
PRIVACY-PRESERVING ACCOUNTABILITY IN
ONLINE MESSAGING

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Nirvan Tyagi

August 2023

© 2023 Nirvan Tyagi

ALL RIGHTS RESERVED

ABSTRACT

Technologies that enable confidential communication and anonymous authentication are impor-

tant for providing privacy for users of internet services. Unfortunately, encryption and anonymity,

while good for privacy, make it hard to hold bad actors accountable for misbehavior. Internet services

rely on seeing message content to detect spam and other harmful content; services must also be

able to identify users to attribute and respond to abuse complaints. This tension between privacy

and accountability leads to one of two suboptimal outcomes: Services require excessive trust in

centralized entities to hold users accountable for misbehavior, or services leave themselves and/or

their users open to abuse.

In this dissertation, I will examine where this tension arises in our modern private messaging

systems and how gaps in accountability can and do lead to real-world attacks. I will discuss how

I have addressed this tension through the design of new cryptographic protocols. In particular, I

will present new protocols for secure abuse-reporting, anonymous blocklisting, and transparent key

infrastructure.

BIOGRAPHICAL SKETCH

Nirvan Tyagi was born and raised in Ames, Iowa where he attended Ames High School. He

completed his undergraduate studies at Massachusetts Institute of Technology, majoring in Computer

Science. After participating in a variety of undergraduate research opportunities, he discovered an

affinity for building secure systems in the Parallel and Distributed Operating Systems (PDOS) Group

at MIT where he stuck around to receive a Master of Engineering degree. Continuing his research in

this area, he joined the Security Group at Cornell University to pursue his graduate studies. After

spending one year on the Ithaca campus, he moved to New York City to join the first cohort of

students on the new Cornell Tech campus on Roosevelt Island. Now having completed his doctoral

degree, he will spend a year as a postdoctoral scholar with the Secure Computer Systems Group

at Stanford University, and then he will join the faculty as an assistant professor at University of

Washington.

iii

To my parents, my Baba, my Dadu. I am honored to follow in your footsteps.

iv

ACKNOWLEDGEMENTS

None of the work in this thesis would have been possible without the superb guidance of my

advisor, Tom. I am lucky to have had his support and advice through every turn of my graduate

journey. One of the most enjoyable aspects of my journey was getting to work with a huge set

of amazing people across Cornell, academia, industry, and government, including two wonderful

research visits at University of Washington and Stanford. Again, I attribute this highly collaborative

and interdisciplinary experience to my advisor Tom who has a knack for bringing people together.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vi

1 Introduction 1

2 Preliminaries 3
2.1 Pseudocode Security Games . 3
2.2 Groups and Hardness Assumptions . 4
2.3 Idealized Models . 7
2.4 Cryptographic Primitives . 7

3 Secure Reporting for Content Moderation 14
3.1 Asymmetric Message Franking . 15

3.1.1 Meaningful Deniability in Messaging . 17
3.1.2 Syntax and Security Notions . 18
3.1.3 Construction . 24
3.1.4 Security Analysis . 28

3.2 Message Tracing . 31
3.2.1 Traceback Setting in Messaging . 33
3.2.2 Syntax and Security Notions . 36
3.2.3 Construction . 44
3.2.4 Security Analysis . 49
3.2.5 Evaluation . 54

3.3 Follow-up Work . 57

4 Sender-Anonymous Blocklisting 59
4.1 Sender Anonymity in Messaging . 62

4.1.1 Background: Signal and Sealed Sender 63
4.1.2 Limitations of Sealed Sender . 65

4.2 Outsourced Blocklisting . 67
4.3 Blocklisting from Group Signature . 72

4.3.1 Group Signature Syntax and Security . 72
4.3.2 Construction of Group Signature . 79
4.3.3 Security Analysis . 82
4.3.4 Outsourced Blocklisting from Group Signatures 87

4.4 Extending Blocklisting with One-time Use Tokens 88
4.5 Evaluation . 93

5 Verifiable Public Key Infrastructure 97
5.1 Auditing Public Key Infrastructure in Messaging 103
5.2 Versioned Invariant Proofs for RSA Authenticated Dictionaries 107

