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Understanding the complex and varied mechanisms that regulate gene expression is an important and challenging problem.   A fundamental subproblem is to identify DNA binding sites for unknown regulatory factors, given a collection of genes believed to be coregulated.   We discuss a computational method that identifies good candidates for such binding sites.  Unlike local search techniques such as Expectation Maximization and Gibbs samplers that may not reach a global optimum, the method discussed enumerates all motifs in the search space, and is guaranteed to produce the motifs with greatest z-scores.  We discuss the results of validation experiments in which this algorithm was used to identify candidate binding sites in several well studied regulons of Saccharomyces cerevisiae, where the most prominent transcription factor binding sites are largely known.  We then discuss the results on gene families in the functional and mutant phenotype catalogues of S. cerevisiae, where the algorithm suggests many promising novel transcription factor binding sites.  The program is available at http://bio.cs.washington.edu/software.html .
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Introduction

One of the major challenges facing biologists is to understand the varied and complex mechanisms governing the regulation of gene expression.  This paper focuses on one important aspect of this challenge, the identification of binding sites in DNA for the factors involved in regulation.  This is a necessary first step in determining which factors regulate the gene and how. 

The analysis of noncoding regions in eukaryotic genomes in order to identify regulatory elements is a difficult problem, and one that is not yet well solved.  Some of the reasons for this difficulty are as follows:  

1. Binding sites of multiple interacting transcription factors often play a role in the regulation of a single gene.

2. There can be great variability in the binding sites of a single factor, and the nature of the allowable variations is not well understood.

3. The regulatory elements may be located quite far from the corresponding coding region, either upstream or downstream or in the introns.

Any algorithm whose goal is to discover novel regulatory elements takes as input a set of regulatory regions of genes, many of which are suspected to contain a common regulatory element.  There are many possible sources for such coregulated genes, including expression microarray experiments, gene knockout experiments, and functional classes from the literature.  This paper focuses on the regulation of genes in the yeast Saccharomyces cerevisiae, since much is known both about its transcription factors and about the functions of its genes.

A number of algorithms to discover general motifs have been proposed (1-9).  Many of these algorithms are designed to find longer or more general motifs than are required for identifying transcription factor binding sites. The price paid for this generality is that many of the cited algorithms are not guaranteed to find globally optimal solutions, since they employ some form of local search, such as Gibbs sampling, expectation maximization, and greedy algorithms, that may terminate in a locally optimal solution. There have been some studies that have applied these local search techniques specifically to the problem of identifying transcription factor binding sites in S. cerevisiae, with some success  (10-14).

The number of well conserved bases in the collection of binding sites of a single S. cerevisiae transcription factor is typically six to ten (15-16).  This number is small enough that, for this particular problem, one need not rely on such general local search heuristics.  Instead, one can afford to use enumerative methods that guarantee global optimality.  This is the approach taken by the current paper, whose  method  is most closely allied to those of van Helden et al. (17-19) and Tompa (20).  There are also other studies using an enumerative approach to motif-finding (21-23).  

We review a motif model that is tailored to accurately represent transcription factor binding sites in S. cerevisiae.  We then review an enumerative algorithm from Sinha and Tompa (24) called YMF (Yeast Motif Finder) which, given the regulatory regions of several related genes, is guaranteed to produce the motifs with greatest z-scores.  The present paper focuses on the application of that method to classes of yeast genes.  We first present the results of validation experiments in which YMF was used to identify candidate binding sites in  several well studied regulons of S. cerevisiae, where the most prominent transcription factor binding sites are largely known.  We then present results on gene families in the functional and mutant phenotype catalogues of S. cerevisiae taken from the MIPS database (25), where YMF suggests many novel transcription factor binding sites. Our goal was to discover motifs in the classes from these catalogues, since genes with common mutant phenotypes or common function may have the same regulatory mechanism, and hence may share informative binding sites.

Hughes et al. (11) performed a similar analysis of the MIPS functional catalogue using AlignACE, a local search algorithm based on Gibbs sampling.  There are a number of differences between their results and ours.  Most important is that differences in the motif model and search method (local search heuristic vs. enumerative search) lead to different significant motifs.  In a separate paper (Sinha and Tompa, in preparation) we compare the accuracy of YMF and other methods such as AlignACE on both simulated data and on yeast regulons.  Those results suggest that YMF may provide more accurate prediction of regulatory elements.  A second difference is that Hughes et al. (11) merge motifs found in different functional classes.  As a result, the important connection between transcription factor binding site and gene function, necessary for understanding regulatory relationships, is not apparent from their tables whereas it is explicit in ours.  Finally, Hughes et al. (11) report results only on the functional catalogue and not on the mutant phenotype catalogue.

Materials and Methods

Variability Among Binding Site Instances
The first question that must be addressed is “What constitutes a motif?” for the application of transcription factor binding sites in S. cerevisiae.  An inspection of transcription factor databases such as TRANSFAC (15, http://transfac.gbf-braunschweig.de/TRANSFAC/) and SCPD (16, http://cgsigma.cshl.org/jian/), and of the relevant literature (26-33), particularly Jones et al. (26), which is rich in examples, reveals that there is significant variation among the binding sites of any single transcription factor.  Moreover, the nature of the variability itself varies from factor to factor, so that the “correct” motif model is far from clear.  

Certain trends that must be incorporated in the motif model do, however, emerge from this literature, particularly from SCPD (see the column labeled “consensus” in Table 1 for examples): 

1.  Many of the motifs such as the Gal4p binding site CGGNNNNNNNNNNNCCG have spacers varying in length from 1 to 11 bp.  The spacers usually occur near the middle of the motif, often because the factors bind as dimers or tetramers. 

2.   The number of well conserved bases (not including spacers, of course) is usually in the range 6-10.  This number is called the length of the motif.

3.   When there is variation in a conserved motif position, it is often a transition (that is, the substitution of a purine for a purine, or a pyrimidine for a pyrimidine) rather than a transversion.  This is because of the similarity in nucleotide size necessary to fit the transcription factor's fixed DNA-binding domain.  Somewhat less often, the variation in a given position may be between a pair of complementary bases. Other  positional variations are rarer. 

4.   Insertions and deletions among binding sites are uncommon, again because of the fixed structure of the factor's DNA-binding domain. 

Based on these observations, a motif for our application is a string of length 6-10 over the alphabet {A,C,G,T,R,Y,S,W }, with 0 or more consecutive N's inserted at the center, and a limited number of R (purine), Y (pyrimidine), S (strong), and W (weak) characters, also called degenerate symbols.  We choose such a consensus model rather than (say) a weight matrix in order to be able to enumerate motifs. An examination of the 50 binding site consensi included in  SCPD (16)  revealed that the number of consensi that exactly fit this characterization is 34 (68%). About 10 more fit the characterization if very slight differences from the exact consensus are tolerated.   

Measure of Statistical Significance

Given some set of (presumably coregulated) S. cerevisiae genes, the input to YMF is the corresponding set of promoter regions, each  having length 800 bp and having its 3′ end at the gene's translation start site.  For each motif s, let Ns be the number of occurrences of s in the input sequences, allowing an arbitrary number of occurrences in both orientations per promoter region. A reasonable measure of s as a motif will reflect how unlikely it would be to have Ns occurrences, if the sequences were instead drawn at random according to the background distribution.  We use as this measure the statistical significance of the “z-score” of Ns. First, to specify the background distribution, let X be a set of random DNA sequences of the same number and lengths as the input promoter sequences, but generated by a Markov chain of order m, whose transition probabilities are determined by the (m +1)-mer frequencies in the full complement of 6000+ promoter regions (each of length 800 bp) of S. cerevisiae.  In our experiments, we chose m =3 in order for the background model to account for the TATA, AAAA, and TTTT sequences that are ubiquitous throughout the genome's promoter regions (17).  Let the random variable Xs be the number of occurrences of the motif s in these random sequences X, and let E(Xs) and σ(Xs) be its mean and standard deviation, respectively.  Then the z-score associated with s is 

zs = (Ns - E(Xs))/σ(Xs) .






