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Abstract

Phylogenetic footprinting is an increasingly popular
comparative genomics method for detecting regulatory
elements in DNA sequences. With the profusion of
possible methods to use for phylogenetic footprinting,
the biologist needs some guidance to choose the most
appropriate tool. We present methods for comparing
tools on phylogenetic footprinting data. More specifi-
cally, we discuss two different classes of comparative
experiments: those on simulated data and those on
real orthologous promoter regions. We then report the
results of a series of such empirical comparisons. The
tools compared are the alignment-based methods using
ClustalW and Dialign, and the motif-finding programs
MEME and FootPrinter. Our results show that meth-
ods taking the species’ phylogenetic relationships into
consideration obtain better accuracy.

1 Phylogenetic Footprinting
Phylogenetic footprinting [27] is a method for iden-
tifying regulatory elements, given orthologous regu-
latory regions from multiple species. It is based on
the simple premise that functional elements tend to
evolve at a slower rate than nonfunctional elements,
due to selective pressure. If the given orthologous reg-
ulatory regions contain unusually well conserved sub-
sequences, it is a reasonable conjecture that these con-
served subsequences have some regulatory function.
With the wide variety of prokaryotic and eukaryotic
genomes being partially or fully sequenced, phyloge-
netic footprinting is becoming the approach of choice
for computational detection of regulatory elements.
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This paper presents a methodology to compare the
accuracy of different tools for phylogenetic footprint-
ing, and reports the results of such a comparison.

There have been a number of phylogenetic foot-
printing studies, using an almost equal number of dif-
ferent computational tools and methodologies. The
most commonly used methods are based on some
global multiple alignment tool such as ClustalW [12],
rVISTA [17], MultiPipMaker [10], or Dialign [22].
Such methods begin by computing a global multiple
alignment of the orthologous sequences. If the align-
ment is correct, corresponding regulatory elements
from different sequences will be aligned. It is then
possible to parse the alignment from left to right and
identify short substrings that appear unusually well
conserved. Criteria for what should be considered a
“conserved substring” vary from study to study. Phy-
logenetic footprinting studies based on these ideas in-
clude Cliften et al. [5], Dubchak et al. [6], Gumucio
et al. [9], Jiao et al. [14], Krawczak et al. [15], Loots
et al. [18], Manen et al. [19] and Tagle et al. [27].

Stojanovic et al. [25] empirically compared the ac-
curacy of some criteria for assessing conserved sub-
strings in a multiple alignment. They used a multiple
alignment program called yama2 and compared five
methods for identifying conserved blocks in the align-
ments produced. They showed that criteria based on
relative entropy and on phylogenetic parsimony ob-
tained slightly better results on four sets of ortholo-
gous sequences with known regulatory sites. These
two approaches are investigated further in this study.

To understand why methods based on global mul-
tiple alignment may not always succeed, consider the
typical lengths of the sequences involved. Regulatory



elements tend to be quite short (5-20 bp long) rela-
tive to the entire regulatory region in which we search
for them (a 1000 bp promoter region being typical).
Given these relative lengths, if the species are some-
what diverged it is possible that the noise of the di-
verged nonfunctional background will overcome the
short conserved signal. The result is that the optimal
global alignment may well not align the short regu-
latory elements together, in which case they will go
undetected.

To avoid this problem, a second approach to phylo-
genetic footprinting has been proposed more recently.
This approach uses tools developed for the discovery
of general sequence motifs such as MEME [1], Gibbs
sampling [16], Consensus [11], and AlignACE [13].
Such tools do not attempt to align the complete in-
put sequences, but instead search directly for short
conserved subsequences. These methods assume the
input sequences to be independent, ignoring the phy-
logenetic relationships among them. This can be prob-
lematic, for example in data sets containing a mixture
of some closely related species and some distant ones.
If the phylogeny underlying the data is ignored, sim-
ilar sequences from the set of closely related species
will have an unduly high weight in the choice of mo-
tifs reported. Phylogenetic footprinting studies based
on such motif finders include Cliften et al. [5], McCue
et al. [20], and McGuire et al. [21].