5.2.1 RSA Authenticated Dictionary . 109
5.2.2 Versioned Invariant Update Proofs and Strong Key Binding 111

5.3 Authenticated History Dictionaries . 115
5.3.1 Syntax and Security Notions . 115

vi

5.3.2 AHD Constructions . 118
5.3.3 Security Analysis . 123

5.4 Client Checkpoint Auditing . 125
5.5 Evaluation . 134

5.5.1 Implementation . 134
5.5.2 Client Auditing Costs . 136
5.5.3 Server Epoch Update Costs . 137
5.5.4 Key Lookup Costs . 140

6 Ethics Discussion 142

7 Concluding Thoughts 147

Bibliography 148

vii

CHAPTER 1

INTRODUCTION

Technologies that enable confidential communication and anonymous authentication are im-

portant for preserving privacy for users communicating over the internet. They work by shifting

control of cryptographic keys that secure communication and authentication directly to user devices.

Unfortunately, encryption and anonymity, while good for privacy, make it hard to hold bad actors

accountable for misbehavior. Internet services rely on reading messages to detect spam and harmful

content; services must also be able to identify users to attribute and respond to abuse complaints.

This tension between privacy and accountability leads to one of two suboptimal outcomes: Services

require excessive trust in centralized entities to hold users accountable for misbehavior, or services

leave themselves and/or their users open to abuse.

Some examples of where this tension arises in modern messaging platforms for private commu-

nication include:

• On WhatsApp, organized disinformation campaigns have contributed to political unrest and

social problems. State-of-the-art moderation approaches for fighting viral disinformation in

plaintext settings rely on identifying the source account of a message—information that is

shielded by end-to-end encrypted forwarding.

• In a sender-anonymous messaging protocol deployed by Signal, I identified attacks leaving

recipients open to spam from anonymous senders. Outsourcing blocklisting of senders and spam

to the platform or even reporting abusive senders to the platform moderator, as is usually done

on messaging platforms, is not possible when the sender identity is hidden.

• On centralized services like WhatsApp and Signal, users must trust the service not to undermine

end-to-end encryption through corrupt identity management. This represents a problematic trust

relationship as the services providing the identity infrastructure are the same services that may

have incentive to access private communications.

I have addressed the above problems by introducing new abuse-resistant protocols for se-

cure message traceback [TMR19a], sender-anonymous abuse reporting [TGL+19a] and blocklist-

ing [TLMR22], and transparent public key infrastructure [TFZ+22]. A unifying theme among all

these works is a methodological approach where I work backwards from real problems and develop

1

new cryptographic theory to guide sound protocol design. I implement and evaluate my proposed

cryptographic protocols within real systems against performance constraints that exist in practice.

In this dissertation, we will step through this methodology in each chapter applying it to build

new systems to facilitate private communication while holding bad actors accountable.

2

CHAPTER 2

PRELIMINARIES

2.1 Pseudocode Security Games

We formalize security using the code-based game approach of Bellare and Rogaway [BR06]. We will

use a concrete security approach in which we account for adversarial resources explicitly in theorem

statements, rather than defining security asymptotically. Asymptotic notions can be derived from our

treatment in a straightforward way.

We use x← y and x← Eval() to denote assigning the value of y and the evaluation of Eval to

variable x. If Eval uses random coins, we instead denote x←$Eval. We denote the fixed input length

and output length of algorithms when appropriate as Eval.il and Eval.ol, respectively. For finite set Y ,

we denote x←$Y as sampling a random value from the set. We denote a dictionary D initialized as

[·] to store key-value pairs (k,v). Adding or updating a value v for key k is denoted as D[k]← v.

A table T is a special use of a dictionary in which values are added in sequence with incrementing

keys. We denote appending a value v to a table with T ←[v. We will allow for membership queries

on dictionaries of the form k ∈D, v ∈D, and (k,v) ∈D, also allowing for wildcard queries of the

form (k,∗) ∈D.

Interactive protcols. To model interactive protocols between two parties, following the treatment

of previous work [BMW03, BSZ05], we define an algorithm for each party that takes an incoming

message and a current state, and returns an outgoing message, an updated state, and a decision in

{accept,reject,cont}. If the decision is accept, the output of the protocol for the party will be

stored in the state.