(1)
The measure zs is the number of standard deviations by which the observed value Ns exceeds its expectation.  See Leung et al. (34) for a detailed discussion of this statistic. 

The z-score zs obeys a normal distribution in the asymptotic limit as the total length of the input promoter regions increases (35). If the assumption of normality is inaccurate, it may not be as meaningful to compare the z-scores of different motifs.  In view of this, YMF will be most accurate when the total length of the input promoter regions is large.  The ultimate test of the method, however, is not whether the z-score passes normality tests, but whether YMF successfully predicts true transcription factor binding sites.  Therefore, in order to demonstrate the robustness of the method, in the validation experiments on known regulons we report the results on regulons consisting of as few as 3 genes.

Since YMF enumerates a large motif space, thereby sampling a large number of points from the distribution, it is expected that some motifs will have a high z-score by chance. To address this, we associate with z-score x a significance pmax(x), which measures the probability that the maximum  z-score is at least x, if the input sequences were random. This maximum is taken over all motifs of the given length, number of spacers, and number of degenerate symbols. We precompute pmax for a variety of motif parameters and input sequence lengths, by simulation. Random sequences of the same length as the input promoter regions are generated according to the Markov model being used, and YMF is run on these random sequences. The maximum z-score reported is recorded. This experiment is repeated 100 times. The fraction of experiments that yielded maximum z-score at least x is used as an estimate of pmax(x). 

Algorithm Summary

The algorithm used by YMF is summarized here.  The inputs to the algorithm are as follows:

1.  a set of promoter regions;

2.  the number l of nonspacer characters in the motifs to be enumerated (called the motif length);

3.  the maximum number w of spacers in the motifs;

4.  the transition matrix for a 3rd order Markov chain modeling the background distribution of promoter regions.  

The parameters l and w, along with the implicitly assumed motif model, define a search space of all candidate motifs that will be evaluated. This space consists of all motifs that have l characters from {A,C,G,T,R,Y,S,W}, and between 0 and w spacers (N) in the middle. Typically, the maximum number of degenerate symbols (R, Y, S, or W) was restricted to 2 for computational efficiency, though YMF can be configured to handle different values of this parameter. YMF first makes a pass over the input sequences, tabulating the number Ns of occurrences of each motif s in either orientation, including overlapping occurrences. For each motif s for which Ns > 0, it then computes the mean and standard deviation of the motif count using a method described by Sinha and Tompa (24).  Finally it uses Equation (1) to compute the z-score zs and pmax(zs), and outputs the motifs sorted by z-score.

Because the number of motifs is exponential in l, we can afford this enumerative method only for modest values of l. In contrast, however, the running time is linear in the size of the input sequences, so that the method scales very well to larger gene families and longer promoter regions.  The current implementation typically runs in a few seconds for motifs of length 6, on a Pentium processor with 256 MB memory. For length 9 motifs, it requires a few minutes.

Both a web interface and the source code for YMF are freely available at http://bio.cs.washington.edu/software.html.  

Experimental Methods

The maximum number w of spacers allowed in a motif was varied depending on the motif length parameter l. For l = 6, we used w = 11, which means that length 6 motifs were allowed to have between 0 and 11 spacers in the middle. This is in accord with observed motifs from SCPD. However, this introduces an inherent bias in the method toward finding motifs with spacers, since there are 11 times as many motifs with spacers as without. To include some runs without this bias, when YMF was run with l > 6, we used w = 0, i.e., no spacers allowed. 

There are three different types of postprocessing steps that were used to produce the most promising candidate binding sites to report.  The first is a tool called FindExplanators (36). A set of promoter sequences having bindings sites for a few different transcription factors typically contains hundreds of statistically overrepresented motifs, most of them being minor variations of the true binding site motifs. YMF will report all these overrepresented motifs. For example, suppose a factor binds to tcacgct in a set of sequences, causing this motif to be overrepresented. Many of its variations, e.g. cacgctt or tcacgcw, are also likely to be overrepresented, simply because each has its number of occurrences artifically increased by the presence of tcacgct.  FindExplanators is a tool that extracts the few significantly independent motifs from the vast number that are simply artifacts of these few.

Since YMF evaluates a motif based on its total number of occurrences in a set of sequences, a motif may have a high z-score (low pmax) even if it occurs unusually often in only one of the promoters. Such motifs may not be interesting candidates for transcription factor binding sites. Multiple occurrences of a motif in a promoter suggest some significance, but a very large number of occurrences in the same promoter may suggest a repetitive element rather than a regulatory element. Thus motifs are post-processed so that those that have high z-scores due to a large number of occurrences in one or two promoters are not reported.  For this purpose we developed a numerical measure that captures the notion of a motif being well distributed among the promoters. Given a set X of promoters and a motif s, we first count the occurrences of s in each promoter. Let X+ be the set of promoters that have at least one occurrence of s, and let D = {d1,d2,...,dp} (where p = |X+ |) be the distribution of occurrences of s in X+. Intuitively, a well distributed motif is one for which D has a low variance. However, the variance itself is not comparable for sample distributions obtained from different populations, so we normalize it by dividing by the expectation. Thus, our statistic is w = (i=1.. p (di  ( ()2/(, where ( is the mean of the distribution D. We call this the w-score of motif s. Lower values of the w-score indicate better distributed motifs. Note that w is identical to the (2 statistic, and we use the (2 distribution with p-1 degrees of freedom to compute a significance threshold on the w-score. Notice that we compute w from X+ and not from X, since in general we may not find the binding site present in all the input promoter sequences. 

As another means of evaluating the motifs, we introduce a co-expression score, which measures the similarity of the expression profiles of the genes corresponding to X+. This score is computed from data in the database ExpressDB  (37), which catalogues mRNA expression level information from several different studies under a common framework. The expression data is normalized across studies by converting them into  estimated relative abundancies or “ERA”s. Such values are available for all yeast genes under 217 different conditions. For each pair of genes, we compute the correlation coefficient of their ERA values. Given the set X+, we compute the average pairwise correlation coefficient over all pairs of genes in X+. We then estimate a p-value of this average pairwise correlation coefficient, by choosing |X+ | random genes and computing the same score for these, and repeating several times. This p-value is called the co-expression score of X+ and a low value indicates that the genes in X+ have an unusually high pairwise correlation coefficient on average.

Results and Discussion

Validation on Known Regulons

The SCPD database (16) has a collection of transcription factors and the genes regulated by each factor. Each such set of genes comprises a regulon. For each gene in a regulon, the database lists the experimentally determined binding sites of the transcription factor, and in many cases the consensus sequence of the binding sites in the regulon is also given. It is not always clear from the binding sites alone what their consensus should be, because there is often more than one way to align them, and to choose a consensus with degenerate symbols. Hence, we rely on the consensus listed at SCPD. YMF was run on each regulon in SCPD that has at least three genes and has a catalogued consensus sequence for its binding sites. There are 23 such regulons. The success of YMF was assessed by comparing the top motifs reported with the known consensus for the regulon. The program was run three times on each regulon, to find motifs of length 6, 7, and 8, respectively. For length 6 motifs, a maximum of 11 spacers in the middle was allowed. For lengths 7 and 8, the motif model did not include spacers. (See Materials and Methods for details.) In all runs, a maximum of 2 degenerate symbols (R, Y, S, or W) was allowed in the candidate motifs. 

