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Abstract

This is an investigation of methods for finding short motifs
that only occur in a fraction of the input sequences. Unlike
local search techniques that may not reach a global opti-
mum, the method proposed here is guaranteed to produce
the motifs with greatestz-scores. This method is illus-
trated for the Ribosome Binding Site Problem, which is
to identify the short mRNA50 untranslated sequence that
is recognized by the ribosome during initiation of protein
synthesis. Experiments were performed to solve this prob-
lem for each of fourteen sequenced prokaryotes, by apply-
ing the method to the full complement of genes from each.
One of the interesting results of this experimentation is ev-
idence that the recognized sequence of the thermophilic
archaeaA. fulgidus, M. jannaschii, M. thermoautotroph-
icum, andP. horikoshii may be somewhat different than
the well known Shine-Dalgarno sequence.

Keywords: motif, ribosome binding site, Shine-Dalgarno
sequence, protein synthesis initiation, archaea.

1 The Ribosome Binding Site Problem

1.1 Motivating Computational Problem

Suppose you are presented with 4000 sequences, each of
length 20. You are told that approximately one third of these
sequences each contains an instance of an undisclosed pat-
tern of length about 5. To cloud matters further, those 1300
occurrences of some unknown pattern are not identical sub-
strings of length 5, but only approximately equal substrings.
Your problem is to identify the pattern.

These particular numbers arise in the problem of iden-
tifying the mRNA 5

0 untranslated sequence that is recog-
nized by the ribosome during initiation of protein synthesis
in a typical prokaryote. (This will be called the “Ribosome
Binding Site Problem”.) However, the general problem has
obvious applications to finding other types of binding sites
in nucleic acid sequences, as well as finding short motifs in
protein families. For concreteness, the discussion in thispa-
per will focus on the Ribosome Binding Site Problem.
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A number of algorithms to find motifs have been proposed
previously. (See, for example, Bailey and Elkan (1995),
Fraenkelet al. (1995), Galaset al. (1985), van Heldenet
al. (1998), Hertzet al. (1990), Hertz and Stormo (1995),
Hertz and Stormo (1999), Lawrenceet al. (1993), Rocke
and Tompa (1998), and Staden (1989).) Many of these algo-
rithms are designed to find longer and more general motifs
than those that arise in certain binding site problems. The
price paid for this generality is that many are not guaranteed
to find globally optimal solutions, since they employ some
form of local search that may end in a local optimum. Other
drawbacks for the current purposes are discussed in Section
2.

This work focuses on finding the short, ungapped motifs
that are typical of certain binding site problems. The method
described is guaranteed to find the most significant such mo-
tifs, as measured by theirz-scores (see Section 3).

1.2 Initiation of Protein Synthesis in Prokaryotes

In order to understand the Ribosome Binding Site Problem,
it is helpful to begin with a short review of the process by
which the ribosome binds to mRNA in prokaryotes (Kozak
(1983), Lewin (1997)). The ribosome is composed of pro-
teins and rRNA molecules, and is the structure in which
mRNA is translated into protein. The mRNA consists of the
codons to be translated into amino acids, plus transcribed
(from DNA) but untranslated (into protein) regions at both
its 50 and30 ends.

At the initiation of protein synthesis, the ribosome binds
to the mRNA at a region near the50 end of the mRNA called
theribosome binding site. This is a region of approximately
30 nucleotides of the mRNA that is protected by the ribo-
some during initiation. The ribosome binding site is approx-
imately centered on thetranslation start site, which is the
beginning of the first codon (usuallyAUG) that will be trans-
lated. That is, the ribosome binding site contains not only
the first few codons to be translated, but also part of the5

0

untranslated region.

The ribosome identifies where to bind to the mRNA at
initiation not only by recognizing the first codon, but also
by recognizing a short sequence in the50 untranslated re-
gion within the ribosome binding site. This short mRNA
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Bacillus subtilis 5

0

: : : CUGGAUCACCUCCUUUCUA 3

0

Lactobacillus delbrueckii 5

0

: : : CUGGAUCACCUCCUUUCUA 3

0

Mycoplasma pneumoniae 5

0

: : : GUGGAUCACCUCCUUUCUA 3

0

Mycobacterium bovis 5

0

: : : CUGGAUCACCUCCUUUCU 3

0

Aquifex aeolicus 5

0

: : : CUGGAUCACCUCCUUUA 3

0

Synechocystis sp. 5

0

: : : CUGGAUCACCUCCUUU 3

0

Escherichia coli 5

0

: : : UUGGAUCACCUCCUUA 3

0

Haemophilus influenzae 5

0

: : : UUGGAUCACCUCCUUA 3

0

Helicobacter pylori 5

0

: : : UUGGAUCACCUCCU 3

0

Archaeoglobus fulgidus 5

0

: : : CUGGAUCACCUCCU 3

0

Methanobacterium thermoautotrophicum50 : : : CUGGAUCACCUCCU 3

0

Pyrococcus horikoshii 5

0

: : : CUCGAUCACCUCCU 3

0

Methanococcus jannaschii 5

0

: : : CUGGAUCACCUCC 3

0

Mycoplasma genitalium 5

0

: : : GUGGAUCACCUC 3

0

Table 1:30 end of 16S rRNA for various prokaryotes

sequence will be called theSD site, for reasons to be made
clear below. The mechanism by which the ribosome recog-
nizes the SD site is relatively simple base-pairing: the SD
site is complementary to a short sequence near the3

0 end of
the ribosome’s 16S rRNA.