To address the drawbacks of global multiple align-
ment schemes and general motif discovery schemes, we
introduced a tool called FootPrinter designed specifi-
cally for finding regulatory elements by phylogenetic
footprinting (Blanchette et al. [2], Blanchette and
Tompa [4]). FootPrinter is a motif-finding program
making use of available phylogenetic information to
evaluate motif conservation more accurately. Specif-
ically, FootPrinter reports all sets of subsequences of
the input sequences that have a small parsimony score
with respect to a given phylogenetic tree relating the
sequences.

With the profusion of possible methods to use for
phylogenetic footprinting, the biologist needs some
guidance to choose the most appropriate tool. The
purpose of this paper is to present a method for com-
paring tools on phylogenetic footprinting data, and to
report the results of a series of such empirical com-
parisons that we performed. (See Sinha and Tompa
[24] for an analogous performance comparison among
motif discovery programs based on statistical overrep-
resentation.) We start by describing in more detail the
methods compared. The accuracy of these approaches
is then analyzed using both simulated data (Section 3)

Table 1: Summary of the strategy used by each
method evaluated in this paper.

|| Parsimony | Rel. Entropy | Other

Alignment ClustalPars ClustalEntr Dialign
DialignPars DialignEntr
Motif FootPrinter MEME

and real orthologous promoter regions (Section 4).

2 Phylogenetic
Compared

We compare the accuracy of several approaches for
phylogenetic footprinting. These approaches fall into
two categories: alignment-based and motif-finding-
based approaches. Each category is subdivided into
phylogenetic and non-phylogenetic approaches. Ta-
ble 1 summarizes the strategy adopted by each of the
seven methods evaluated.

We considered two global multiple alignment pro-
grams: ClustalW and Dialign. ClustalW is a true
global alignment program, trying to optimize the over-
all alignment conservation, while Dialign starts by
finding highly conserved segments that are eventually
pieced together into a global alignment. The pairwise
alignment programs VISTA and PipMaker have also
been used for phylogenetic footprinting but were left
out of this study because they do not output multiple
alignments. Once a multiple alignment is produced
by ClustalW or Dialign, one needs to identify the best
conserved regions of the alignment. There are several
ways to do so. Dialign outputs, together with the mul-
tiple alignment, a conservation profile indicating how
conserved each column of the alignment is, so we de-
cided that the prediction made by Dialign would be
based on this profile. For example, if we are looking for
one motif of ten nucleotides, the region of ten consec-
utive columns of the alignment having the highest av-
erage conservation profile will be reported. ClustalW
does not output such a conservation profile, so we im-
plemented our own conservation measures. First, we
compute the parsimony score on the phylogenetic tree
T for each column. (The parsimony score [8] of a set
of orthologous sequences is the least number of sub-
stitutions, performed along the branches of T, needed
to explain these sequences.) The gapless region of ten
consecutive columns with the least parsimony score
is reported. We call this method ClustalParsimony.
We also used this parsimony criterion on the align-
ment produced by Dialign, yielding a third prediction
method we call DialignParsimony. The use of parsi-
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mony scores relies on the knowledge of the topology of
T, which we will assume is given to us with the input
sequences.

Alternatively, we considered another conservation
measure popular in sequence analysis, the relative en-
tropy. The relative entropy [11] of a column of the
alignment measures the difference between the distri-
bution of the four types of nucleotides observed in
the column and the background nucleotide distribu-
tion. This method ignores the phylogenetic relation-
ships among species, but has been shown very effec-
tive for regulatory element detection in contexts other
than phylogenetic footprinting. Again, the region of
ten consecutive gapless column with the highest total
relative entropy is reported, yielding methods we call
ClustalEntropy and DialignEntropy.

We studied two motif-finding programs: MEME,
which searches for motifs with high relative entropy,
and FootPrinter, which identifies motifs with low par-
simony score. For all experiments reported in this
paper, we asked each program to report its best mo-
tif of length ten. Two other motif-finding programs,
AlignACE and Consensus, were also initially consid-
ered, but obtained poor results because their input
parameters do not allow the user to ask for at most
one motif per sequence.

