al.,	OSDI	2014	

0 2 4 6 8 10 12

SQLite
ZooKeeper

HSQLDB
Git

Crash vulnerabilities

Applications	struggle	for	crash	consistency	

Today’s file systems:
Limited by old design assumptions

15	

Kernel	mediates	every	operation	
									NVM	is	too	fast,	kernel	is	the	bottleneck	
Tied	to	a	single	type	of	device	
									For	low-cost	capacity	with	high	performance,		
									must	leverage	multiple	device	types	(NVM,	SSD,	HDD)	
Aggressive	caching	in	DRAM,	only	write	to	device	
when	you	must	(fsync)	
									Applications	struggle	for	crash	consistency	

Strata: A Cross Media File System

16	

Performance:	Especially	small,	random	IO	
• Fast	user-level	device	access	

Capacity:	leverage	NVM,	SSD	&	HDD	for	low	cost	
• Transparent	data	migration	across	different	media	
• Efficiently	handle	device	IO	properties	

Simplicity:	intuitive	crash	consistency	model	
• In-order,	synchronous	IO	
• No	fsync()	required	

Strata: main design principle

Log	operations	to	NVM	at	user-level	

Intuitive	crash	consistency	 Kernel	bypass,	but	private	

Coordinate	multi-process	accesses	

17	

Digest	and	migrate	data	in	kernel		
Apply	log	operations	to	
shared	data	

LibFS	

KernelFS	

Performance,	simplicity:	

Capacity:	

Strata

•  LibFS:	log	operations	to	NVM	at	user-level	
•  Fast	user-level	access	
•  In-order,	synchronous	IO	

•  KernelFS:	Digest	and	migrate	data	in	kernel	
•  Asynchronous	digest	
•  Transparent	data	migration	
•  Shared	file	access	

18	

Log operations to NVM at user-level

19	

•  Fast	writes	
• Directly	access	fast	NVM	

•  Sequentially	append	data	
• Cache-line	granularity	
• Blind	writes	

• Crash	consistency	
• On	crash,	kernel	replays	log	

Application	

LibFS

Kernel-
bypass	

NVM	
Private	operation	log	

creat	syscall	 rename	syscall	 …	
File	operations	(data	&	metadata)	
made	by	a	single	system	call	

Intuitive crash consistency

20	

Application	

LibFS

Kernel-
bypass	

NVM	

Synchronous	
IO	

• When	each	system	call	returns:	
• Data/metadata	is	durable	
•  In-order	update	
• Atomic	write	
• Limited	size	(log	size)	

Fast	synchronous	IO:	NVM	and	kernel-bypass	

Private	operation	log	

fsync()	is	no-op	

21	

KernelFS

•  Visibility:		
make	private	log	visible		
to	other	applications	

•  Data	layout:		
turn	write-optimized	to		
read-optimized	format	

•  Large,	batched	IO	
•  Coalesce	log	

Digest data in kernel

Write	

NVM	

Digest	

Shared	area	Private	operation	log	

Application	

LibFS

Digest optimization: Log coalescing
SQLite,	Mail	server:	crash	consistent	update	using	write	ahead	logging	

22	

Create journal file
Write data to journal file
Write data to database file
Delete journal file

Digest	eliminates	unneeded	work	

Write data to database file

Remove		
temporary	durable	writes	

Private	operation	log	

Application	

LibFS

KernelFS

Throughput	optimization:	
Log	coalescing	saves	IO	while	digesting	

NVM	Shared	area	

23	

Application	
Strata:

LibFS

Strata:

KernelFS

NVM	Shared	area	Private	operation	log	

Digest and migrate data in kernel

Application	
Strata:

LibFS

Strata:

KernelFS

NVM	Shared	area	Private	operation	log	

24	

SSD	Shared	area	

HDD	Shared	area	

Low-cost	capacity	
KernelFS	migrates	data	
to	lower	layer	

Digest and migrate data in kernel

					NVM	data	Logs	

Digest	

Resembles	log-structured	merge	(LSM)	tree	

Handle	device	IO	
properties	

Write	1	GB	sequentially		
from	NVM	to	SSD	

Avoid	SSD	garbage	
collection	overhead	

Device management overhead

0

250

500

750

1000

1250

0.1
 0.25
 0.5
 0.6
 0.7
 0.8
 0.9
 1

SS
D

Th
ro

ug
hp

ut
 (M

B/
s)