The SD site was first postulated by Shine and Dalgarno
(1974) for E. coli. Subsequent experiments demonstrated
that the SD site inE. coli mRNA usually matches at least
4 or 5 consecutive bases in the sequenceAAGGAGG, and
is usually separated from the translation start site by ap-
proximately 7 nucleotides, although this distance is variable.
Numerous other researchers such as Vellanoweth and Rabi-
nowitz (1992) and Mikkonenet al. (1994) describe very
similar SD sites in the mRNA of other prokaryotes. It is not
too surprising that SD sites should be so similar in various
prokaryotes, since the30 end of the 16S rRNA of all these
prokaryotes is very similar (Mikkonenet al. (1994)). Table
1 shows a number of these rRNA sequences. Note their sim-
ilarity, and in particular the omnipresence of the sequence
CCUCCU, complementary to the Shine-Dalgarno sequence
AGGAGG.

Because of the great similarity among SD sites in several
prokaryotes, many authors use the term “Shine-Dalgarno se-
quence” to refer to the particular sequenceAAGGAGG, or a
large subsequence of it. The term “SD site” will be used
more generally to mean the short5

0 untranslated mRNA mo-
tif recognized by the particular organism’s ribosome. For
most bacteria this will in fact be a Shine-Dalgarno sequence
(that is, very similar toAAGGAGG). However, the SD site
need not look like this for all prokaryotes, despite the fact
that the30 ends of their 16S rRNA sequences are so similar.
In fact, one of the interesting results of this work is evidence
that the SD sites of the thermophilic archaeaA. fulgidus, M.
jannaschii, M. thermoautotrophicum, andP. horikoshiimay
be somewhat different.

1.3 Correspondence to the Computational
Problem

The Ribosome Binding Site Problem, then, is to identify an
organism’s SD site, given the collection of sequences up-
stream from its putative genes. How does this correspond to
the computational problem described in Section 1.1?

The prokaryotic genomes currently sequenced each con-
tain between a few hundred and several thousand annotated
genes, so it would be within the normal range for a newly
sequenced genome to haveN � 4000 open reading frames
identified as candidate genes. To identify this genome’s SD
site, one must search for instances of a motif of length about
5 within the 20-mer just50 to the translation start site of each
of theseN open reading frames. (For brevity, the 20-mers
from these positions will be calledupstream sequences.)

There are several reasons why only a fraction of theseN

upstream sequences will contain an SD site:

1. Some of the open reading frames might not be real
genes.

2. Some of the putative translation start sites within the
open reading frames might be incorrectly placed.

3. Many of the genes might be parts of operons, which are
multi-gene complexes that are transcribed together, pos-
sibly not all containing a ribosome binding site.

4. A number of the genes might employ some completely
different translation initiation mechanism not involving
an SD site. (See, for example, Fargoet al. (1998) and
Loechelet al. (1991).)

The last aspect of the computational problem of Section
1.1 to be justified is the fact that instances of the motif will
match only inexactly. This is so because the hybridization of
the mRNA’s SD site and the ribosome’s 16S rRNA need only
occur with free energy below some negative threshold. The
rules of RNA binding energy (Lewin 1997) govern here so
that, for instance, some strongGC pairs can compensate for a
mismatched pair of residues, andGU “wobble pairs” release
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free energy, though not as much as Watson-Crick pairs. In-
dependent of this explanation, it is an easily observable fact
that the collection of SD sites do match only approximately.

1.4 Contributions

In the solutions to the Ribosome Binding Site Problem to
be discussed, no use will be made of known 16S rRNA
sequences to streamline the search for the (approximately)
complementary SD site. The reason for this is to develop
more generally applicable algorithms. As mentioned in Sec-
tion 1.1, the Ribosome Binding Site Problem is only one in-
stance of many sequence analysis problems that involve the
identification of short motifs. (For other binding site prob-
lems, the set of candidate sequences might be found by ex-
pression level array experiments (Chuet al. (1998), Roth
et al. (1998)), or by footprinting, after which methods very
similar to those discussed in this paper could be employed.)
Few of these other motif problems have an analogue of the
16S sequence to guide the search. Even for the Ribosome
Binding Site Problem in newly sequenced genomes, the 16S
rRNA sequence is often only predicted by comparison to
previous data (Mikkonenet al. (1994)), and in particular
its exact30 end may not be known.