Notice that the parsimony-based methods (Foot-
Printer, ClustalParsimony, and DialignParsimony) are
given a little more information than the others, namely
the topology of the tree T" that generated the input se-
quences. One of the goals of this paper is to measure
how much accuracy can be gained by using this extra
information.

3 Comparisons on Simulated Data
3.1 Methodology

A key feature of the data used for phylogenetic
footprinting is that the sequences considered are not
independent from each other but rather are related
through a phylogenetic tree. Our simulated data sets
also have this property. We generated simulated data
sets and compared the phylogenetic footprinting pro-
grams by the following procedure:

1. Choose a tree topology T, together with the
length A(e) of each branch e of the tree.

2. Choose the motif relative mutation rate R(e) < 1
for each branch e.

3. Repeat the following steps for 200 trials:

(a) Choose a random DNA sequence S of length
1000 for the root of T' (each nucleotide cho-
sen uniformly and independently) .

(b) Choose a random substring of length 10 of
S to be the planted motif.

(¢) Simulate evolution on T to produce DNA se-
quences at each of its nodes, keeping track of
the planted motif position in each sequence.
For a branch e of length A(e), the expected
number of substitutions per site outside the
planted motif is A(e)/100, while inside the
planted motif it is R(e)-A(e)/100. Insertions
and deletions also occur outside, but not in-
side, the planted motif, at 40% of the rate of
substitutions. This sequence evolution simu-
lation is carried out using the program Rose
[26].

(d) Discard the sequences at the internal nodes.
Run each of the programs on the leaf se-
quences, comparing the predicted motif po-
sitions to the known planted motif positions.
The exact parameters for each program are
given on our web site [3].

We have attempted to choose the simulation pa-
rameters to reflect the types of data sets encountered
in practice on real biological sequences.

For each of the n leaf sequences S;, each program
predicts a set X; of ten consecutive positions. Let
P; be the set of ten positions containing the planted
motif. The success rate of a prediction is

Z?:1 |Xi n Pi|

This measure was proposed by Pevzner and Sze [23]
in a similar context. A perfect prediction obtains a
score of one, while a completely incorrect one obtains
a score of zero.

3.2 Results and Discussion

We ran simulations for a wide choice of tree topolo-
gies, number of leaves n, branch lengths A(e), and rel-
ative mutation rates R(e). Only a subset of those
results are reported here. Varying the tree topology
and number of leaves did not qualitatively affect the
results, so we report only results for simulations where
T is a perfectly balanced binary tree with 8 leaves
(with the exception of Figure 2 and Figure 4(b) be-
low).

Failure to identify the planted motif can have two
causes. First, it is possible that some region other
than the planted motif has been better conserved by
chance than the planted motif. This may arise if the
sequences considered are very closely related and re-
gions outside the planted motif have not had time to
diverge sufficiently, or if the sequences considered were



very long. Such motifs will be very difficult to discern
with accuracy. The second cause of erroneous pre-
diction, the one in which we are the most interested,
is that although the planted motif was in theory de-
tectable, the algorithm simply failed to determine the
correct region. This may be due to the fact that the
scoring method used to evaluate candidate motifs is
inaccurate, or because the program failed to identify
the optimal solution to the problem it is solving. We
will see examples of both errors in this section.

Figure 1(a) gives the average success rates obtained
from 200 simulations on a tree where all branches have
length A = 8. As expected, the larger the planted mo-
tif’s mutation rate R becomes, the harder it is to dis-
tinguish it from the surrounding sequence, and thus
the accuracy of any method decreases. However, even
when R = 0 (i.e. the planted motif is perfectly con-
served), it sometimes happens that some other region
is chosen because it is equally conserved. It is inter-
esting to note that all three parsimony-based meth-
ods have a slight but quite consistent advantage over
the entropy-based methods, and in particular over
MEME. (Error bars on estimates of the average suc-
cess rates are omitted for clarity, but the standard de-
viation for each estimate is always less than 0.03.) For
branch lengths A = 8, sibling sequences are approxi-
mately 80% identical, while the most remotely related
pairs of sequences are about 50% identical (slightly
more diverged than non-functional regions of human
and mouse), which makes finding a correct multiple
alignment relatively easy. This explains why Clustal-
Parsimony and DialignParsimony appear to have a
slight advantage over FootPrinter for large values of
R. Indeed, although all three methods use the same
motif evaluation criterion, FootPrinter faces the risk of
choosing substrings that are not truly orthologous, re-
sulting in incorrect predictions, because it is not aided
by alignment outside its motif. As will be the case
in all our experiments on simulated data, predictions
based on the original Dialign conservation profiles are
much less accurate than those of the four other meth-
ods. It should be noted though that the conservation
profiles output by Dialign were not designed for de-
tecting regulatory elements.