The results are summarized in Table 1. Each row corresponds to a regulon. For each of the three runs of YMF on that regulon, the motif with greatest z-score is presented, along with its total count in the input promoter regions, its z-score z, and pmax(z). Lower pmax values are indicative of higher statistical significance. (See Materials and Methods.) Reported motifs that can be superimposed with the known consensus for the regulon without conflicting characters at any position, and that have at least four positions (possibly degenerate symbols) identical to the consensus, are considered matches and are typeset in bold letters.

For 15 of the 23 regulons, the top motif reported (for one or more value of the motif length parameter) was a match. For 14 of the 15 regulons, there was a match with pmax less than 0.1, the exception being MATa2. In another regulon, MCM1, the top ranking motifs (for length 6) were variants of the poly-A element (any motif that can be instantiated to a string of all A’s, e.g., AAAAWAAA), and the first non-poly-A motif, at rank 11 with pmax 0.01, was CCSNNNNAGG, similar to the known consensus CCNNNWWRGG. For the regulon RAP1, the top motif reported (for length 7) is GCAYGTG, which matches part of the Inositol/Choline Response Element (ICRE) with consensus SCAYRTGAARW. (We discuss this motif and its connection to the RAP1 regulon shortly.) The first motif reported by YMF (for the same length parameter) that is not a variant of GCAYGTG, is RCACCCA, at rank 11, with pmax 0.02. Note that this closely matches the known consensus RMACCCA for the RAP1 regulon. For the regulon HSE,HSTF, the consensus catalogued at SCPD is GAANNTCC. However, an alignment of the known binding sites of this transcription factor, as reported in the same database, reveals a consensus pattern of TCTAGAA. This closely matches the top motif TCYAGAA reported by YMF for significant length 7. Thus, counting MCM1, RAP1, and HSE,HSTF also as successes, we are left with only five regulons (GCR1, ROX1, SFF, TBP, and UASPHR) on which YMF failed to report any match to the known binding site consensus. Note that the 23 regulons represent the typical input for a motif-finder – they are of varying sizes (3 to 38 genes) and have a variety of known binding sites (length 5 to 10, with few to many spacers or degenerate symbols).  The results thus demonstrate the applicability of the method on a variety of data sets.

In most cases, a match was found in the top three motifs for multiple values of l, indicating that the performance is not crucially dependent on prior knowledge of the motif length. In some cases, YMF found a match even though the known consensus of the binding site does not conform to the motif model YMF uses. For instance, the regulon SCB has the sequence CNCGAAA as its binding site consensus, with an ‘N’ that is not in the middle. Nevertheless, a very similar motif CACGAAA was reported. Similarly, for HAP1 (consensus CGGNNNTANCGG), the motif SGGNNNNNNSGG was discovered. 

The regulon ABF1 is an example of a case where multiple occurrences of the binding site are found in the same promoter region. Of the 19 genes in this regulon, 8 have two or more occurrences of the motif TCRNNNNNNACG in their promoter region. There are a total of 36 occurrences of the motif, giving it a very high z-score of 10.07. If each of the 19 genes had only one occurrence of the motif, for a total of 19 occurrences, the z-score would have been about 4.03, which is rather low, meaning that the motif would not have been reported as significant. 

As noted above, a pmax value of 0.1 or less served as a good indicator of a significant motif, in the sense that most of the matches occurred with pmax  less than 0.1. We therefore examined all motifs (from Table 1) that are reported to have a pmax value less than this threshold, to see if there are interesting signals in the regulon that are different from the known binding sites, and also to have an idea of the false positive rate. Table 2 summarizes our observations. It includes each motif from Table 1 that has a pmax value less than 0.1, is not a poly-A, poly-T or TATA motif, and is not a match. There are 13 such motifs. Three of them (CGCWCGG, CGCACGGA in the GAL4 regulon, and ARCCGCCG in the MIG1 regulon) occur overlapping with known Gal4 binding sites in the respective promoters. The motif CGGNNNNNNNNNNNCCG in the MIG1 regulon is identical to the Gal4 binding site consensus, and this family contains the genes Gal3, Gal10, Gal1, and Gal4, which are known to contain this binding site. The motif GCAYGTG in the RAP1 regulon matches a prefix of the ICRE consensus SCAYRTGAARW (38-39). Among the genes of this regulon are Fas1, known to contain the ICRE motif (40), and Opi3 and Itr1, both known to have the similar motif CATGTGAA, which is shared by promoters of phospholipid synthetic enzymes such as these two (25). Thus, for five of the motifs in Table 2, there is strong evidence that they correspond to known binding sites of other transcription factors, leaving eight motifs about which we do not have any clear evidence. Even if we regard all these eight motifs as spurious, the resulting false positive rate would be small, considering that a total of 39 motifs in Table 1 meet the criteria of having pmax less than 0.1 and not being a poly-A, poly-T or TATA motif. Some occur at approximately conserved position relative to the translation start site, strengthening the possibility that they might be targets of other transcription factors. 

Results on MIPS Catalogues

The MIPS database at the Munich Information Center for Protein Sequences (25) catalogues yeast genes classified according to different criteria. One such catalogue is based on gene function, while another classifies genes based on phenotypes with which mutant versions of the genes have been implicated. These catalogues will be referred to as the functional and the phenotype catalogue, respectively. Each catalogue has a hierarchical organization, the different levels of the hierarchy corresponding to different degrees of specificity of the classification criterion. Our goal was to discover motifs in the classes from these catalogues, since many genes with common mutant phenotypes or common function may have the same regulatory mechanism, and hence may share binding sites. We extracted from each catalogue the classes that were at or near the bottom of the hierarchy and had 5 or more genes. YMF was run on the 800 bp long promoter regions of genes in each class, with the same set of parameter values as in the experiments on SCPD regulons. In some cases, a class of genes contains one or more pairs of divergent genes, whose promoter regions overlap. For such pairs, the single promoter region between the two genes replaced two separate promoters. The top 1000 motifs from each of the three runs of YMF were input to the program FindExplanators (see Materials and Methods), which reported the three best independent motifs in its input list of 1000 motifs. For classes with over 100 genes, only the single best motif of the 1000 was reported, for computational efficiency. For each motif obtained from the previous step, the w-score (see Materials and Methods) was computed to measure how well distributed the motif is, and motifs with poor w-scores (at 95% level of significance) were rejected. All motifs with pmax  greater than 0.1, as well as those that are poly-A, poly-T, or TATA repeats were rejected. Matches of each of the remaining motifs to binding sites of known transcription factors in yeast (as catalogued in the database TRANSFAC) are reported. Also, for each remaining motif, the co-expression score was computed (see Materials and Methods) for the set of genes in the class that contain the motif in their promoters.  