However, knowledge of some 16S sequences makes the
Ribosome Binding Site Problem an excellent starting point,
because they can be used to verify the plausibility of the can-
didate SD sites found. Furthermore, solving the Ribosome
Binding Site Problem is important as a step in the valida-
tion of true genes, in the identification of the correct transla-
tion start sites, and in the identification of operons. In fact,
this work originated for exactly those reasons, in connec-
tion with TIGR’sM. tuberculosisannotation project. Steven
Salzberg sent the author upstream sequences from approx-
imately 4000M. tuberculosisopen reading frames, with a
request to look for the SD site ofM. tuberculosisin this
data. The results would be useful to the annotation project in
weeding out open reading frames that do not correspond to
genes, in moving incorrect translation start sites among true
genes, and in identifying operons.

The remainder of this paper describes an investigation of
algorithms for the Ribosome Binding Site Problem. Sec-
tion 2 discusses some of the previously published methods
for finding motifs, and why most seem insufficient for prob-
lems such as the Ribosome Binding Site Problem. Section
3 describes a novel algorithm based on the construction of
certain Markov chains, and Section 4 discusses experimental
results from running this algorithm on the full complement
of gene sequences of each of fourteen annotated prokaryotic
genomes.

2 Previous Methods for Finding Motifs

2.1 Accounting for Absolute Number of
Occurrences

If a short sequences is to be a motif, the first and most ob-
vious characteristic is that there should be an (approximate)

s N

s

ATAAA 1139
AATAA 1108
AAATA 1096
ATTAA 1087
AAGAA 1068
AAAGA 1067
TAAAA 1058
AAAAT 1055
GAAAA 1043
AGGAA 1042
AATTA 1036
AGAAA 1027
TAAAT 1024
TAAAG 1017
AAGGA 1014
TTAAA 1008
AAAAA 1004
GAAAT 993
TATAA 984
AAATT 982

Table 2: Twenty most frequently occurring 5-mers inH.
influenzae’s upstream sequences.N

s

is the number of se-
quences containings, allowing up to one substitution. The
SD site should be a subsequence ofTAAGGAGGTGATCCAA.

occurrence ofs in many of theN sequences. This basic idea
is at the foundation of Staden’s algorithm for finding motifs
(Staden 1989). He creates a table containing the number
of occurrences of eachk-mers, where an occurrence allows
for a small, fixed number of substitutions of residues ins.
One of the criteria he applies before declarings a motif is
that the number of such occurrences ofs must exceed some
threshold.

To understand why this criterion alone is insufficient, con-
sider Table 2, which shows the 20 most frequently occurring
5-mers amongH. influenzae’s upstream sequences, allow-
ing up to 1 substitution. In this and all subsequent examples,
the input is composed of an upstream sequence of length 20
for each annotated gene. In the case ofH. influenzae, the
number of upstream sequences isN � 1700.

H. influenzaeis anAT-rich genome, and this is true even
for theN upstream sequences, for which the nucleotide fre-
quencies are 41%A, 12%C, 18%G, 29%T. Table 2, rather
than listing likely SD sites, largely reflects the nucleotide bi-
ases in the input. The30 end of the 16S rRNA ofH. influen-
zae(see Table 1) confirms that, with one exception, these
frequent subsequences are not the SD sites sought: the SD
site should be a subsequence ofTAAGGAGGTGATCCAA.

2.2 Accounting for Background Distribution

The argument in Section 2.1 illustrates the well known fact
that the identification of motifs must take the nucleotide
background frequencies into account. A popular way that
motif-finding algorithms have done this is to use the “in-
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formation content” (also called “relative entropy”) of the
motif. (See, for instance, Fraenkelet al. (1995), Hertzet
al. (1990), Hertz and Stormo (1995), Hertz and Stormo
(1999), Lawrenceet al. (1993), Rocke and Tompa (1998),
Schneideret al. (1986), and Stormo and Hartzell (1989).)
Staden (1989), realizing the necessity of taking background
frequency into account, also used relative entropy as a sec-
ond criterion for selecting motifs.

The relative entropy of a motif is defined as follows. Sup-
pose that the motif has lengthk, and has approximate oc-
currences in a subsetS of theN input sequences. Then the
relative entropy of this motif is defined to be

k

X

j=1

X

r2fA;C;G;Tg

p

r;j

log

2

p

r;j

b

r

;

wherep
r;j

is the frequency with which residuer occurs in
positionj among the motif occurrences inS, andb

r

is the
background frequency of residuer. Relative entropy pro-
vides a measure of how well-conserved and how unlikely a
motif is with respect to the background distribution. In par-
ticular, the more different the distributionfp

r;j

g from the
background distributionfb

r

g, the higher the relative entropy
of positionj.