Figure 1(b) reports results for the same tree topol-
ogy, but with the 7 branches in the left subtree having
length 8 and the 7 branches of the right subtree hav-
ing length 0.8. This is a situation where methods that
ignore the phylogenetic relationships among the input
sequences are at a greater disadvantage. Indeed, for
these parameters, MEME’s success rate is quite con-
sistently 20% less than that of the three other methods

making use of phylogenetic information.

To ensure that the trends observed in Figure 1 ap-
ply to other tree topologies and branch lengths, we re-
peated the experiment using trees inferred from some
of the biological data sets used in Section 4. As an
example, Figure 2 depicts the tree inferred from the
beta-globin data sets. It contains 12 species, with
groups of closely related species (e.g. the four old-
world primates) and other very distant species (e.g.
chicken and fishes). Figure 2b shows the success rates
obtained when this tree is used to simulate sequences,
varying the motif’s mutation rate. It is interesting
to notice that all methods (except Dialign) maintain
a very high accuracy even for large relative mutation
rates R(e). This is mostly due to the fact that this
simulation uses more sequences than those for Fig-
ure 1, and also because the sequences are more di-
verged, both of which help to distinguish the planted
motif from the background. For low rates, Foot-
Printer has a small advantage over alignment-based
methods, probably because in a few cases there are
errors in the alignment produced by ClustalW or Di-
align. However, the accuracy of FootPrinter decreases
quickly as R(e) becomes large. This phenomenon is
also observed in Figure 3 and we will defer its expla-
nation to that discussion. Finally, we observe that for
large R(e), alignment-based methods clearly outper-
form both motif-finding approaches, despite the occa-
sional alignment errors, which indicates that the con-
text of the alignment is very useful to identify subtle
motifs.

Figure 3 displays success rates as a function of the
length of the branches of the tree using equal length for
all branches, with a relative mutation rate R(e) = 0.1
for all branches. When the branches are very short
(A < 3), no program is able to identify the planted
motifs because the background sequences have not had
sufficient time to diverge. As the branch lengths are
slightly increased (4 < A < 12), motif detection be-
comes increasingly accurate. Sequences are still rela-
tively closely related and thus easy to align, yielding
good scores for all alignment methods. Relative en-
tropy methods are at a slight disadvantage compared
to phylogenetic methods.

When the branch length is further increased (A >
16), the sequences become more difficult to align, and
errors in alignment cause the accuracy of alignment-
based methods to drop sharply. We are now enter-
ing MEME’s territory, where the input sequences are
nearly unrelated, and where any region other than the
planted motif is so poorly conserved that the planted
motif, once identified, should clearly stand out, no
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Figure 1: Success rates on the balanced binary tree with 8 leaves. In (a), all branches have length A(e) = 8,
whereas in (b) all branches of the left subtree have length 8 and those of the right subtree have length 0.8. For
all figures in this paper, each point represents the average success rate over 200 trials. Error bars on estimates of
the average success rates are omitted for clarity, but the standard deviation for each estimate is always less than
0.03. The results for DialignParsimony and DialignEntropy are not shown as they are very similar to those of
ClustalParsimony and ClustalEntropy, respectively.
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Figure 2: On the left is the tree inferred from the beta-globin data set of Section 4 using pairwise alignment scores
and the fitch program from the phylip package [7]. The success rates reported on the right are for sequences
simulated using this tree. The results for ClustalParsimony and ClustalEntropy are not shown as they are very
similar to those of DialignParsimony and DialignEntropy, respectively.
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Figure 3: Success rates on the balanced binary tree
with 8 leaves, as a function of the length A(e) of the
branches of the tree. The motif relative mutation rate
R is 0.1. Results for DialignParsimony and Dialig-
nEntropy are omitted for clarity but are very similar
to their Clustal counterparts.

matter what scoring method is used. The accuracy
of FootPrinter also starts decreasing. This is because,
to achieve reasonable FootPrinter running times, we
constrained the search to motifs with at most two mu-
tations per branch of the tree and at most five muta-
tions in total. As A increases, it becomes likely that
the planted motif will violate this condition, and Foot-
printer is thus not be able to detect it.