Compact ranges. A compact range is a succinct, canonical representation of a range [L,R) where

L,R are non-negative integers [MKL+20]. A compact range, [(Li,Ri)]
m
i=1← CompactR((L,R)),

is the minimum set of m subranges that “span” [L,R) where L1 = L, Rm = R, and Ri = Li+1

for all 1 ≤ i < m. Each subrange is restricted to be of the form: (Li = ai · 2bi ,Ri = Li+2bi) for

non-negative integers (ai, bi). It is guaranteed that a unique compact range exists for every range;

further, the time to compute the compact range and the number of subranges m is logarithmic in the

size of the range, O(log(R−L)).

3

2.2 Groups and Hardness Assumptions

Prime-order cyclic groups. We will make use of prime-order cyclic groups for which we will

notate as G with prime order p. We assume an efficient setup algorithm GGen that on input security

parameter λ, generates a group, (p,G,g)← GGen(λ), where |p|= λ.

Bilinear pairing groups. Our constructions will make use of bilinear pairing groups for which we

will use the following notation. (1) Groups G1,G2,GT are cyclic groups of prime order p. (2) Group

element g1 is a generator of G1, g2 is a generator of G2. (3) Pairing function e : G1×G2→ GT

is a computable map with the following properties: Bilinearity: ∀ u ∈ G1, v ∈ G2, and a,b ∈

Z, e(ua,vb) = e(u,v)ab, and Non-degeneracy: e(g1,g2) ̸= 1. We assume an efficient setup algorithm

BGGen that on input security parameter λ, generates a bilinear group, (p,G1,G2,GT ,g1,g2,e)←

BGGen(λ), where |p|= λ.

RSA groups. An RSA group is the multiplicative group of invertible integers modulo N (denoted Z×
N),

where N is the product of two secret primes. We define the RSA quotient group for N as Z×
N \{±1}.

The widely believed Strong RSA Assumption (Strong-RSA) asserts that it is computationally difficult

to compute eth roots of a non-trivial element of Z×
N for e≥ 3.

Groups of unknown order. We assume the existence of a randomized polynomial time sampling

algorithm HGGen(λ) that takes as input the security parameter λ and generates a group of unknown

order consisting of two integers a,b along with a description of the group G. The group G is of

unknown order in the range [a,b] where a,b, and a− b are all exponential in λ.

The RSA quotient group Z×
N \{±1} where N is an RSA modulus is believed to have no element

of known order other than the identity. The group generation algorithm here may require trusted

setup to generate the group modulus N .

Extended Euclidean algorithm. Given two integers x,y such that the gcd(x,y) = 1, then (a,b)←

EEA(x,y) returns the Bézout coefficients (a,b) where ax+ by = 1. The coefficients are such that

a≤ y and b≤ x. The algorithm runs in time O(max(|x|, |y|)).

Discrete logarithm (DL). The discrete log assumption is defined by the security game DLA
GGen(λ) in

4

which an adversary is tasked with finding the discrete log of a random group element. The advantage

of an adversary is defined as Advdl
GGen,A(λ) = Pr[DLA

GGen(λ) = 1]. We will also make use of the

discrete log assumption in G1 and G2 of the bilinear pairing groups, which is one of the assumptions

made by external Diffie-Hellman (XDH).

Decisional Diffie-Hellman assumption (DDH). The decisional Diffie-Hellman (DDH) assumption

is defined by the security game DDHA,b
GGen(λ) in which an adversary is tasked with distinguishing

between a triple of random group elements and a random Diffie-Hellman triple. The advantage of an

adversary is defined as Advddh
GGen,A(λ) =

∣∣∣Pr[DDHA,1
GGen(λ) = 1]−DDHA,0

GGen(λ) = 1]
∣∣∣. Again, we

will make use of the DDH assumption in G1 and G2 of the bilinear pairing groups, which is one of

the assumptions made by external Diffie-Hellman (XDH).