Relative entropy is a good measure for comparing two
motifs that have the same number of occurrences (that is, oc-
cur in equinumerous subsets of theN input sequences), but
not a good measure if the two motifs occur in a vastly dif-
ferent number of sequences. The reason for this is that rela-
tive entropy does not take into account the absolute number
of occurrences, depending instead on the relative frequency
p

r;j

of occurrence of each of the nucleotides. For instance,
for the uniform background distribution, a perfectly con-
served motif that occurs in only a few sequences will have a
greater relative entropy than an imperfectly conserved mo-
tif that occurs in nearly all the sequences. Because of this,
most of the previous applications that use relative entropy
depend on the fact that the motif occurs in all, or nearly all,
of theN sequences. This is definitely not the case for the
Ribosome Binding Site Problem. Realizing this drawback,
Staden (1989) and Fraenkelet al. (1995) provided separate
criteria to be used in conjunction with relative entropy.

2.3 Accounting for Both Criteria

The conclusion to be drawn from this section is that a good
measure for comparing motifs such as potential SD sites
should take into account both the absolute number of occur-
rences and the background distribution. One way of doing
this might be to multiply the number of occurrences by the
relative entropy. Stormo (1990) pointed out that this mea-
sure is a log likelihood ratio.

In very recent work, Hertz and Stormo (1999) described a
method for estimating the expected frequency of achieving
a given relative entropy score. The authors showed how to
use this method to compare alignments containing differing
numbers of sequences.

Van Heldenet al. (1998) employed an enumerative
method similar in outline to that described in the current
paper. Their method, though, does not allow for inexact
matches among motif instances, and uses a very different
measure of statistical significance of motifs.

3 Statistical Significance of Motif
Occurrences

A natural way to take into account both the absolute number
of occurrences and the background distribution is to begin
as in Section 2.1 by creating a table that, for eachk-mers,
records the numberN

s

of sequences containing an occur-
rence ofs, where an occurrence allows for a small, fixed
number
 of substitutions of residues ins. A reasonable
measure ofs as a motif, then, would be based on how un-
likely it is to haveN

s

occurrences if the sequences were
drawn at random according to the background distribution.

More specifically, letX be a single random sequence of
the specified lengthL (L = 20 for upstream sequences),
with residues drawn randomly and independently from the
background distribution, or alternatively generated by a
Markov chain according to the background dinucleotide dis-
tribution. Suppose thatp

s

is the probability thatX contains
at least one occurrence of thek-mers, allowing for 
 sub-
stitutions. Under the reasonable assumption that theN se-
quences are independent, the expected number containing at
least one occurrence ofs is Np

s

, and its standard deviation
is
p

Np

s

(1� p

s

). Therefore, the associatedz-score is

M

s

=

N

s

�Np

s

p

Np

s

(1� p

s

)

: (1)

M

s

is the number of standard deviations by which the ob-
served valueN

s

exceeds its expectation, and is sometimes
called the “z-score”, “normal deviate”, or “deviation in stan-
dard units” (Alder & Roessler 1972).M

s

is asymptotically
normally distributed, and normalized to have mean 0 and
standard deviation 1, making it suitable for comparing dif-
ferent motifss. Equation (1) will be used as the measure
of s as a motif: it measures how unlikely it is to haveN

s

occurrences ofs, given the background distribution, and so
incorporates both of the desired criteria.

3.1 The Probability of Occurrence in a Single
Sequence

What remains, then, is to determinep
s

, the probability that a
single random sequenceX of lengthL contains at least one
occurrence ofs. For the case in which no substitutions are
permitted andjsj is not too small,p

s

can be approximated
well by a certain Poisson process (see Waterman (1995, Sec-
tion 12.3)). Schbath (1995) extended this to the more gen-
eral case in which the sequenceX is generated by a Markov
chain.

Determiningp
s

exactlyvia generating functions is a well
studied problem, even for the case in which substitutions, in-
sertions, and deletions are permitted. Even the simplest case
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of unbiased coin flips with no such variations permitted is
interesting and somewhat counterintuitive: for the alphabet
fH; Tg, uniform distribution, andL = 3, p

HH

= 3=8 whereas
p

HT

= 1=2. The cause of the difference is the fact that the
patterns = HH can overlap itself.

Guibas and Odlyzko (1981, Theorem 3.3) were the first to
exhibit generating functions that determinep

s

exactly, even
in the presence of substitutions, insertions, and deletions, if
the characters ofX are generated independently. Chrysaphi-
nou and Papastavridis (1990, Theorem 4) extended this re-
sult to the case in whichX is generated by a Markov chain.
The remainder of this paper concentrates on the case of at
most one subsitution, no insertions or deletions, and Markov
chains of order 1, which are the parameters used in the ex-
perimentation described in Section 4.

The algorithm to computep
s

that is implicit in the works
of Guibas and Odlyzko (1981) and Chrysaphinou and Papas-
tavridis (1990) requires the computation of a determinant of
size(3jsj+2)� (3jsj+2), most of whose entries are poly-
nomials of degree at leastjsj. This section concludes with
the outline of a more direct and efficient algorithm that was
employed in the subsequent experimentation.

Given a pattern strings, construct a deterministic finite
automatonM that accepts those strings containing a sub-
string that matchess with at most one substitution, as fol-
lows. M has a state for every stringu that matches a pre-
fix of s with at most one substitution. The transition from
u on input character� is to that state corresponding to the
longest suffix ofu�, that is, the longest suffix that agrees
with some prefix ofs allowing at most one substitution.M
has1:5jsj2 + O(jsj) states, and can be constructed in time
O(jsj

2

) (Gusfield 1997, Theorem 3.4.1).