3.3 Planted motifs absent from some
species

In real biological sequences, some regulatory ele-
ments are conserved in only a subset of the sequences
considered (usually forming a phylum). To assess
how accurately each program identifies such motifs,
we modified our experimental design so that the mu-
tation rate inside the planted motif is R(e) < 1 along
each branch e of the left subtree, but R(e) = 1 (i.e.
the same as outside the motif) along the branches of
the right subtree. In this case, the correct solution is
to identify the planted motif in the four species of the
left subtree, and to predict nothing in the right sub-
tree (i.e. P; = ) for the species derived from a branch
e with R(e) = 1). To allow each of the seven meth-
ods to make predictions that cover only a subset of
the species, we modified them as follows. FootPrinter
has an option that allows the detection of such mo-
tifs. When this option in used, FootPrinter reports

motifs that have low parsimony score but are present
in a subset of species that span a large amount of evo-
lution [2]. We used that option for this study. The
same type of parsimony score vs. evolutionary span
tradeoff was used to report motifs for ClustalParsi-
mony and DialignParsimony. This was achieved by
running FootPrinter on the set of aligned sequences,
and by considering as admissible motifs only those
whose substrings are aligned. In the case of relative
entropy-based methods, we report the region of the
alignment with the highest relative entropy, ignoring
any sequence with at least one gap in the 10-nucleotide
region scored. Regions in which fewer than 50% of the
species are gapless are ignored altogether. Finally, in
the case of MEME, the “zero or one occurrence per
sequence” option was used. The exact parameters for
each program are listed on our web site [3].

Figure 4(a) shows that on such data sets, the phylo-
genetic information used by parsimony-based methods
makes a big difference. This is because the topology
of the tree loosely determines which subsets of species
are more likely to contain the same motif. Figure 4(b)
shows the results of a similar experiment, where the
tree T' has been re-rooted so that it has six leaves
in the left subtree and two in the right subtree, and
where the mutation rate is R(e) < 1 in the left sub-
tree and R(e) = 1 in the right subtree. Here again,
phylogenetic information provides a clear advantage.

Running times have rarely been an issue in this
study. In general, MEME and ClustalW have similar
running times, each taking a few seconds to run. Di-
align is five to 10 times slower. The running time of
FootPrinter depends on the conservation of the motif
sought. It is similar to that of MEME and ClustalW
for relatively well conserved motifs, and up to 10 to 50
times slower for motifs with high parsimony scores.

4 Comparisons on Orthologous Pro-
moters

4.1 Methodology

To evaluate the accuracy of these programs on real
biological data, we assembled sets of orthologous se-
quences for which at least one binding site has been
experimentally verified. More precisely, we considered
all metazoan genes for which known binding sites are
listed in Transfac 5.0 [28]. There are more than 1000
such genes. We extracted orthologous upstream se-
quences for these genes, keeping only data sets for
which we found at least 250 bp of upstream sequence
in at least three species. This process was carried out
automatically using keyword searches in GenBank,
and is thus likely to have missed a few orthologous se-
quences. Nonetheless, after manual refining to ensure
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Figure 4: Success rates on the balanced binary tree with 8 leaves, with all branches of the tree of length A(e) = 16.
In (a), the motif evolves at the given relative mutation rate along the 7 branches of the left subtree, and evolves
at the background rate along the branches of the right subtree. In (b), the tree has been re-rooted so that
it has 6 leaves in the left subtree and 2 in the right subtree; the motif evolves at the given relative mutation
rate along all branches of the left subtree, and evolves at the background rate along the 3 branches of the right
subtree. Results for DialignParsimony and DialignEntropy are omitted for clarity but are very similar to those

for ClustalParsimony and ClustalEntropy, respectively.