Functional Catalogue

There were 204 classes extracted from the functional catalogue, and the motif-finding steps reported a total of 930 motifs.  Tables 3a and 3b present a selection of the results. This selection was done by manual inspection of the 930 reported motifs, using the following more stringent criteria. Motifs with pmax greater than 0.05 were eliminated. If a single functional class had motifs of different lengths that were variants of each other, only that with the least pmax value was retained. Motifs that had more than two matches to known binding sites of the same transcription factor are presented in Table 3a, while the others are in Table 3b, and are good candidates as novel transcription factor binding sites. 

Most of the motifs in Table 3a match the known binding site consensus of some transcription factor, in which case the name of the factor is reported along with the consensus. Some of the motifs in this table do not match a known consensus, but do match two or more binding sites of a single transcription factor. For such motifs, we report the name of the factor, along with the number of matching binding sites. In either case, it would be interesting to pursue, for each of the motifs in the table, whether the transcription factor whose binding sites it matches has some regulatory role for the genes in that functional class. For instance, the motif CACGTGSG, which matches the Pho4 consensus, is found to be significant in the functional class “phosphate metabolism” (Table 3a), and it may be verified from the literature that the Pho4 transcription factor indeed regulates many of the genes in this class that have the motif in their promoters.  Many other similar connections can be found in the comments column of Table 3a.

We will now discuss some of the most interesting observations from Table 3b, showing that some of these motifs are excellent candidates as novel transcription factor binding sites.  The 7-mer CGATGAG is highly overrepresented in the promoters of the functional class “rRNA transcription”. This motif was also discovered by Hughes et al. (11), who recognized it as the PAC box (41), an element for which neither function nor binding factor has been identified. It occurs a total of 50 times in 45 of the 109 promoters in the class, with a z-score 17.00 and pmax  less than 0.01. It is a very well distributed motif, its 50 occurrences being spread over 45 promoters. Moreover, these 45 promoters belong to genes that are highly co-expressed. Their co-expression score is 0.04, which means that the average pairwise correlation coefficient of their expression data has a p-value of 0.04. Another property that makes this motif a very compelling candidate for a binding site is its extremely high conservation in position in the promoter sequences. Fig. 1 illustrates this point. It shows a plot of the occurrences of the motif in the 45 promoters, the 3′ end being on the right. We also plotted this motif in promoter regions of orthologs of the 45 yeast genes in other yeast species (Fig. 2). The orthologous genes considered here belong to other yeast strains, and the orthology information was obtained from Paul Cliften (personal communication). We see that the motif occurs frequently and is conserved in position in these orthologous promoters also, even though the orthologous genes were identified based on their protein sequences. Moreover, a very similar motif GATGAGS is found to be significant in the related functional class “tRNA transcription”. This motif occurs 45 times in 34 promoters of the class, with a z-score of 9.11 (pmax less than 0.01). 

Another motif worth special mention is the 8-mer CGGAGWWA, which occurs in the functional class “C-compound and carbohydrate transporters” that has 46 genes. It occurs a total of 28 times in 16 different promoters of this class, whose corresponding genes have a co-expression score of 0.05. This motif is significantly well conserved in its location (Fig. 3), though not as strongly as the previous motif. Included in the 16 promoters of the class that contain the motif are 9 of the glucose transporting HXT genes (Hxt2, Hxt3, Hxt5, Hxt8, Hxt11, Hxt13, Hxt15, Hxt16, and Hxt17). The regulation of these genes has been the subject of detailed biological studies. One study by Theodoris and Bisson  (42) shows that “DNA sequence dependent suppressing elements” (DDSEs) located in the promoters of HXT genes affect glucose sensing, and the authors further hypothesize that the DDSE region contains binding sites for the Rgt1p transcriptional repressor/activator.  Rgt1p is believed to bind to promoters of Hxt2, Hxt3, and Hxt4. However, the Rgt1p binding site they propose for the HXT genes is TTTCACGGAAAATTATATTTTG, which does not match our motif CGGAGWWA. A review by Ozcan and Johnston (43) describes another mechanism that represses transcription of some HXT genes in high glucose conditions through Mig1, which is a transcription factor (repressor) known to bind to the promoter of Hxt2 and Hxt4 genes. Again, we verified that the known binding sites of Mig1 (consensus CCCCRNNWWWWW) do not match the motif CGGAGWWA. Only limited information is available on the expression of Hxt5 and Hxt8 to Hxt17. In fact, it is not even certain if these are involved in glucose transport - they could act as transporters for other sugars. Hxt11 is bound by the transcription factor PDR3, though the PDRE (the binding site for PDR3, with consensus TCCGYGGA) does not match our motif CGGAGWWA. The promoter of Hxt13 was obtained in a screen for targets of the transcription factor Hap2, whose binding sites are quite different from CGGAGWWA. Gal2, a galactose permease that is more than 60% similar to the HXT proteins, is also one of the 16 genes whose promoters contain the motif under investigation. However, it is well established that Gal2 is regulated by the Gal4p transcription factor, which binds to the element CGGNNNNNNNNNNNCCG. In summary, while much is known about the transcriptional regulation of the glucose transporting genes, none of the known mechanisms seems to explain the presence of such a strong shared motif, which is therefore worth investigating further.

The motif AAWTTTTY occurs 170 times in 52 of the 64 promoters of the class “translation”, with a z-score of 9.95 (pmax less than 0.01). These 52 genes are highly co-expressed, as indicated by a co-expression score of 0.01. Another compelling feature of the motif is its high conservation in location in the promoters, as revealed by Fig. 4. The class “amino acid transport” has a significant motif GCCGTRCS, which occurs 13 times in 9 promoters of the class, with a very high z-score of 17.70 (pmax less than 0.01). Among the 9 promoters that have this motif are TAT1, DIP5, GAP1, and GNP1. SPS-initiated signals are known to modulate the expression of these four genes (44), and it would be interesting to find out if the discovered motif is related to this known regulation. 
Phenotype Catalogue

The phenotype catalogue from MIPS yielded 138 classes. All motifs reported by the motif-finding steps described above were examined. There were a total of 530 such motifs. Tables 4a and 4b present a selection from these motifs. Once again, we find among these motifs both known binding sites (Table 4a) and novel motifs (Table 4b) that may be good candidates for experimental verification. The motifs in Table 4a match the binding sites of the transcription factors Reb1, Mcb, repressor of Car1, Cbf1, Rap1, Mata1, and Pho4. It would be interesting to find out if these transcription factors are known to regulate some of the genes in the respective phenotype classes. 

We now discuss some of the most interesting motifs reported in Table 4b. The motif GTYGCCG occurs a total of 9 times (z-score 8.30, pmax 0.01) in 7 of the 14 promoters of the class “sensitivity to immunosuppressants”. The 7 promoters belong to highly co-expressed genes, as indicated by the low co-expression score of 0.015. The motif does not match any known transcription factor binding site. 

The motif CTSCCCSG, found in the class “mating efficiency”, deserves special mention. It occurs 8 times in 7 different promoters of the class, with a z-score of 9.56 (pmax 0.01). An interesting feature of this motif is that its instances occur, with up to one mismatch, overlapping Gal4p binding sites in five of the six genes regulated by this transcription factor. Though it does not match the Gal4p consensus CGGNNNNNNNNNNNCCG, this coincidence seems worth investigating.

Another interesting motif is CCGCACRC, found in four of the 21 promoters of the class “killer toxin resistance”. It occurs a total of 5 times in these promoters, with a z-score of 10.30 (pmax 0.04). The occurrences of the motif are conserved in position in the four promoters, as Fig. 5 reveals. Moreover, the four corresponding genes are highly co-expressed, having a co-expression score of 0.025.