Given the transition probabilitiesa
ij

of the Markov chain
G that generates the random sequenceX , transformM into
a Markov chainM 0 (not to be confused withG) by assigning
transition probabilitya

ij

to those transitions ofM labeledj
out of those states whose corresponding stringu ends with
the characteri. The desired probabilityp

s

is given by the
probability, inM 0, of going from the start state to the ac-
cepting state injX j steps. This can be computed in time
O(jX j � jsj

2

) by exploiting the sparseness of the transition
probability matrix ofM 0. In particular, although that tran-
sition matrix has�(jsj4) entries, each row has only four
nonzero entries, so that each of thejX j matrix-vector prod-
uct can be computed in timeO(jsj2).

4 Results

The algorithm of Section 3 was applied to the upstream se-
quences from each of fourteen prokaryotic genomes, ten of
which are bacteria and four archaea. Nine of the ten bac-
terial genomes showed a strong predominance of a stan-
dard Shine-Dalgarno sequence consisting of most ofAAG-
GAGG. For example, Tables 3 - 5 show the highest scoring
sequences found inH. influenzae, B. subtilis, andE. coli,
respectively. The patternss in these and subsequent tables
have been aligned by hand to aid visualization.

s N

s

Np

s

M

s

TAAGGAG 311 78.14 26.96
AAGGAGA 357 116.1 23.16

CTAAGGA 223 56.69 22.46
ATAAGGA 375 130.4 22.29

AGGAGAA 343 114 22.19
GTAAGGA 225 62.39 20.97
TAAGGAC 210 55.87 20.96

TTAAGGA 356 134.5 19.9
GAGGAAA 336 123.8 19.8

TAAGGAA 387 154.2 19.65
AGGAGTA 202 57.61 19.35
AGGAAAA 475 219.4 18.48
AAGGAGT 223 71.41 18.32

TAAGGAT 261 95.18 17.49
ACAAGGA 243 86.66 17.24
AAAGGAG 313 127.1 17.14
AAGGATA 315 129.2 16.99
GGAGTAA 193 61.86 16.98

AGGAGCA 155 43.96 16.97
AAGGAAC 248 92.73 16.58

Table 3: Twenty highest scoring 7-mers, allowing up
to one substitution, in the upstream sequences ofH. in-
fluenzae, whose SD site should be a subsequence of
TAAGGAGGTGATCCAA

s N

s

Np

s

M

s

AAGGAGG 2000 548.7 66.58
AGGAGGT 1408 309.1 65

AAAGGAG 1894 592 57.85
TAAGGAG 1246 331.7 52.37

GGAGGTG 1087 265.6 52.12
AGGAGGC 987 231 51.21

AAGGAGC 988 246.1 48.78
TAGGAGG 1113 313.6 46.98

CAAGGAG 1018 272.3 46.77
CAGGAGG 979 256.1 46.65
AAGGAGT 1140 332.6 46.19
AGGAGGA 1473 510.4 45.54

ATAGGAG 1051 310.6 43.7
AGGAGGG 1456 528.5 43.23

ACAGGAG 916 253.7 42.93
AAAGGCG 823 219.5 41.87
AAAGGTG 1019 310.6 41.81

GAGGTGC 495 99.85 40.04
GAGGTGT 609 142.4 39.79

AACGGAG 802 223.6 39.78

Table 4: Twenty highest scoring 7-mers, allowing up
to one substitution, in the upstream sequences ofB.
subtilis, whose SD site should be a subsequence of
TAGAAAGGAGGTGATCCAG
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s N

s

Np

s

M

s

TCAGGAG 535 113.2 40.19
TAAGGAG 635 165.5 37.22
CAGGAGT 431 99.7 33.57
AGGAGTA 512 138.3 32.31

AAGGAGT 566 163.6 32.08
ACAGGAG 517 143.9 31.65
CAGGAGA 532 151.1 31.55

ATAAGGA 598 192.6 29.89
CAGGAGG 461 128.4 29.79

CCAGGAG 372 96.54 28.36
TGAGGAG 448 133 27.75
AAGGAGA 658 240.2 27.75
AGGAGAA 650 236.3 27.69

CAGGAGC 356 93.82 27.37
TTAAGGA 543 184.6 26.97
CAAGGAG 486 155.9 26.94

TTCAGGA 417 129.2 25.71
ATCAGGA 419 131.2 25.51

AAGGAGG 541 203.7 24.21
GGAGTAA 433 145.7 24.21

Table 5: Twenty highest scoring 7-mers, allowing up to one
substitution, in the upstream sequences ofE. coli, whose SD
site should be a subsequence ofTAAGGAGGTGATCCAA

To verify that the scores in such tables are statistically sig-
nificant, the algorithm was run on simulated input data of the
same length and dinucleotide composition. The highest re-
sulting simulated scores corresponding to theH. influenzae
parameters, for example, were around 4. (See Section 5 for
an analytical explanation of this value.)