Decision linear assumption (DLIN). The decision linear (DLIN) assumption is defined by the

security game DLINA,b
GGen(λ) in which an adversary is tasked with distinguishing between a set of

three random group elements along with those same three values taken to different random exponents

and a set where the last group element is not taken to a random exponent but the sum of the previous

two exponents. The decision linear assumption is considered to hold even in groups where DDH is

easy and thus is thought to hold in pairing groups even when the associated group elements in the

paired group are revealed. In our version of the game, we explicitly return the group elements in G2

since we will need to make use of them in our reductions. If we used a pairing type with an efficiently

computable isomorphism then we would not need to this change. This variant is sometimes referred

to as the external decision linear assumption (XDLIN) [LPY15]. The advantage of an adversary is

defined as Advdlin
BGGen,A(λ) =

∣∣∣Pr[DLINA,1
BGGen(λ) = 1]−DLINA,0

BGGen(λ) = 1]
∣∣∣.

Knowledge of exponent (KEA). The knowledge of exponent assumption [Dam91] concerns triples

of the form (ga,gb,gab) (i.e. a Diffie-Hellman (DH) triple) for a prime-order group G of order p (with

p prime) and generator g. It says, roughly, that an adversary which on input ga outputs a DH triple

must “have knowledge” of the exponent b which can be extracted from its description. Formally,

for an adversary A and extractor XA (which, crucially, is relative to A), we define the knowledge of

5

Game DLA
GGen(λ)

(p,G,g)← GGen(λ)

x← Zp

x′←$A(gx,g)
Return x= x′

Game DDHA,b
GGen(λ)

(p,G,g)← GGen(λ)

(α,β,γ)←$Zp

C0← gγ ; C1← gαβ

b′←$A(gα,gβ ,Cb,g)

Return b′

Game DLINA,b
BGGen(λ)

(p,G1,G2,GT ,g1,g2,e)← BGGen(λ)

(α,β,γ)←$Zp

(m,n, l)←$Zp

m1← gm1 ; m2← gm2
n1← gn1 ; n2← gn2
l1← gl1 ; l2← gl2
C0← lγ1 ; C1← lα+β

1

b′←$A(m1,n1, l1,m
α
1 ,n

β
1 ,Cb,m2,n2, l2)

Return b′

GameKEAA
GGen,XA

(λ)

(p,G,g)← GGen(λ)

x← Zp

(Y,C)←$A(gx,g)
c←$XA(gx,g)

Return Y = Cx ∧ C ̸= gc

Figure 2.1: Security games for discrete logarithm-based hardness assumptions.

exponent advantage of A relative to XA as

Advkea
GGen,XA,A(λ) = Pr[KEAA

GGen,XA
(λ) = 1] .

Pseudocode for the game KEA is in Figure 2.1. Our formalization follows Bellare et al. [BP04]

except with randomized Turing machines instead of families of circuits. Our pseudocode does not

depict the random tapes used by A or XA, but the extractor is always given the random tape of the

adversary.

Since the output of game KEA involves two adversaries (one of which depends on the other)

interpreting it is subtle. The KEA game basically measures the probability XA fails to extract the

exponent when A outputs a valid DH triple. The negation of the success condition is a disjunction of

two events: either A does not output a DH triple or XA successfully extracts from A.

Strong RSA assumption. The strong RSA assumption tasks an adversary with computing a chosen

non-trivial root of a random group element. We define the advantage of an adversary A against the

strong RSA assumption as follows:

Adv
strong-rsa
HGGen,A(λ) = Pr


uℓ = w

ℓ ∈ Primes(λ)\{2}
:

(a,b,G)←$HGGen(λ);

w←$G;

(u,ℓ)←$A(a,b,G,w)


.

6

2.3 Idealized Models

Algebraic group model. In some of our security proofs, we consider security against algebraic

adversaries which we model using the algebraic group model, following the treatment of [FKL18].

We call an algorithm A algebraic if for all group elements Z that are output (either as final output or

as input to oracles),A additionally provides the representation of Z relative to all previously received

group elements. The previous received group elements include both original inputs to the algorithm

and outputs received from calls to oracles. More specifically, if [X]i is the list of group elements

[X0, . . . ,Xn] ∈G that A has received so far, then, when producing group element Z, A must also

provide a list [z]i = [z0, . . . ,zn] such that Z =
∏

iX
zi
i .