Unclassified Proteins

The MIPS database also has a table of 230 ORFs with strong sequence similarity to known proteins. YMF was run on sets of genes that have similarity to the same protein or family of proteins, and in some cases significant motifs were reported. For instance, there are seven ORFs with a strong similarity to members of the SRP1/TIP1 family. YMF reported two strong motifs AGGCAY (pmax less than 0.01) and TCGTWYA (pmax less than 0.01) in this set. Both these motifs were found to be significant when YMF was run on the 8 members of the SRP1/TIP1 family, thereby furthering evidence for a relation between the 7 unclassified ORFs and the SRP1/TIP1 family.

Further Research

In Tables 3a and 4a, it would be interesting to pursue connections (if not already described in these tables) between the known transcription factor listed in the last column and the gene family in which it was found, to determine whether the transcription factor plays a role in the regulation of genes in this family. 

Even more interesting would be to pursue the novel motifs listed in Tables 2, 3b, and 4b to see whether they lead to transcription factors of heretofore unknown function.

Finally, the motif model described in Materials and Methods was developed from a study of  S. cerevisiae transcription factor binding sites.  It would be very interesting to understand whether this model is also suitable for the discovery of transcription factor binding sites in other organisms and, if not, how it should be modified. It is relatively easy to extend our algorithm to handle motif models where a motif corresponds to a fixed set of strings over the alphabet {A,C,G,T,N}. The mismatch model, where the motif is a string over this alphabet, and its occurrences may have some fixed number of mismatches from the consensus, belongs to this category of models. 
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	NAME
	SIZE
	CONSENSUS
	l = 6
	Ns
	z
	pmax
	l = 7
	Ns
	z
	pmax
	l = 8
	Ns
	z
	pmax

	ABF1
	19
	TCRN[6]ACG
	TCAN[6]ACG
	29
	10.56
	0.00
	TTTYYTT
	180
	7.96
	0.01
	AGSCYCGC
	7
	19.93
	0.11

	CAR1
	12
	AGCCGCCR*
	TTTNNNTTY
	146
	9.09
	0.00
	TTTTYTT
	112
	8.86
	0.01
	AGCCGCCG
	4
	14.18
	0.00

	CPF1
	3
	TCACGTG
	CACGWG
	9
	6.94
	0.40
	YCACGWG
	8
	9.66
	0.10
	CACGTGGC
	3
	19.49
	0.00

	CSRE
	4
	YCGGAYRRAWGG
	CGGN[6]GGA
	9
	12.43
	0.00
	CTCCGGG
	3
	10.22
	0.04
	CGGGCCCG
	2
	14.79
	0.08

	GAL4
	6
	CGGN[11]CCG
	CGGN[11]CCG
	28
	32.72
	0.00
	CGCWCGG
	6
	13.11
	0.00
	CGCACGGA
	3
	17.14
	0.00

	GCN
	38
	TGANTN
	TGACTC
	44
	12.54
	0.00
	RTGASTC
	47
	13.76
	0.00
	TGASTCAY
	31
	15.87
	0.00

	GCR1
	6
	CWTCC
	TTTN[4]TYY
	111
	8.53
	0.04
	SCAYGTG
	10
	8.55
	0.11
	CGGGATTC
	3
	13.92
	0.08

	HAP1
	5
	CGGNNNTANCGG
	SGGN[6]SGG
	8
	9.01
	0.05
	TGSCCCC
	5
	8.50
	0.13
	GGGGSCAW
	5
	11.18
	0.61

	HSE
	6
	GAANNTCC
	AACNNNCRG
	14
	6.27
	0.52
	TCYAGAA
	12
	6.98
	0.65
	ACTCCGTG
	2
	9.36
	0.93

	MATa2
	7
	CRTGTWWWW
	ATGN[10]CAY
	25
	6.78
	0.21
	CATGTWW
	17
	7.31
	0.41
	YCACGAAA
	7
	9.76
	0.81

	MCB
	6
	WCGCGW
	ACGCGT
	16
	11.98
	0.00
	RACGCGT
	12
	13.97
	0.00
	SCGACGCG
	4
	20.22
	0.00

	MCM1
	23
	CCNNNWWRGG
	ARAN[4]AAR
	317
	10.66
	0.00
	TRTRTAT
	81
	9.01
	0.00
	ATAYAYAT
	58
	13.09
	0.00

	MIG1
	9
	CCCCRNNWWWWW
	CGGN[11]CCG
	16
	14.95
	0.00
	CCCCRGR
	9
	8.56
	0.03
	ARCCGCCG
	5
	13.20
	0.05

	PDR3
	7
	TCCGYGGA
	CCGNGGA
	28
	28.39
	0.00
	CCGYGGA
	28
	38.56
	0.00
	TCCGYGGA
	24
	55.17
	0.00

	PHO4
	5
	CACGTK
	SCACGT
	18
	12.12
	0.00
	CACGTGS
	10
	14.42
	0.00
	CACGTGGG
	3
	16.75
	0.00

	RAP1
	16
	RMACCCA
	CSCNNNCRC
	30
	9.30
	0.00
	GCAYGTG
	13
	10.37
	0.00
	CCCGWYGC
	7
	11.37
	0.06

	REB1
	14
	YYACCCG
	RAAN[5]AAR
	219
	9.86
	0.00
	TTACCCG
	12
	14.10
	0.00
	ATTACCCG
	8
	17.94
	0.00

	ROX1
	3
	YYNATTGTTY
	AAANNAAA
	59
	11.71
	0.00
	AAARRAA
	71
	11.81
	0.04
	CCGACGTC
	2
	15.99
	0.09

	SCB
	3
	CNCGAAA
	CACGAA
	10
	9.44
	0.01
	CACGAAA
	10
	15.92
	0.00
	YCACGAAA
	9
	20.05
	0.00

	SFF
	3
	GTMAACAA
	ATTN[9]TTW
	28
	6.37
	0.74
	GATCTAT
	4
	7.18
	0.86
	ACACTCCG
	2
	13.25
	0.28

	STE12
	4
	ATGAAA
	TRCN[7]GGW
	17
	6.56
	0.44
	ATGAAAC
	9
	9.44
	0.07
	ACAARGCC
	5
	11.93
	0.48

	TBP
	17
	TATAWAW
	AAANNNAAA
	127
	7.92
	0.00
	TTTTYTT
	130
	7.74
	0.02
	AAARAAAA
	89
	10.46
	0.14

	UASPHR
	17
	CTTCCT
	TAYNTAY
	107
	7.46
	0.01
	CRRCAAC
	26
	8.15
	0.02
	CARCARCA
	25
	13.49
	0.01


Table 1. Performance of YMF on regulons in SCPD with known binding sites. NAME:  name of the transcription factor; SIZE: number of genes in the regulon; CONSENSUS: the known consensus of the binding site, according to SCPD. The remaining columns tabulate the results of YMF for the three runs (l = 6, 7, 8 respectively) on that regulon. Each column lists the most significant motif found, its total count Ns, its z-score z, and pmax(z).  Boldface indicates a match to the known consensus.  * The consensus for CAR1 listed at SCPD is AGCCGCSA, but an alignment of the 12 listed sites suggests the consensus AGCCGCCR.
	NAME
	MOTIF
	Ns
	z
	pmax
	COMMENTS

	CSRE
	CTCCGGG
	3
	10.22
	0.04
	Occurs in 2 of 4 genes; roughly conserved in position.