The exceptional bacterium wasM. genitalium, almost all
of whose highest scoring 7-mers do not complement the
3

0 end of its 16S sequence: see Table 6. Its highest scor-
ing 7-mer only had a score ofM

s

= 5:5; simulated data
of the same length and dinucleotide distribution had maxi-
mum scores in the range 5 – 7, suggesting that the motifs
found in the upstream sequences ofM. genitaliumwere of
no significance. For comparison, with these same parame-
ters the other thirteen prokaryotic genomes had maximum
scores ranging from 12 (M. pneumoniae) to 67 (B. subtilis).
It is interesting that Loechelet al. (1991) describe a possi-
ble alternative ribosome recognition site specifically inM.
genitalium.

Table 7 shows the highest scoring sequences found in the
related organismM. pneumoniae. Note in this case the pre-
dominance of the Shine-Dalgarno sequenceGGAGG.

Synechocystis sp.was the only other bacterial genome
to display any non-Shine-Dalgarno motif among its high
scoring sequences: the second highest scoring 7-mer was
CATCGCC, with a score ofM

s

= 16. Further investi-
gation revealed the nature of this high-scoring sequence.
Table 8 shows its highest scoring 7-mers among longer
upstream sequences of length 40, allowingno substitu-
tions. These strongly reveal the cyanobacterial motifGGC-

s N

s

Np

s

M

s

CGGTTGT 10 2.078 5.508
CCCGCGC 2 0.1255 5.292
GCTCGGG 4 0.4655 5.183
GCGAGGG 5 0.6967 5.16
TTAATTA 111 71.54 5.069
TAATTAA 119 78.11 5.069
ATCCACG 8 1.629 5.001
CACTGGT 11 2.743 5
ATAATTA 103 65.48 5
GGGGAGG 6 1.027 4.913
CAGGGGT 9 2.046 4.873
CTAATTA 62 34.52 4.86
GGAGATC 10 2.458 4.823
ACCCGCG 3 0.3149 4.787
AGTGATC 15 4.748 4.729
GTAATTA 62 35.07 4.729
GATAACT 33 15.08 4.69
CTAACTG 19 6.948 4.606
ACGGTTG 10 2.598 4.605
TGATCAA 29 12.87 4.559

Table 6: Twenty highest scoring 7-mers, allowing up to one
substitution, in the upstream sequences ofM. genitalium,
whose SD site should be a subsequence ofGAGGTGATCCAC

s N

s

Np

s

M

s

GGAGGTG 29 4.338 11.88
GAGGAGG 30 5.153 10.99
CGGAGGT 26 4.521 10.14

ATGGAGG 31 6.431 9.735
AGGAGGT 41 10.25 9.681
GGAGGGA 28 5.524 9.602
GGAGGTC 22 3.816 9.334

AGAGGAG 36 9.376 8.756
CAAGGAG 40 11.17 8.695
GAGAGGA 30 7.367 8.384
AAGGAGG 44 13.75 8.245

GGAGGTA 33 9.006 8.049
AGGAGGA 34 9.523 7.988

GAAGGAG 35 10.18 7.84
AGGAGGG 28 7.27 7.73
AGGAGTT 50 18.02 7.634
GGGGGTA 26 6.763 7.435

AACGGAG 34 10.39 7.381
AAGGAGA 51 19.39 7.283
CAGGAGG 23 5.783 7.19

Table 7: Twenty highest scoring 7-mers, allowing up
to one substitution, in the upstream sequences ofM.
pneumoniae, whose SD site should be a subsequence of
TAGAAAGGAGGTGATCCAC
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s

Np

s

M

s

CGATCGC 76 1.225 67.56
GCGATCG 63 1.029 61.11

GATCGCC 86 2.699 50.72
GGCGATC 62 2.043 41.96

ATCGCCA 36 3.761 16.63
CGGCGAT 20 1.66 14.24

ATCGCCT 32 3.966 14.09

Table 8: The highest scoring 7-mers, allowing no substitu-
tions, in the length 40 upstream sequences ofSynechocystis
sp.

s N

s

Np

s

M

s

CCGCACT 76 0.621 95.71
ACCGCAC 72 0.734 83.19

GTGCGGT 46 0.539 61.92
CGCACTT 76 1.63 58.25

AGTGCGG 46 0.845 49.14
AAGTGCG 49 1.62 37.22

Table 9: The highest scoring 7-mers, allowing no substitu-
tions, in the length 40 upstream sequences ofH. influenzae

GATCGCC known as the Highly Iterated Palindrome, HIP1
(Robinsonet al. (1995), Karlinet al. (1996)).

At these longer upstream sequence lengths and no substi-
tutions, the highest scoring 7-mers ofH. influenzaealso re-
vealed another significant motif, shown in Table 9. These are
the Uptake Signal SequenceAAGTGCGGT and its inverted
complementACCGCACTT (Smithet al. (1995), Karlinet al.
(1996)).