SSD utilization

64 MB
 128 MB
 256 MB
 512 MB
 1024 MB

Use	NVM	layer	as	persistent	write	buffer	

SSD	prefers	large	sequential	IO	

Read: hierarchical search

26	

Application	

LibFS

KernelFS

NVM	Shared	area	Private	OP	log	

SSD	Shared	area	

HDD	Shared	area	

					NVM	data	

					SSD	data	

					HDD	data	

					Log	data	
2	1	

3	

4	

Search	order	

Shared file access

27	

Leases	grant	access	rights	to	applications	
[SOSP’89]			
Required	for	files	and	directories	
Function	like	lock,	but	revocable	
Exclusive	writer,	shared	readers	

On	revocation,	LibFS	digests	leased	data	
Leases	serialize	concurrent	updates	
	

Shared file access

28	

Leases	grant	access	rights	to	applications	
Applied	to	a	directory	or	a	file	
Exclusive	writer,	shared	readers	

Application	
1	 LibFS

KernelFS

Application	
2	 LibFS

Request	write	lease		
to	file	A	

L	Write	file	A	
data	

Request	write	lease	to	file	A	

Revoke	the	write	lease	

L	

Write	file	A	
data	

	Data	

Example:	concurrent	writes	to	the	same	file	A	

OP	log	1	 OP	log	2	 Shared	area	

Experimental setup

•  2x	Intel	Xeon	E5-2640	CPU,	64	GB	DRAM	
•  400	GB	NVMe	SSD,	1	TB	HDD	
•  Ubuntu	16.04	LTS,	Linux	kernel	4.8.12	

•  Emulated	NVM	
•  Use	40	GB	of	DRAM	
•  Performance	model	[Y.	Zhang	et	al.	MSST	2015]	

•  Throttle	latency	&	throughput	in	software	

• Compare	Strata	vs.	
•  PMFS,	Nova,	ext4-DAX:	NVM	kernel	file	systems	
•  Nova:	atomic	update,	in-order	synch	I/O	
•  PMFS,	ext4-DAX:	no	atomic	write	

29	

Latency: LevelDB

0

10

20

30

Write  
sync.

Write  
rand.

Delete  
rand.

Strata
 PMFS
 NOVA
 EXT4-DAX

35.2	49.2	 37.7	

30	

Better	
25%	better	

17%	better	

Latency	(us)	

LevelDB	(NVM)	

Key	size:	16	B	

Value	size:	1	KB	

300,000	objects	

Level	compaction	causes	
asynchronous	digests	

Fast	user-level	logging	

Random	write	
25%	better	than	PMFS	

Overwrite		
17%	better	than	PMFS	

Throughput: Varmail

31	

Mail	server	workload	from	Filebench	
•  Using	only	NVM	
•  10000	files	
•  Read/Write	ratio	is	1:1	
• Write-ahead	logging	

Log	coalescing	eliminates	86%	of	log	records,	saving	14	GB	of	IO	

0K
 100K
 200K
 300K
 400K

Strata

NOVA

Throughput (op/s)

Better	

29%	
better	

Create journal file
Write data to journal
Write data to database file
Delete journal file

Digest eliminates unneeded work

Write data to database file

Removes  
temporary durable writes

KernelFS	
Application	

LibFS	

Log coalescing

This Talk

Arrakis	(OSDI	14)	
•  OS	architecture	that	separates	the	control	and	data	plane,	
for	both	networking	and	storage	

	

Strata	(SOSP	17)	
•  File	system	design	for	low	latency	persistence	(NVM)	and	
multi-tier	storage	(NVM,	SSD,	HDD)		

	

TCP	as	a	Service/FlexNIC/Floem	(ASPLOS	15,	OSDI	18)	
•  OS,	NIC,	and	app	library	support	for	fast,	agile,	secure	
protocol	processing	

	 32	

Let’s Build a Fast Server

Key	value	store,	database,	mail	server,	ML,	…	
	
Requirements:	

• Mostly	small	RPCs	over	TCP	
•  40	Gbps	network	links	(100+	Gbps	soon)	
•  Enforceable	resource	sharing	(multi-tenant)	
• Agile	protocol	development:	kernel	and	app	
•  Tail	latency,	cost	efficient	hardware	