	
	CGGGCCCG
	2
	14.79
	0.08
	Occurs in only one gene.

	GAL4
	CGCWCGG
	6
	13.11
	0.00
	All occurrences overlap Gal4 binding sites (in Gal1, Gal2, Gal7 and Gal10).

	
	CGCACGGA
	3
	17.14
	0.00
	All occurrences overlap Gal4 binding sites (in Gal1, Gal2 and Gal7).

	GCR1
	CGGGATTC
	3
	13.92
	0.08
	Occurs in 3 of 6 genes; roughly conserved in position.

	MIG1
	CGGN[11]CCG
	16
	14.95
	0.00
	Is identical to the GAL4 motif.

	
	ARCCGCCG
	5
	13.20
	0.05
	Occurs overlapping with known Gal4 binding sites in Gal3, Gal10, and Gal1. The other two occurrences are in Fbp and Fps1.

	RAP1
	CSCNNNCRC
	30
	9.30
	0.00
	Occurs in 13 of 16 genes; roughly conserved in position.

	
	GCAYGTG
	13
	10.37
	0.00
	Is similar to the ICRE motif (39).

	
	CCCGWYGC
	7
	11.37
	0.06
	Occurs in 3 of 16 genes; well conserved position.

	ROX1
	CCGACGTC
	2
	15.99
	0.09
	Occurs only in Rox1 gene.

	UASPHR
	CRRCAAC
	26
	8.15
	0.02
	Occurs in 7 of 17 genes; roughly conserved in position.

	
	CARCARCA
	25
	13.49
	0.01
	Occurs in 3 of 17 genes; not conserved in position.


Table 2. Motifs in SCPD regulons that are different from the known principal binding sites. The table lists the motif sequence, its total count Ns, its z-score z, and pmax(z).

	NAME
	MOTIF
	Ns
	z
	pmax
	COMMENTS

	Regulation of amino acid metabolism
	YCACGTGC
	11
	14.78
	0.00
	CBF1 (TCACGTG) has role in amino acid metabolism (MIPS)

	Nitrogen and sulfur metabolism
	TCACGTG
	18
	7.94
	0.00
	CBF1 (TCACGTG) has role in nitrogen and sulfur metabolism (MIPS)

	Tricarboxylic-acid pathway
	TCACGTG
	11
	8.45
	0.00
	CBF1 (TCACGTG) 

	Other transcription activities
	TCACGTG
	16
	7.65
	0.00
	CBF1 (TCACGTG)

	Mitochondrial transport
	TCACGTG
	19
	7.41
	0.00
	CBF1 (TCACGTG)

	Anion  transporters (Cl, PO4 etc.)
	CACGTG
	20
	6.89
	0.00
	PHO4 (CACGTK) has role in phosphate metabolism (MIPS)

	Phosphate metabolism
	CACGTGSG
	12
	19.09
	0.00
	PHO4 (CACGTK) has role in phosphate metabolism (MIPS)

	Homeostasis of phosphate
	CACGTGSG
	5
	17.53
	0.00
	PHO4 (CACGTK) has role in phosphate metabolism (MIPS) 

	DNA synthesis and replication
	ACGCGW
	124
	16.04
	0.00
	MCBF (WCGCGW) is involved in DNA synthesis (45)

	DNA repair
	ACGCGWW
	49
	7.77
	0.00
	MCBF (WCGCGW) binds to MCB in DNA replication genes (TRANSFAC)

	Deoxyribonucleotide metabolism
	ACGCGY
	27
	11.85
	0.00
	MCBF (WCGCGW) is involved in DNA synthesis (45)

	Cellular import
	YCCCCAC
	27
	7.69
	0.00
	MIG1 (CCCCRNNWWWWW) is known to regulate some of the  HXT genes in this class. (43)

	C-compound, carbohydrate transport
	CYCCRC
	77
	10.43
	0.00
	MIG1 (CCCCRNNWWWWW) has role in C-compound metabolism (MIPS)

	C-compound, carbohydrate transporters
	CCCCRC
	40
	9.39
	0.00
	MIG1 (CCCCRNNWWWWW) has role in C-compound metabolism (MIPS)

	Meiosis
	TAGCCGCC
	23
	23.54
	0.00
	Repressor of CAR1 (AGCCGCCR) has role in meiosis (MIPS)

	Amino acid transporters
	GCCGCCGA
	5
	12.81
	0.00
	Repressor of CAR1 (AGCCGCCR) has role in amino acid metabolism (MIPS)

	Homeostasis of metal ions
	GSACCC
	46
	7.60
	0.00
	Rap1 (RMACCCA) 

	Cation transporters
	GSACCC
	42
	6.71
	0.00
	Rap1 (RMACCCA)

	Regulation of amino acid metabolism
	RTGN[5]GTR
	93
	8.91
	0.00
	Matches 9 RAP1 binding sites

	Ribosome biogenesis
	AYCCRTAC
	104
	28.87
	0.00
	Matches 4 RAP1 binding sites. Rap1 controls transcription of most ribosome protein genes (MIPS)

	Assembly of protein complexes
	TTANCCG
	52
	7.21
	0.00
	REB1 (YYACCCG)

	Cytoplasmic and nuclear degradation
	TTACCCG
	28
	10.93
	0.00
	REB1 (YYACCCG)

	Vesicular transport (Golgi network)
	TACCCGG
	22
	9.20
	0.00
	REB1 (YYACCCG)

	Cellular communication mechanism
	TTACCCG
	17
	8.62
	0.00
	REB1 (YYACCCG)

	Cell growth / morphogenesis
	TYACCCG
	30
	7.86
	0.00
	REB1 (YYACCCG)

	Intracellular transport vesicles
	TACCCGG
	11
	8.65
	0.00
	REB1 (YYACCCG)

	Vacuole or lysosome
	TTACCCG
	15
	7.51
	0.00
	REB1 (YYACCCG)

	Cytoskeleton
	TTACCCG
	26
	9.45
	0.00
	REB1 (YYACCCG)

	General  transcription activities
	TTACCCG
	19
	8.95
	0.00
	REB1 (YYACCCG)

	Purine ribonucleotide metabolism
	TGACTC
	31
	6.90
	0.00
	GCN4 (TGANTN) regulates general control in response to purine starvation (MIPS)

	Amino acid transporters
	TSASTC
	54
	6.40
	0.03
	GCN4 (TGANTN) is a  transcriptional activator of amino acid biosynthetic genes (MIPS)

	Drug transporters
	CSGN[9]CGS
	40
	9.24
	0.00
	Matches 4 GAL4 binding sites

	Cell wall
	TCCGAA
	33
	7.51
	0.00
	Matches 5 GAL4 binding sites

	Directional cell growth (morphogenesis)
	CRYN[6]CGA
	44
	6.06
	0.05
	Matches 5 TAF binding sites

	Intracellular transport vesicles
	CGTN[7]GAY
	40
	6.25
	0.00
	Matches 11 BAF1 binding sites. Baf1 is a multifunctional protein involved in transcriptional regulation of various genes (MIPS)

	Extracellular / secretion proteins
	CCTAATT
	12
	7.32
	0.05
	Matches 3 MCM1 binding sites. Three (Mfalpha 1 and 2, HSP150) of the five genes that have this motif are known to be regulated by MCM1 (SCPD). 