that each dataset contains truly orthologous promot-
ers, we obtained the set of 27 sets of orthologous up-
stream sequences listed in Table 2. Each set contains
at least one sequence in which at least one experimen-
tally verified binding site is known. Although most
data sets contain sequences from at least four species,
it is quite common that only one or two of the or-
thologous input sequences contain any experimentally
verified sites. If more than one does, we evaluate the
correctness of the predictions only on the species that
contains the greatest number of positions in annotated
sites. The length of the available upstream sequence
varies from gene to gene, between 250 bp and 2000 bp.

We compared the performance of the same pro-
grams used in Section 3.3. FKEach program was di-
rected to report the five best motifs of length 10. It
is easy to do so with MEME, by setting the param-
eter nmotifs = 5. For Dialign, DialignEntropy and
ClustalEntropy, we greedily chose the 5 nonoverlap-
ping regions with the highest average scores. Foot-
Printer was run allowing for motif losses and, for each
sequence, the 50 nucleotides belonging to the motifs
with greatest statistical significance were output. The
same method produced predictions for DialignParsi-
mony and ClustalParsimony. The 27 sets of sequences
and the predictions of each program are available on
our web site [3].

4.2 Results and Discussion

Table 2 lists, for each program, the number of po-
sitions correctly predicted to belong to a regulatory
element (out of 50 positions predicted by each pro-
gram). For each gene, we declare a program a winner
(in bold in the table) if its number of correct predic-
tions is within 25% of the number of correct predic-
tions made by the best program for that gene, and
if the number of correct predictions is at least 50%
more than what would be expected from a random
predicter (which is 50 times the fraction of the in-
put sequence that belongs to the known binding site).
We declare a program a loser (in italic) if its number
of correct predictions is less than 50% of that of the
best program, or if its number of correct predictions is
less than would be expected from a random predicter.
These choices regarding what constitutes a winner or a
loser are arbitrary, but variations in this scheme yield
similar qualitative results.

The results are for the most part in agreement with
those obtained on simulated data. Parsimony-based
approaches uniformly outperform all other methods,
with FootPrinter obtaining the best performance.
Compared to the results on simulated data, MEME
does much worse than expected. Further investigation
will be needed to understand the reason. ClustalEn-
tropy and DialignEntropy do fairly poorly compared



Table 2: Number of nucleotides correctly predicted to belong to a binding site, for a random predictor (rand),
MEME (M), FootPrinter (FP), ClustalParsimony (CP), ClustalEntropy (CE), Dialign (D), Dialign Parsimony
(DP), and DialignEntropy(DE). The second column indicates the fraction of the input sequence that belongs to
a known binding site, for the given species. See the text for an explanation of wins (in bold) and losses (in italic).