Random oracle model. Looking ahead, we will prove security in the random oracle model, modeling

hash functions as random oracles. In this model, to each definition we add another oracle RO. The

adversary A and scheme algorithms all have access to it as an oracle. The oracle accepts queries on

arbitrary length bit strings m and returns a random bit string r of specified length, e.g., 2λ. It stores r

in a table T indexed by m to answer future queries consistently. In some security proofs we will use

a technique referred to as programming the random oracle (setting certain oracle outputs to values in

a way advantageous to a reduction).

2.4 Cryptographic Primitives

Pseudorandom functions. A pseudorandom function PRF is a tuple of algorithms

(Setup, Keygen,Ev). The setup algorithm produces the public parameters for the scheme,

pp←$PRF.Setup(λ). The key generation algorithm outputs a key, k←$PRF.Keygenpp(). The evalu-

ation algorithm produces a deterministic evaluation of the function on an input, y← PRF.Evpp(k,x).

We consider two security properties for pseudorandom functions. The first is pseudorandomness

which ensures the PRF acts as a random function when its key remains secret, for which we consider

a multi-key variant. The second is collision resistance which means it is hard to find key-input pairs

that evaluate to the same output. The properties are defined by games PRF and CR and we define

7

Game PRFA,b
PRF,n(λ)

pp←$PRF.Setup(λ)

[ki]
n
i=1←$PRF.Keygenpp()n

[ρi]
n
i=1←$RandFunc(PRF.il(λ),PRF.ol(λ))n

b′←$AFn(pp)

Return b′

Fn(i,x)

y1← PRF.Ev(ki,x)

y0← ρi(x)

Return yb

Game CRA
PRF(λ)

pp←$PRF.Setup(λ)

((k,x),(k′,x′))←$A(pp)
Return∧ (k,x) ̸= (k′,x′)

PRF.Ev(k,x) = PRF.Ev(k′,x′)



Game RORCPAA,b
SE (λ)

pp←$SE.Setup(λ)

k←$PKE.Keygenpp()

b′←$AEnc(pp)

Return b′

Enc(m)

ct1←$SE.Enc(k,m)

ct0←${0,1}SE.ol(λ)

Return ctb

Figure 2.2: Security games for pseudorandom functions and symmetric encryption.

the advantage of an adversary against each of these games as follows:

Adv
prf
PRF,A,n(λ) =

∣∣∣Pr[PRFA,1
PRF,n(λ) = 1]−PRFA,0

PRF,n(λ) = 1]
∣∣∣ ,

Advcr
PRF,A(λ) = Pr[CRA

PRF(λ) = 1] .

Symmetric encryption. A symmetric key encryption scheme SE is a tuple of algorithms

(Setup, Keygen,Enc, Dec). The setup algorithm produces the public parameters for the

scheme, pp←$SE.Setup(λ). The key generation algorithm outputs a shared symmetric key,

k←$SE.Keygenpp(). The encryption algorithm produces a ciphertext on an input message,

ct←$SE.Encpp(k,m), and the decryption algorithm decrypts the ciphertext to retrieve the enclosed

message, m←$SE.Decpp(k,ct). Correctness dictates that SE.Dec(dk,SE.Enc(k,m)) =m for all

valid keys k and messages m in the message space.

Indistinguishability for real-or-random ciphertexts under chosen-plaintext attacks (RoR-CPA)

for a symmetric key encryption scheme SE is defined by the security game RORCPA in which

an adversary is tasked with distinguishing a challenge ciphertext as a string of random bits or an

encryption of a self-chosen plaintext; we consider a multi-key variant. The advantage of an adversary

is defined as Adv
rorcpa
SE,A,n(λ) =

∣∣∣Pr[RORCPAA,1
SE,n(λ) = 1]−RORCPAA,0

SE,n(λ) = 1]
∣∣∣.