Finally we come to the remaining four prokaryotic
genomes in the experiment,A. fulgidus, M. jannaschii, M.
thermoautotrophicum, andP. horikoshii, which are all ther-
mophilic archaea. The highest scoring 7-mers of these four
archaea are shown in Tables 10 - 13. What is interesting
about these is that their highest scoring sequences display
a predominance of the patternGGTGA or GGTG, which sat-
isfies the requirement of complementarity to a subsequence
near the30 end of the 16S rRNA (see Table 1). However,
that 16S subsequence is shifted a few nucleotides upstream
compared to the bacterial sites discussed above.

Interestingly, Watanabeaet al. (1997) did a relative en-
tropy analysis of the nucleotide distribution at each small
fixed distance from the translation start sites inM. jan-
naschii, and noted corroborating findings: “Although [the
relative entropy plot forM. jannaschii] is similar to that for
bacteria, there are also characteristic features [ofM. jan-
naschii]. In theG-rich region corresponding to the SD site,
there is aT-rich site. In this region,[A] is lowered . . . The
G-rich region does not overlap theA-rich region residing in
the50 side of theG-rich region.” (Watanabea, Gojobori, &
Miura 1997, page 16)

s N

s

Np

s

M

s

GGTGATA 435 60.04 49.28
GGTGACA 243 21.83 47.65
CGGTGAT 180 12.84 46.82
GGTGAGA 324 41.56 44.36
AGGTGAT 382 59.21 42.71

CAGGTGA 208 19.77 42.58
GAGGTGA 289 40.96 39.24
GTGGTGA 244 30.22 39.24
TCGGTGA 154 13.2 38.9
ACGGTGA 168 15.72 38.59
TGGTGAG 250 34.25 37.25
GGTGATC 171 17.55 36.82
AGGTGAC 185 20.37 36.7
TGGTGAT 303 50.36 36.15
GTGATAC 183 21.2 35.37

AGGTGAG 258 39.65 35.09
TGGTGAC 160 17.36 34.41

CTGGTGA 168 18.99 34.39
TAGGTGA 313 58.58 33.84
ATGGTGA 309 58.6 33.3

Table 10: Twenty highest scoring 7-mers, allowing up
to one substitution, in the upstream sequences ofM.
jannaschii, whose SD site should be a subsequence of
GGAGGTGATCCAG

s N

s

Np

s

M

s

CGGTGAT 176 27.69 28.4
AGGTGAT 318 78.11 27.73

GGAGGTG 294 76.38 25.43
GGTGATC 211 46.41 24.46

GAGGTGA 291 79.23 24.31
GCGGTGA 129 22.44 22.63
GGTGATT 251 68.96 22.34

CAGGTGA 206 50.61 22.14
AGGTGGT 227 60.71 21.7
GGTGATA 250 71.26 21.59
GGTGATG 231 63.4 21.42

TGGAGGT 259 76.51 21.3
TGGTGAT 229 63.44 21.15

CGGAGGT 157 34.53 21.04
GAGGTGT 207 55.61 20.61
AGGTGCT 147 32.45 20.29

AGGAGGT 279 90.77 20.25
GGGTGAT 257 80.68 20.07
AGGTGTT 195 54.15 19.42

CAGGAGG 233 72.47 19.23

Table 11: Twenty highest scoring 7-mers, allowing up to
one substitution, in the upstream sequences ofM. thermoau-
totrophicum, whose SD site should be a subsequence of
AGGAGGTGATCCAG
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s

Np

s

M

s

GTGGTGA 277 43.91 35.57
GCGGTGA 183 22.66 33.87
GAGGTGA 343 75.53 31.38

CGAGGTG 190 29.2 29.98
GGTGGTG 232 43.7 28.8
GGAGGTG 327 80.69 28

AGGTGAT 282 67.62 26.53
AGGTGGT 264 62.18 26.01
GGTGATA 247 58.03 25.18

GGCGGTG 146 24.4 24.77
GGTGATG 216 49.04 24.14

GAGGTGC 178 36.32 23.73
TGAGGTG 236 59.48 23.24

CGGTGAT 135 23.64 23.05
GAGGTGG 275 78.71 22.58
GGGGTGA 300 93.38 21.91
TGGTGAT 200 49.55 21.65
TGGTGGT 184 44.23 21.25

CGGAGGT 175 41.65 20.88
AGGTGAG 257 77.58 20.78

Table 12: Twenty highest scoring 7-mers, allowing up
to one substitution, in the upstream sequences ofP.
horikoshii, whose SD site should be a subsequence of
AGGAGGTGATCGAG

s N

s

Np

s

M

s

GGAGGTG 449 82.2 41.17
CGAGGTG 306 42.47 40.8
GGTGGTG 338 53.11 39.53
GAGGTGG 422 81.63 38.33
GAGGTGA 430 89.39 36.71
AGGTGGT 347 66.87 34.74
AGGTGAT 365 73 34.71

