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Science has marched on despite the appearance of the original “Figures of Merit” [18].
The purpose of this survey is to bring the community up to date on the most recent bounds,
so that we may collaborate to improve them.

1 The Spotlight Factor

Recall the definition of the spotlight factor for first authors:

Definition: In a collaboration of alphabetized coauthors Xy < X; < -+ < X}, the spot-
light factor of Xy is
*(Xp) = (1 — . Xy)*,

where the notation “. X” is the radix 27 fraction, where a =1, b =2, ..., z = 26, and blanks
and punctuation represent 0.

In words, the spotlight factor is the probability that k coauthors chosen uniformly and
independently at random will all have surnames later in the alphabet than Xj; the lower the
spotlight factor, the more impressive the achievement of the first author in attaining first
authorship.

The best previous bound [18] on the spotlight factor arose from the collaboration

Santoro, Sidney J., Sidney S., and Urrutia [15]

whose spotlight computation goes as follows:

*(Santoro) = (1 — .Santoro)?
_<1 (19+1+14+ ))3
B 271 272 273
~ 0.0255

This record has been dented by the collaboration

Kaklamanis, Karlin, Leighton, Milenkovic, Raghavan, Rao, Thomborson, and Tsantilas [9]




for which *(Kaklamanis) ~ 0.0251. A cynic might wonder whether some authors did this
calculation themselves in order to know just how many coauthors to invite. At one point
a preliminary version of their paper had a ninth coauthor whose surname, incredibly, also
began with a letter later than K in the alphabet. This would have been worth a spotlight
factor of approximately 0.0148.

2 The Coefficient of Obliviousness

A second figure of merit from [18] was the coefficient of obliviousness:

Definition: In a collaboration of Xy < Xj < --+ < Xy, the coefficient of obliviousness of
Xi is '
LX) = (X — . X)),
for1 <¢<k.
In words, the coefficient of obliviousness is the probability that ¢ coauthors chosen uni-

formly and independently at random will all have surnames that precede X; as narrowly as
does Xy; the lower the coefficient, the more oblivious X; is to the fame of being first author.

The record for coefficient of obliviousness from [18] was held by

Plumstead B. and Plumstead J. [14]

for which j (Plumstead J.) ~ 1.53 x 107!, There was some grumbling about the fact that
many of the most oblivious collaborations in [18] came from familial ties, and so were not
random at all. The suggestion was that one should measure nonnepotistic obliviousness, for
which the best example from [18] was

Brassard and Bratley [2]

with / (Bratley) ~ 1.40 x 10,

This record of nonnepotistic obliviousness is beaten, however, by

Goldreich, Goldwasser, and Micali [7]

for which / (Goldwasser) = 3.39 x 10~7. This even edges out the familial obliviousness of

Yao A. and Yao F. [20]

for which / (Yao F.) 2 3.58 x 107",

But the most astonishing find is the collaboration

Smith J., Smith K., and Smith R. [16]

for which j (Smith R.) =~ 5.84 x 107" <« j (Plumstead J.), shattering all previous records.
Moreover, the text of this paper asserts that the authors are unrelated, satisfying the non-
nepotistic condition as well.



3 Monotone Erdos Number

The greatest strides have occurred in the important subfield of monotone Erdos numbers.
Define a directed graph G = (V, E), where V is the set of all researchers, and (u,v) € F if
and only if there is some publication in which u appears earlier in the list of coauthors than
v.

Definition: The monotone Erdos number of X is the length of a longest directed path
in G between Paul Erdos and X.

In [18] it was shown that Wigderson’s monotone Erdés number was 5, and conjectured
that this was the best bound possible. Table 1, however, resoundingly refutes this conjecture,
by producing a researcher whose monotone Erdos number is 12.

Erdés and Freiman [4]

Chaimovich, Freiman, and Galil [3]

Galil, Kannan, and Szemerédi [6]

Frieze, Kannan, and Lagarias [5]

Lagarias, Lenstra, and Schnorr [11]
Lenstra, Lenstra, and Lovdsz [12]
Karmarkar, Karp, Lipton, Lovasz, and Luby [10]
Luby, Micali, and Rackoff [13]

9.  Goldwasser, Micali, and Rivest [8]

10. Blum, Floyd, Pratt, Rivest, and Tarjan [1]
11. Tarjan and Vishkin [17]

12.  Vishkin and Wigderson [19]
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Table 1: Monotone Erdos Numbers
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