Public-key encryption. A public key encryption scheme PKE is a tuple of algorithms

(Setup, Keygen,Enc, Dec). The setup algorithm produces the public parameters for the scheme,

pp←$PKE.Setup(λ). The key generation algorithm outputs a public encryption key and a se-

8

Game INDCPAA,b
PKE(λ)

pp←$PKE.Setup(λ)

(pk,sk)←$PKE.Keygenpp()

b′←$AEnc(pk)

Return b′

Enc(m0,m1)

Return PKE.Enc(sk,mb)

ElG.Setup(λ)

(p,g,G)←$GGen(λ)

pp← (p,g,G)

Return pp

ElG.Keygenpp()

x←$Zp

Return (gx,x)

ElG.Encpp(ek,m)

r←$Zp

ct← (gr,mekr)

Return ct

ElG.Decpp(dk,ct)

(ct1,ct2)← ct

Return ct2/ct
dk
1

Figure 2.3: Security games for public key encryption and useful construction.

cret decryption key, (ek,dk)←$PKE.Keygenpp(). The encryption algorithm produces a cipher-

text on an input message, ct←$PKE.Encpp(ek,m), and the decryption algorithm decrypts the

ciphertext to retrieve the enclosed message, m←$PKE.Decpp(dk,ct). Correctness dictates that

PKE.Dec(dk,PKE.Enc(ek,m)) =m for all valid key pairs (ek,dk) and messages m in the message

space.

Indistinguishability under chosen-plaintext attacks (IND-CPA) for a public key encryp-

tion scheme PKE is defined by the security game INDCPAA,b
PKE(λ) in which an adversary

is tasked with distinguishing the decryption of a challenge ciphertext to one of two dis-

tinct self-chosen plaintexts. The advantage of an adversary is defined as Adv
indcpa
PKE,A(λ) =∣∣∣Pr[INDCPAA,1

PKE(λ) = 1]− INDCPAA,0
PKE(λ) = 1]

∣∣∣.
We provide pseudocode for the ElGamal public key encryption scheme ElG below. It is IND-

CPA-secure under the DDH assumption [TY98].

Proofs (and signatures) of knowledge. We define a non-interactive proof system Π over an efficiently

computable relation R defined over pairs (x,w) where x is called the statement and w is called the

witness. Let L be the language consisting of statements in R.

A non-interactive proof system Π is made up of the following algorithms. The setup algorithm

produces the public parameters for execution, pp←$Π.Setup(λ). The proving algorithm takes a

witness and statement and produces a proof, π←$Π.Provepp(w ,x). The verification algorithm

verifies a proof for a statement, b← Π.Verpp(x,π). We further extend the notion of a non-interactive

proof system to a signature of knowledge proof system Σ by modifying the proving and verification

algorithms to support binding a message [GM17, CL06]. A signature of knowledge is similar to a

9

digital signature in that a message can only be validly signed with respect to a statement by a party

with knowledge of a witness. The signing algorithm and signature verification algorithm additionally

take a message m as input, Σ.Provepp(w ,x,m) and Σ.Verpp(x,m,π).

The below definitions will apply to both a non-interactive proof system and to a signature of

knowledge proof system. Extensions to the non-interactive proof system definitions introduced for

signatures of knowledge are highlighted.

Completeness. A proof system is complete if given a true statement, a prover with a witness can

convince the verifier. We will make use of a proof system with perfect completeness. A proof system

has perfect completeness if for all (x,w) ∈ R and all m in the message space,

Pr[Π/Σ.Ver(x,m,Π/Σ.Prove(w ,x,m)) = 1] = 1 .

Knowledge soundness. A proof system is computationally knowledge sound if whenever a prover

is able to produce a valid proof, it is possible to extract a valid witness from the prover’s internal

transcript. The prover’s internal transcript, denoted by τ , contains the description of the prover

algorithm and input along with any random choices made. Knowledge soundness is defined by the

security game Sound in which an adversary is tasked with finding a verifying statement and proof

for which the extractor does not extract a valid witness. The advantage of an adversary is defined as

Advsound
Π,X,A(λ) = Pr[SoundA

Π,X(λ) = 1].