GAGGTGC 301 52.63 34.62
TGAGGTG 376 77.38 34.51
GAGGTGT 335 69.71 32.24

AGAGGTG 381 91.14 30.96
GTGGTGA 294 62.01 29.85

GGCGGTG 208 34.37 29.83
AGGAGGT 377 97.13 28.99

GCGGTGA 210 38.04 28.1
GGTGATA 263 55.72 28.1

CGGAGGT 232 46.44 27.5
GGTGATG 257 60.73 25.51

TGGTGGT 233 54.13 24.59
CGGTGGT 163 29.93 24.48

Table 13: Twenty highest scoring 7-mers, allowing up to one
substitution, in the upstream sequences ofA. fulgidus, whose
SD site should be a subsequence ofAGGAGGTGATCCAG

5 A Bound on the Maximum Score Among
Random Sequences

When the algorithm was run on simulated data of the same
length and dinucleotide composition as that of any but the
smallest genomes, the maximum 7-mer scores were typi-
cally in the range 3.5 – 5. The following probabilistic anal-
ysis shows that this is not coincidental.

Theorem 1 Consider a collection ofN random, indepen-
dent, identically distributed DNA sequences, each one gen-
erated by any process whatsoever. Then for any fixed integer
k and anyB � 4, whenN ! 1 the probabilityp(k;B)
that there exists a sequences such thatjsj = k andM

s

> B

is less than
4

k

2:46e

B

2

=2

:

Proof: The central limit theorem (Birnbaum 1962, Theo-
rem 7.5.5) states that, asN ! 1, Pr(M

s

� B) converges
uniformly to the cumulative probability function�(B) of
the normalized normal variable. Thus,

lim

N!1

p(k;B) � lim

N!1

X
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;

the last inequality following fromB � 4. 2

For instance, whenk = 7, the probability that any score
exceeds 5 is less than 0.025, and the probability that any
score exceeds 6 is less than1:02� 10

�4, provided the num-
berN of input sequences is sufficiently large. Contrast this
with the fact that, on real genomic data, the maximum score
was always at least 11.8, with the exception ofM. genitalium
discussed in Section 4.

6 Conclusion and Further Questions

This paper has presented a method to enumerate the short
motifs in its input sequences, together with their exactz-
scores, thereby identifying those motifs that are most signif-
icant (as measured byz-score). The strengths of the method
are that it is exhaustive and exact: all motifs are enumerated,
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A C G T rel. entropy
0.315 0.126 0.194 0.342 0.0262
0.262 0.109 0.382 0.232 0.0852
0.237 0.196 0.475 0.0876 0.28
0.566 0.0995 0.187 0.146 0.182
0.0537 0.0119 0.903 0.0308 1.46
0.0657 0.0418 0.864 0.0289 1.28
0.0706 0.0139 0.0677 0.848 1.07
0.0647 0.0318 0.827 0.0766 1.13
0.698 0.0358 0.1 0.163 0.443
0.211 0.0786 0.101 0.585 0.351
0.311 0.182 0.168 0.264 0.0149
0.293 0.152 0.19 0.276 0.00527

Table 14: Weight matrix composed fromM. thermoautotrophicumupstream sequences matching the highest scoring 7-mers,
allowing up to one substitution. The bold entries reflect thecoreGGTGAT.

and theirz-scores are computed precisely. Thus, it does not
suffer from being heuristic or ending in local optima. A re-
sulting weakness of the method is that the algorithm is not
efficient for longer and more complex motifs allowing mul-
tiple insertions, deletions, and substitutions.

There are a number of interesting problems and exten-
sions raised by this research:

1. Devise a compelling method to combine the highest
scoring sequences so as to produce a single motif, rather
than a list of the sequences themselves. It is not diffi-
cult to construct a weight matrix from those upstream se-
quences that match some sequence in an alignment of the
highest scoring sequences. For instance, for theM. ther-
moautotrophicumpatterns of Table 11, such a weight
matrix is shown in Table 14. The positions with relative
entropy above 0.3 reflect the coreGGTGAT. The problem
with this representation is exactly that discussed in Sec-
tion 2.2: there is no indication that this weight matrix
corresponds to 1005 of the 1868 upstream sequences.
A matrix derived from fewer but better conserved se-
quences would have a higher relative entropy and look
more impressive, and one derived from more sequences
would have a lower relative entropy and look less im-
pressive.

2. Devise an efficient algorithm for accommodating longer
patterns with proportionately more substitutions al-
lowed. This requires avoiding the Markov chain con-
struction of Section 3.1 for all but a small fraction of
the patternss that occur approximately in the input se-
quences.

3. Incorporate into the probability calculation a more accu-
rate RNA binding model than simple substitutions, using
the free energy rules (Lewin 1997).

4. Apply the method to other motif problems. Particularly
appealing is the problem of finding transcription factor
binding sites among genes suggested to be coregulated
by expression level array experiments (Chuet al. (1998),
van Heldenet al. (1998), Rothet al. (1998)).
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