33	

Let’s Build a Fast Server

	
	

34	

Application	

Linux	network	stack	

40Gbps	NIC	

Kernel	mediation	too	slow	

•  Small	RPCs	dominate	
•  Enforceable	resource	sharing	
•  Agile	protocol	development	
•  Cost-efficient	hardware	

Overhead: 97%

• Direct	access	to	device	at	user-level	
• Multiplexing	

•  SR-IOV:	Virtual	PCI	devices	
w/	own	registers,	queues,	INTs	

• Protection	
•  IOMMU:	
DMA	to/from	app	virtual	memory	

•  Packet	filters:	
ex:	legal	source	IP	header	

• mTCP:	2-3x	faster	than	Linux	
• Who	enforces	congestion	control?	

Hardware I/O Virtualization

SR-IOV	NIC	

Packet	filters	

Network	

Rate	limiters	

User-level	
VNIC	1	

User-level	
VNIC	2	

Remote DMA (RDMA)

Programming	model:	read/write	to	(limited)	region	of	
remote	server	memory	

•  Model	dates	to	the	80’s	(Alfred	Spector)	
•  HPC	community	revived	for	communication	within	a	rack	
•  Extended	to	data	center	over	Ethernet	(RoCE)	
•  Commercially	available	100G	NICs	

No	CPU	involvement	on	the	remote	node	
•  Fast	if	app	can	use	programming	model	

Limitations:	
• What	if	you	need	remote	application	computation	(RPC)?	
•  Lossless	model	is	performance-fragile	

	

36	

Smart NICs (Cavium, …)

NIC	with	array	of	low-end	CPU	cores	(Cavium,	…)	
If	compute	on	the	NIC,	maybe	don’t	need	to	go	CPU?	

•  Applications	in	high	speed	trading	
We’ve	been	here	before:	“wheel	of	reinvention”	

•  Hardware	relatively	expensive		
•  Apps	often	slower	on	NIC	vs.	CPU	(cf.	Floem)	

	

37	

Step 1

	
	
Build	a	faster	kernel	TCP	in	software	
No	change	in	isolation,	resource	allocation,	API	
	
Q:	Why	is	RPC	over	Linux	TCP	is	so	slow?	

38	

OS - Hardware Interface

• Highly optimized code path
• Buffer descriptor queues

•  No interrupt in common case
•  Maximize concurrency

39

Core	1	 Core	2	 Core	3	 Core	4	

Network	Interface	Card	

Operating System
Tx Rx Tx Rx Tx Rx Tx Rx

OS Transmit Packet Processing

•  TCP	layer:	move	from	socket	buffer	to	IP	queue	
•  Lock	socket	
•  Congestion/flow	contol	limit	
•  Fill	in	TCP	header,	calculate	checksum	
•  Copy	data	
•  Arm	re-transmission	timeout	

•  IP	layer:	
•  firewall,	routing,	ARP,	traffic	shaping	

• Driver:	move	from	IP	queue	to	NIC	queue	
• Allocate	and	free	packet	buffers	

40

Sidebar: Tail Latency

	
	
	
On	Linux	with	a	40Gbps	link,	400	outbound	TPC	flows	
sending	RPCs,	no	congestion,	what	is	the	minimum	
rate	across	all	flows?	

41	

Kernel and Socket Overhead

events = poll(….)
For e in events:
 If e.socket != listen_sock:
 receive(e.socket, ….)
 …
 send(e.socket, ….)

Multiple synchronous kernel transitions:
• Parameter checks and copies
• Cache pollution, pipeline stalls

42

Application	 Kernel	

Synchronous	
system	calls	

TCP Acceleration as a Service (TaS)

•  TCP	as	a	user-level	OS	service	
•  SRIO-V	to	dedicated	cores	
•  Scale	number	of	cores	up/down	to	match	demand	
•  Optimized	data	plane	for	common	case	operations	

• Application	uses	its	own	dedicated	cores	
•  Avoid	polluting	application	level	cache	
•  Fewer	cores	=>	better	performance	scaling	

•  To	the	application,	per-socket	tx/rx	queues		with	
doorbells	

•  Analogous	to	hardware	device	tx/rx	queues	

43	

Streamline common-case data path

• Remove	unneeded	computation	from	data	path	

•  Congestion	control,	timeouts	per	RTT	(not	per	packet)	