Zero knowledge. A proof system is computationally zero-knowledge if a proof does not leak any

information besides the truth of a statement. Zero knowledge is defined by the security game ZK

in which an adversary is tasked with distinguishing between proofs generated from a valid witness

and simulated proofs generated without a witness. The advantage of an adversary is defined as

Advzk
Π,S,A(λ) =

∣∣∣Pr[ZKA,1
Π,S(λ) = 1]−ZKA,0

Π,S(λ) = 1]
∣∣∣, with respect to simulator algorithm S.

Simulation extractability. Simulating a proof for a false statement might jeopardize the soundness

of the proof system. It may be possible for an adversary to modify the proof into another proof for

a false instance. This scenario is common in security proofs of cryptographic schemes, in which

case it is desireable to have some sort of non-malleable property that prevents this type of break in

soundness even in the presence of simulated proofs.

A proof system is simulation extractable if even after seeing many simulated proofs, whenever

10

Game SoundA
Π,X(λ) ; SoundA

Σ,X(λ)

pp←$Π/Σ.Setup(λ)

(x,π,m)←$A(pp)
w ← X(τA)

b← Π/Σ.Ver(x,m,π)

Return
∧ Π/Σ.Ver(x,m,π)

(x,w) ̸∈ R



Game ZKA,b
Π,S(λ) ; ZKA,b

Σ,S(λ)

pp1←$Π/Σ.Setup(λ)

(pp0, ξ)←$S.Setup(λ)

b′←$AProve(ppb)

Return b′

Prove(x,w ,m)

Require (x,w) ∈R
π1←$Π/Σ.Prove(x,w ,m)

π0←$S.Prove(ξ,x,m)

Return πb

Game SimExtAΠ,X,S(λ) ; SimExtAΣ,X,S(λ)

pp1←$Π/Σ.Setup(λ)

(pp0, ξ)←$S.Setup(λ)

(x,π,m)←$ASimProve(ppb)

w ← X(τA)

Return
∧


Π/Σ.Ver(x,m,π)

(x,w) ̸∈ R

(x,π,m) ̸∈ Q


SimProve(x,m)

π←$S.Prove(ξ,x,m)

Q← [(x,π,m)

Return π

Figure 2.4: Security games for non-interactive zero-knowledge proofs of knowledge.

a prover produces a new proof, it is possible to extract a valid witness from their internal tran-

script. Simulation extractability is defined by the security game SimExt in which an adversary

is given access to a simulation oracle and tasked with finding a verifying statement and proof for

which the extractor does not extract a valid witness. The advantage of an adversary is defined as

Advsimext
Π,X,S,A(λ) = Pr[SimExtA

Π,X,S(λ) = 1]. Observe that simulation extractability implies knowl-

edge soundness, since the games are identical if the simulation extractability adversary does not use

its simulation oracle.

Authenticated dictionaries. An authenticated dictionary (AD) maintains and commits to a collection

of key/value pairs [(ki,vi)]i, where every key is unique, with a digest d. An initial digest and state

are produced via (d0,st)← Initpp() following a setup producing public parameters pp←$Setup(λ)

where λ is a security parameter. The public parameters are included implicitly in all algorithms, and

we may drop the superscript if the use is clear from context. A set of key-value mappings may be

updated to produce a new digest, (d′,st)← Upd([(kj ,vj)]j : st). It provides proofs for key lookups,

(v ,π)← Lkup(k : st), that can be verified given the digest commitment, 0/1← VerLkup(d,k,v ,π).

An authenticated dictionary must satisfy key binding, which means that it is infeasible to produce valid

lookup proofs for key k to different values v and v ′. ADs can also be augmented with invariant update

proofs, proving that a certain invariant Φ(k,v ,v ′) is preserved for all keys during an update; we

augment the Upd algorithm to additionally return a proof and provide an accompanying verification

11

Game BindA
AD(λ)

pp←$AD.Setup(λ)

(k,d,(vA,πA),(vB ,πB))←$A(pp)
Return

∧


AD.VerLkup(d,k,vA,πA)

AD.VerLkup(d,k,vB ,πB)

vA ̸= vB



Game InvSoundA
AD,Φ(λ)

pp←$AD.Setup(λ)

(k,(vA,πA),(vB ,πB), [dj]
m
j , [πΦ,j]

m−1
j)←$A(pp)

Return
∧


AD.VerLkup(d1,k,vA,πA)