	Nitrogen and sulfur utilization
	GATAAG
	52
	9.58
	0.00
	GATA box (GATAAG). The four GATA-binding factors (Gtz3, Dal80, Gln3, Gat1) regulate the expression of nitrogen catabolic genes (MIPS)

	Nitrogen and sulfur metabolism
	AAGATAAG
	23
	10.76
	0.00
	GATA box (GATAAG). The four GATA-binding factors (Gtz3, Dal80, Gln3, Gat1) regulate the expression of nitrogen catabolic genes (MIPS)

	Other cation transporters
	AGAYAAG
	32
	7.66
	0.00
	GATA box (GATAAG)

	Lipid and fatty-acid transport
	TCCGCGGR
	12
	18.19
	0.00
	PDR1/PDR3 (TCCGYGGA) 

	Homeostasis of metal ions
	TCCGYGGA
	13
	9.18
	0.02
	PDR1/PDR3 (TCCGYGGA) are implicated in transcription of two of the four genes in this class that have the motif  (46)

	Transport mechanism
	CCGYGGA
	24
	8.48
	0.00
	PDR1/PDR3 (TCCGYGGA) are implicated in transcription of five of the nine genes in this class that have the motif  (46)

	C-compound and carbohydrate transporters
	TCCGYGS
	26
	8.39
	0.00
	PDR3 (TCCGYGGA) binds Hxt11

	Cation transporters
	YGSACCC
	32
	9.16
	0.00
	AFT1 (TRCACCC) is involved in homeostasis of iron (MIPS)

	Metabolism of energy reserves (glycogen, trehalose)
	CCCCTGA
	13
	10.20
	0.00
	STRE (CCCCT) is a Stress Response Regulatory Element. Three (TPS1, GSY1, PGM2) of the 11 genes in this class that have this motif are induced by stress.

	Proteolytic degradation
	GGTGGCAA
	38
	17.71
	0.00
	RPN4 (GGTGGCAAA)

	Peroxisome
	TYGGRGT
	30
	7.36
	0.00
	ADR1 (TYGGRG) regulates peroxisomal genes (MIPS, 47)


Table 3a. Significant motifs in classes from the MIPS functional catalogue. The last column is the name of the known transcription factor binding site whose consensus sequence is similar to the found motif. The consensus sequence was obtained from SCPD (16) for all except the following: the consensus for MET was obtained from van Helden et al. (17), and the consensus for RPN4 from Hughes et al. (11).

	NAME
	SIZE
	MOTIF
	Ns
	z
	pmax

	amino acid transport
	23
	GCCGTRCS
	13
	17.70
	0.00 

	
	
	GYCGCCGA
	7
	13.47
	0.00 

	
	
	GAWAGCG
	19
	9.08
	0.00 

	amino acid degradation (catabolism)
	35
	CGGN[10]YCG
	29
	8.94
	0.00

	
	
	GACTSCGS
	14
	14.99
	0.00

	regulation of nitrogen and sulphur utilization
	29
	CGGN[10]SGS
	27
	6.63
	0.01 

	purine ribonucleotide metabolism
	45
	GGCTAGGA
	7
	10.69
	0.01 

	deoxyribonucleotide metabolism
	11
	CGCN[8]GYG
	17
	8.87
	0.00 

	polynucleotide degradation
	27
	CTYATCGC
	9
	10.23
	0.02 

	nucleotide transport
	14
	CGCGSGC
	10
	13.11
	0.00 

	phosphate transport
	10
	CGGN[4]GSS
	19
	9.22
	0.00 

	regulation of lipid, fatty-acid and isoprenoid metabolism
	20
	CGSN[6]CCS
	23
	6.83
	0.00 

	biosynthesis of vitamins, cofactors, and prosthetic groups
	63
	CTGN[5]GAC
	33
	6.66
	0.00 

	glycolysis and gluconeogenesis
	35
	TASGTAW
	46
	8.52
	0.00 

	
	
	CTCWSCCC
	14
	11.59
	0.01 

	
	
	CGTSSGG
	16
	8.31
	0.00 

	tricarboxylic-acid pathway citrate cycle, Krebs cycle, TCA cycle
	25
	CGGCGCCG
	8
	17.92
	0.00

	
	
	GCWN[5]RGC
	54
	6.92
	0.00

	glyoxylate cycle
	6
	CCGN[5]SSG
	18
	11.66
	0.00 

	other energy generation activities
	16
	CGCACCGC
	4
	13.47
	0.00 

	DNA restriction or modification
	32
	CACN[11]WCC
	38
	7.33
	0.00 

	rRNA transcription
	109
	CGATGAG
	50
	17.00
	0.00 

	tRNA transcription
	83
	GATGAGS
	45
	9.11
	0.00 

	translation
	64
	AAWTTTTY
	170
	9.95
	0.00 

	cytoplasmic and nuclear degradation
	99
	TTGCCAC
	51
	13.08
	0.00 

	mitochondrial transport
	80
	SGCCSGG
	23
	7.59
	0.00 

	G-protein mediated signal transduction
	12
	CCCN[7]CGS
	13
	8.52
	0.00 

	homeostasis of anions
	13
	TCGN[7]SCR
	28
	7.62
	0.01 

	perception of nutrients and nutritional adaptation
	25
	CCSN[4]CCS
	30
	8.25
	0.00 

	cell death
	10
	GSCN[4]CCS
	19
	8.05
	0.01 

	nucleus
	31
	ATCACST
	21
	7.05
	0.01 

	
	
	GCGGATCC
	5
	11.49
	0.00 

	cell wall
	38
	AGATCTCG
	11
	15.37
	0.00 

	
	
	GGYCCST
	19
	7.30
	0.00 

	centrosome
	31
	TTWSGCG
	27
	6.86
	0.03 

	chromosome
	44
	ACTCGCCG
	5
	10.42
	0.03 

	regulator of G-protein signalling
	13
	CTACTCG
	6
	7.98
	0.04 

	target of regulation
	13
	CTACTCG
	6
	7.98
	0.04 

	cation transporters
	62
	CGCN[6]CGS
	31
	7.40
	0.00 

	ion transporters
	79
	CGSSCGC
	27
	8.20
	0.00 

	C-compound and carbohydrate transporters
	46
	CGGAGWWA
	28
	14.17
	0.00 

	amino acid transporters
	25
	GATAGCGA
	6
	10.29
	0.02 

	allantoin and allantoate transporters
	9
	CGCNCGC
	9
	10.13
	0.00 

	drug transporters
	35
	CGACAGG
	10
	8.37
	0.00 

	
	
	CGGCGCTA
	6
	11.62
	0.01


Table 3b. Significant novel motifs in classes from the MIPS functional catalogue.