• Minimize	per-flow	TCP	state	
•  prefetch	2	cache	lines	on	packet	arrival	

•  Linearized	code	
•  Better	branch	prediction	
•  Super-scalar	execution	

•  Enforce	IP	level	access	control	on	control	plane	at	
connection	setup	

Small RPC Microbenchmark

45

App:	1	
FP:	1	

App:	4	
FP:	7	 App:	8	

FP:	11	
4.9	x	

•  IX:	fast	kernel	TCP	with	syscall	batching,	non-socket	API	
•  Linux/TaS	latency:	7.3x;	IX/TaS	latency:	2.9x	

TAS is workload proportional

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	
1	

2	

3	

4	

5	

6	

7	

8	

9	

La
te
nc
y	
[u
s]
	

Time	[s]	

Fa
st
pa
th
	C
or
es
	[#

]	

Cores	 Latency	

46	

•  Setup:	4	clients	starting	every	10	seconds,	then	
stopping	incrementally	

Step 2

	
	
TCP	as	a	Service	can	saturate	a	40Gbps	link	with	small	
RPCs,	but	what	about	100Gbps	or	400Gbps	links?	

Network	link	speeds	scaling	up	faster	than	cores	

	
What	NIC	hardware	do	we	need	fast	data	center	
communication?	

TCP	as	a	Service	data	plane	can	be	efficiently	built	in	hardware	

	
	 47	

FlexNIC Design Principles

• RPCs	are	the	common	case	
•  Kernel	bypass	to	application	logic	

•  Enforceable	per-flow	resource	sharing	
•  Data	plane	in	hardware,	policy	in	kernel	

• Agile	protocol	development	
•  Protocol	agnostic	(ex:	Timely	and	DCTCP	and	RDMA)	
•  Offload	both	kernel	and	app	packet	handling	

• Cost-efficient	
•  Minimal	instruction	set	for	packet	processing	

48	

FlexNIC Hardware Model
Pr
og
ra
m
m
ab
le
	

Pa
rs
er
	Packet	

Stream	 .	.	.	
TCAM	

SRAM	

REGs	
.	.
	.	

Egress	
Queues	

Eth	

IPv4	

TCP	 UDP	

RPC	

•  TCAM	for	arbitrary	wildcard	matches	

•  SRAM	for	exact/LPM	lookups	

•  Stateful	memory	for	counters	

•  ALUs	for	modifying	headers	and	registers	

1.	p	=	lookup(eth.dst_mac)	

2.	pkt.egress_port	=	p	

3.	counter	[ipv4.src_ip]	++	

.	.
	.	

.	.
	.	

Match	

Action	

49	
Barefoot	Networks	switch	RMT	~	6	Tbps	(with	parallel	streams)	

FlexNIC Hardware Model

•  Transform	packets	for	efficient	processing	in	SW	
•  DMA	directly	into	and	out	of	application	data	structures	
•  Send	acknowledgements	on	NIC	
•  Queue	manager	implements	rate	limits	
•  Improve	locality	by	steering	to	cores	based	on	app	criteria	

Rx	Pipeline	

DB	Pipeline	

Tx	Pipeline	

DMA	Pipeline	 PCIe	
DMA	

From	
Network	

To	
Network	

From	PCIe	
(Doorbells)	

Q	
Man	

50	

FlexTCP: H/W Accelerated TCP

•  Fast	path	is	simple	enough	for	FlexNIC	model	
• Applications	directly	access	NIC	for	RX/TX	

•  Similar	interface	to	TCP	as	a	service:	in-memory	queues	
•  Software	slow-path	manages	NIC	state	

•  Streamlines	NIC	processing	
•  ACKs	consumed/generated	in	NIC,	reduces	PCIe	traffic	
•  No	descriptor	queues	w/	dependent	DMA	reads	

•  Evaluation:	software	FlexNIC	emulator	

51

FlexTCP Performance

•  Latency:	7.8x	better	vs	Linux	
	

52

10.7x	vs	Linux	
4.1x	vs	mTCP	

7.2x	vs	Linux	
2.2x	vs	mTCP	

Streamlining App RPC Processing

• How do we further reduce CPU overhead?
•  Integration of app logic with network code

•  Remove socket abstraction, streamline app code

• But fundamental app bottlenecks remain
•  Data structure synchronization, cache utilization
•  Copies between app data structures and RPC buffers