Gene (Species) #pos/length | rand | M | FP | CP | CE | D | DP | DE
acetylcholinesterase (Mouse) 48/2000 1.2 0 0 0 0| 10 0| 16
albumin (Human) 38/250 7.6 6| 17| 17 022| 18| 14
o-lactalbumin (Rat) 16/250 3.2 0| 6 6 41 0 0 0
apolipoprotein E (Human) 132/1500 44 0| 9 8 0| 6 8 0
B-actin (Human) 19/500 19|14 | 14| 10| 14| 17| 10| 10
j-globin (Chicken) 22/450 2410 10| 10| 11| 6| 8| 5
c-fos (Human) 87/500 871 21| 32| 32| 30 (32| 31| 24
c-myc (Human) 178/2000 | 45| o| 20| o| 12| o| o o
dihydrofolate reductase (Mouse) 72/750 48| 18] 33| 20 51 01 20 8
fibroin (Bombyx) 194/750 12.9 71 28 35| 31 (38| 35 4
fibronectin (Rat) 48/350 6.9 2| 10 0| 19|19 0 9
growth hormone (Rat) 137/250 | 274 45| 31| 31| 30| 45| 37| 34
insulin (Human) 71/500 7.1 8 8| 13 31 9 8 5
interferon v (Human) 13/300 2.2 0| 12| 12 4 0| 12| 10
interleukin-2 (Human) 156,/1000 7.8 || 18 2 2] 20| 14 2 11
lipoprotein lipase (Human) 64/1000 3.2 0 0 0 0| o0 0 0
lysosyme (Chicken) 79/450 88| o] 12| 7| 9|15 12| 12
myogenin (Chicken) 117/750 78| 36 | 46 | 46 | 42 | 49 | 46 | 40
myoglobin (Human) 25/300 4.2 0| 8 8 0o 0 8 0
olfactory marker (Rat) 108/750 7.2 3 0 8 8|18 8 0
prolactin (Human) 85/250 170 32| 45| 45| 10| 30| 30| 30
SRY (Human) 26/250 5.2 0 0 0 0| 4 0 0
thymidine kinase (Human) 25/250 5.0 51 11 0 5| 1] 11 0
thyroglobulin (Rat) 111/250 222 | 26 | 31| 38| 20| 25| 38| 10
triosephosphate isomerase (Human) 38/250 7.6 5 0 0 8| 8 0 7
tumor necrosis factor o (Human) 34/1000 1.7 0| 10| 10 0| 0] 10 0
tyrosine hydroxylase (Rat) 28/250 5.6 6 0 0| 16 0 0| 16

# WINS 4| 14 | 13 8 9| 10 5

# LOSSES 18| 7| 11| 1| 10| 10| 16




to their Parsimony counterparts.

Using a slightly different measure of performance
relative to the random predictor, all the methods per-
form reasonably: FootPrinter obtains on average 51%
more correct predictions than the random predictor,
and MEME obtains 29% more. However, we also ob-
serve that, for several genes, the number of correct
predictions made by even the best program is quite
low. These low scores should not be seen as too dis-
couraging, as it is possible that many of the predic-
tions made by the programs are actual binding sites
that have not yet been documented. Given the small
number of data sets available, it is difficult to draw
conclusions regarding correlation between a program’s
performance and the type of data used (e.g. num-
ber and diversity of species, length of the sequences,
etc.). Still, it is interesting to notice that the few data
sets where alignment methods beat motif-finding ap-
proaches contain relatively closely related species (fi-
broin: four diptera species; thyroglobulin: four mam-
mals; tyrosine hydroxylase: three mammals). Con-
versely, motif-finding techniques seem to have the ad-
vantage when the species considered are more highly
diverged (c-myc: fish, frog, chicken, mammals; dihy-
drofolate reductase: mammals, drosophila).

5 Conclusion

We have evaluated the accuracy of programs for
phylogenetic footprinting on both synthetic and bio-
logical data sets. On synthetic data, we observe that
phylogenetic methods generally outperform other ap-
proaches. When the sequences are highly diverged,
motif-finding approaches are the only ones yielding
good accuracy. When the sequences are closely re-
lated, alignment-based approaches obtain slightly bet-
ter results than motif-finding methods. However, this
advantage is quite small, and in general, FootPrinter’s
predictions are almost always among the best ones.
The only exception is when one is searching for highly
diverged motifs, which are very expensive to find us-
ing FootPrinter, whose accuracy is then decreased by
heuristics used to speed up computation. In that case,
MEME appears preferable. Results on biological se-
quences confirm these results, favoring phylogenetic
approaches, but yielding surprisingly low accuracy for
MEME.

The results reported in this paper suggest the fol-
lowing guidelines for the use and development of pro-
grams for phylogenetic footprinting. When the or-
thologous sequences can be aligned reliably (e.g. if we
only have mammalian sequences), using the alignment
provides a small increase in accuracy, and also greatly
reduces the computational complexity of motif detec-

tion. However, in most cases, it is difficult to know in
advance whether the multiple alignment is trustwor-
thy. In such cases, motif-finding programs provide a
safe alternative, usually without losing too much ac-
curacy. Finally, for sets of closely related sequences,
or for data sets with some sequences not containing
the regulatory elements sought, using phylogenetic in-
formation helps evaluate a motif’s conservation more
accurately and yields much better predictions.
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