	NAME
	MOTIF
	Ns
	z
	pmax
	COMMENTS

	G1 arrest
	ATTACCC
	13
	7.33
	0.02
	REB1 (YYACCCG)

	Mating efficiency
	TTACCCG
	12
	8.81
	0.00
	REB1 (YYACCCG)

	Bud localization
	TTACCCG
	12
	8.15
	0.00
	REB1 (YYACCCG)

	Osmotic sensitivity
	TTACCCG
	13
	7.79
	0.00
	REB1 (YYACCCG)

	Cytoskeleton mutants
	TTACCCG
	27
	9.53
	0.00
	REB1 (YYACCCG)

	Secretory mutants
	TTACCCG
	20
	10.21
	0.00
	REB1 (YYACCCG)

	Carbohydrate and lipid biosynthesis defects
	CGCGWCG
	11
	7.19
	0.00
	MCBF (WCGCGW)

	DNA repair mutants
	ACGCGW
	83
	10.98
	0.00
	MCBF (WCGCGW) is involved in DNA synthesis (45)

	DNA replication mutants
	ACGCGW
	40
	9.13
	0.00
	MCBF (WCGCGW) binds to MCB in DNA replication genes (TRANSFAC)

	Respiratory deficiency
	GSCGCCGA
	18
	11.46
	0.00
	Repressor of CAR1 (AGCCGCCR)

	Vanadate resistance
	GYCGSCG
	7
	9.53
	0.04
	Repressor of CAR1 (AGCCGCCR)

	Recombination mutants
	TAGCCGCC
	8
	11.02
	0.00
	Repressor of CAR1 (AGCCGCCR)

	Divalent cations and heavy metals
	GYSGCCG
	27
	6.51
	0.05
	Repressor of CAR1 (AGCCGCCR)

	Methionine auxotrophy
	TCACGTGC
	5
	17.73
	0.00
	CBF1 (TCACGTG) null mutant is methionine auxotroph (MIPS)

	Elongated cell & bud morphologies
	TCCGTAC
	9
	6.69
	0.05
	Matches 3 RAP1 binding sites

	Elongated cell & bud morphologies
	CAANNNCAR
	73
	6.01
	0.04
	Matches 3 Mata-1 binding sites 

	Divalent cations and heavy metals
	CACGTGS
	27
	8.00
	0.00
	PHO4 (CACGTK)


Table 4a. Significant motifs in classes from the MIPS phenotype catalogue. The last column is the name of the known transcription factor binding site whose consensus sequence is similar to the found motif. The consensus sequence was obtained from SCPD (16) .

	NAME
	SIZE
	MOTIF
	Ns
	z
	pmax

	Rapamycin
	7
	CCTGCTTC
	6
	14.68
	0.04 

	Sensitivity to immunosuppressants
	14
	GTYGCCG
	9
	8.30
	0.01 

	G2/M arrest
	38
	ACCCGCCC
	5
	10.68
	0.02 

	Mating efficiency
	31
	CCGN[4]GGS
	20
	6.95
	0.00 

	
	
	CGTCGGTA
	5
	10.04
	0.00 

	
	
	CTSCCCSG
	8
	9.56
	0.01 

	Methionine auxotrophy
	9
	CCGN[8]CCG
	8
	9.95
	0.00 

	
	
	GGSCGGG
	6
	9.95
	0.00 

	
	
	CCTN[4]CYC
	20
	9.55
	0.00 

	
	
	ACGGGCGC
	3
	14.24
	0.02 

	Galactose fermentation
	14
	GGGGCCCS
	5
	13.99
	0.00 

	
	
	CCGN[6]CGG
	10
	7.34
	0.02 

	Other carbon utilization defects
	27
	CCGTAGAC
	6
	13.96
	0.00 

	
	
	CCRNNNCGS
	33
	6.44
	0.02 

	Nitrogen utilization
	8
	GGCNNGCC
	12
	8.83
	0.02 

	
	
	TGCGGCG
	5
	9.47
	0.01 

	Other auxotrophies
	20
	GTGACYC
	12
	9.23
	0.00 

	Bud localization
	35
	GTCGGGTA
	5
	10.16
	0.02 

	
	
	TAYGTRT
	45
	7.90
	0.00 

	
	
	ACSCGA
	29
	6.49
	0.01 

	Elongated cell and bud morphologies
	32
	RGGN[7]GGW
	53
	6.80
	0.00 

	
	
	TCCGTAC
	9
	6.69
	0.05 

	Papulacandin B sensitivity
	22
	GCTGCTGY
	12
	11.10
	0.00 

	Killer toxin resistance
	21
	CCGCACRC
	5
	10.30
	0.04 

	Killer toxin
	29
	CSGN[5]CGC
	17
	6.69
	0.01 

	
	
	GCGN[9]ASR
	46
	6.59
	0.01 

	Zymolyase sensitivity
	31
	CCGN[5]SGY
	31
	6.23
	0.02 

	Hygromycin B sensitivity
	26
	GRAGATG
	26
	7.07
	0.04 

	Spindle mutants
	26
	TTTGYTT
	50
	7.24
	0.02 

	Benomyl sensitivity
	30
	GTRN[11]TGW
	86
	6.43
	0.01 

	Other tubulin cytoskeleton mutants
	15
	CGGNNSCG
	14
	7.04
	0.03 

	
	
	CCCGCGAG
	3
	12.29
	0.03 

	
	
	CGGGTCYG
	4
	12.03
	0.03 

	Secretory mutants
	61
	CGAN[9]CGA
	30
	7.36
	0.00 

	Mitochondrial mutants
	37
	CGGN[5]CSG
	23
	7.15
	0.00 

	
	
	CCCGGRC
	9
	7.19
	0.00 

	
	
	WAASCTG
	42
	7.11
	0.00 

	pH-sensitivity
	9
	GCGGCSGC
	8
	20.96
	0.00 

	
	
	CCYN[8]GGC
	14
	7.75
	0.03 

	Vacuolar mutants
	65
	GRRTTTG
	60
	6.86
	0.03 

	Starvation sensitivity
	26
	ACAN[9]ATA
	47
	6.25
	0.04 

	Other oxidizing agents
	15
	ARGN[6]AGG
	36
	8.64
	0.00 

	Oxidizing agents
	32
	ACCNNACY
	35
	6.30
	0.01 

	Divalent cations and heavy metals resistance
	13
	GGCN[7]GSC
	20
	8.55
	0.00 

	Divalent cations and heavy metals sensitivity
	69
	GCSGCCGY
	14
	8.78
	0.05 

	
	
	ACWNNNACA
	128
	8.23
	0.00 

	Carbohydrate and lipid biosynthesis defects
	47
	CGYN[9]CGY
	58
	8.05
	0.00 

	Other DNA repair mutants
	32
	TATGTAY
	29
	7.27
	0.00 

	Silencing mutants
	26
	CTGGGGTC
	4
	9.98
	0.03 

	
	
	CCGGTAGA
	6
	11.53
	0.00 

	Recombination mutants
	55
	ARGNNAAG
	128
	6.93
	0.00 

	
	
	CRGTCGG
	12
	6.99
	0.02 

	DNA replication mutants
	30
	CGTGCGCC
	4
	10.74
	0.00 

	Staurosporine sensitivity
	7
	CGGN[7]ACC
	8
	8.40
	0.03 

	Caffeine sensitivity
	34
	CARN[10]AGC
	51
	6.48
	0.01 


Table 4b. Significant novel motifs in classes from the MIPS phenotype catalogue.
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Figure 1. Occurrences of motif CGATGAG in 45 promoters of the MIPS functional class “rRNA transcription”. Each horizontal line represents a promoter, the right end being at the translation start site. Vertical bars represent motif occurrences.
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Figure 2. Occurrences of motif CGATGAG in orthologous promoters of genes in the MIPS functional class “rRNA transcription”. The orthology information was obtained from Paul Cliften (Personal Communication).  The sequences are plotted with their 3′ ends on the left, contrary to the convention followed in other similar plots in this paper.
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Figure 3. Occurrences of motif CGGAGWWA in 16 promoters of the MIPS functional class “C-compound and carbohydrate transporters”.
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Figure 4. Occurrences of motif AAWTTTTY in 52 promoters of the MIPS functional class “translation”.
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Figure 5. Occurrences of motif CCGCACRC in 4 promoters of the MIPS phenotype class “killer toxin resistance”.
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