•  Idea: leverage FlexNIC to streamline app
•  FlexNIC is protocol agnostic, can parse on app protocol

53

Example: Key-Value Store

4	

7	

Hash Table

Core	1	

Core	2	NIC	

Receive-side	scaling:	
core	=	hash(connection)	%	N	

Client	1	
K	=	3,	4	

Client	2	
K	=	1,	4,	7	

Client	3	
K	=	1,	7,	8	

•  Lock	contention	
•  Poor	cache	utilization	

Optimizing Reads:
Key-based Steering

Core	1	

Core	2	NIC	

1	

2	

3	

4	

5	

6	

7	

8	

Hash Table

Client	1	
K	=	4,	3	

Client	2	
K	=	1,	4,	7	

Client	3	
K	=	1,	7,	8	

1	

2	

3	

4	

5	

6	

7	

8	

Match:	
IF	udp.port	==	kvs	
Action:	
core	=	HASH(kvs.key)	%	2	
DMA	hash,	kvs	TO	Cores[core]	•  No	locks	needed	

•  Better	cache	utilization	
40%	higher	CPU	efficiency	

Summary

Arrakis	(OSDI	14)	
•  OS	architecture	that	separates	the	control	and	data	plane,	
for	both	networking	and	storage	

	

Strata	(SOSP	17)	
•  File	system	design	for	low	latency	persistence	(NVM)	and	
multi-tier	storage	(NVM,	SSD,	HDD)		

	

TCP	as	a	Service/FlexNIC/Floem	(ASPLOS	15,	OSDI	18)	
•  OS,	NIC,	and	app	library	support	for	fast,	agile,	secure	
protocol	processing	

	 56	

Biography

• College:	physics	->	psychology	->	philosophy	
•  Took	three	CS	classes	as	a	senior	

• After	college:	developed	an	OS	for	a	z80	
•  After	project	shipped,	project	got	cancelled	
•  Applied	to	grad	school:	seven	out	of	eight	turned	me	down	

• Grad	school	
•  Learned	a	lot	
•  Dissertation	had	zero	commercial	impact	for	decades	

• As	faculty	
•  I	learn	a	lot	from	the	people	I	work	with	
•  Try	to	pick	topics	that	matter,	and	where	I	get	to	learn	

What about the CPU overhead?

58

12	x	

Example: Key-Value Store

4	

7	

Hash	Table	

Core	1	

Core	2	NIC	

Receive-side	scaling:	
core	=	hash(connection)	%	N	

Client	1	
K	=	3,	4	

Client	2	
K	=	1,	4,	7	

Client	3	
K	=	1,	7,	8	

•  Lock	contention	
•  Coherence	traffic	
•  Poor	cache	utilization	

59	

Optimizing Reads: Key-based
Steering

Core	1	

Core	2	NIC	

1	

2	

3	

4	

5	

6	

7	

8	

Hash	Table	

Client	1	
K	=	4,	3	

Client	2	
K	=	1,	4,	7	

Client	3	
K	=	1,	7,	8	

1	

2	

3	

4	

5	

6	

7	

8	

Match:	
IF	udp.port	==	kvs	
Action:	
core	=	HASH(kvs.key)	%	2	
DMA	hash,	kvs	TO	Cores[core]	•  No	locks	needed	

•  No	coherence	traffic	
•  Better	cache	utilization	

60	

Where is hardware going?

The Example of Bitcoin

Bitcoin	is	a	protocol	for	maintaining	a	byzantine	fault	
tolerant	public	ledger	

•  Cryptographically	signed	ledger	of	of	a	sequence	of	
transfers	of	digital	currency,	but	could	be	anything	

Provides	an	incentive	to	participate	in	the	fault	tolerant	
protocol	

•  Proof	of	work:	Solve	a	cryptographic	puzzle,	get	a	reward	
•  Hard	to	monopolize	

Extremely	low	bandwidth:	a	few	transactions/second	
•  Energy	cost	roughly	the	same	as	Ireland	

Bitcoin Hardware Progression

CPU	->	GPU	->	FPGA	->	Low	tech	VLSI	->	High	tech	VLSI		
Market	price:	1	petahash	of	SHA-256	=	$0.01	

Price and Difficulty

FPGAs, GPU, >55nm out of business