AD.VerLkup(dm,k,vB ,πB)[
AD.VerUpd(dj ,dj+1,πΦ,j)

]m−1

j

Φ(k,vA,vB) ̸= 1



Game BindA
VC(λ)

pp←$VC.Setup(λ)

(d,st)←$A1(pp)

D←D∪ [d]
(i,(dA,vA,πA),(dB ,vB ,πB))←$APrefix

2 (pp)

Return
∧


VC.VerLkup(dA, i,vA,πA)

VC.VerLkup(dB , i,vB ,πB)

vA ̸= vB

dA ∈ D∧dB ∈ D


Oracle Prefix(d,d′, j,π)

Require d ∈ D
If VC.VerUpd(d,d′, j,π) then
D←D∪ [d′]

Figure 2.5: Security games for strong key binding (left) and invariant preservation of updates (middle) for
authenticated dictionaries. Security game for index binding (right) for append-only vector commitments.

algorithm, 0/1← VerUpd(d,d′,π). The invariant proof must satisfy soundness, meaning if the

verification algorithm succeeds, the invariant is preserved. We will primarily be concerned with the

versioned invariant which has been previously used in Merkle trees [MBB+15, Bon16].

The most prevalent authenticated dictionary implementations in practice are based on Merkle

trees [Mer87, MBB+15, PP15]. Merkle trees admit lookup proofs and update proofs for a single key

which are of size and verification time O(logN) for dictionaries of size N .

Figure 2.5 provides the security games for the strong key binding and invariant update soundness

properties of authenticated dictionaries. The binding game requires an adversary to output two lookup

proofs for different values that verify under the same key for the same digest. The invariant update

soundness game requires an adversary to provide valid lookups for a key that does not satisfy the

invariant across two digests, while also providing a sequence of invariant proofs that the invariant

is preserved across the two digests. The invariant is defined as a boolean function Φ that takes as

input a key, initial value, and updated value, then outputs 1 if the invariant is satisfied. We define an

adversary’s advantage against these games, respectively, as:

Advbind
AD,A(λ) = Pr[BindAD

A (λ) = 1] , Advinv
AD,Φ,A(λ) = Pr[InvSoundAD,Φ

A (λ) = 1] .

In this work, we focus on the versioned invariant. The versioned invariant Φvsn parses values as

a value-version tuple (v,u). It enforces (1) the key’s version number does not decrease, and (2) two

12

different values for a key cannot be shown for the same version number. It is defined as follows:

Φvsn(k,(vA,uA),(vB,uB)) = uA < uB ∨ (uA = uB ∧ vA = vB) .

Some applications require a stronger invariant to be maintained among mapped values in an AD,

which we will refer to as the append-only invariant. In the append-only invariant, values of an AD

are parsed as lists of values L= [vj]
ℓ
j . The invariant enforces that the list can only be appended to,

i.e., previous values in the list do not change. More precisely, we define Φapp as follows:

Φapp(k,LA = [vA,j]
ℓA
j ,LB = [vB,j]

ℓB
j) = ℓA ≤ ℓB ∧

ℓA∧
j

vA,j = vB,j .

Append-only vector commitments. A vector commitment (VC) commits to an ordered list of ele-

ments [vi]i. Setup and initialization syntax follow the same as for ADs. An append-only VC provides

an update algorithm to append elements to the end of the list, (d′,st)←Upd([v ′
i]i : st), as well as sup-

ports efficient prefix proofs that a commitment commits to a prefix of another: π← ProveUpd(j : st)

and 0/1←VerUpd(d′,d, j,π) where L[0 : j] =L′ for list L and L′ corresponding to digests d and d′,

respectively. A VC supports efficient lookups with proof of elements by index, (v ,π)← Lkup(i : st)

with accompanying verification algorithm 0/1← VerLkup(d, i,v ,π). A VC must satisfy index bind-

ing meaning that it should not be possible to provide valid lookup proofs to different values for the

same index. Again, append-only VCs can be derived from Merkle trees [CW09,MKL+20,BKLZ20];

it supports lookup proofs and arbitrary-length update proofs of size and verification time O(logN)

for vectors of size N .

Figure 2.5 (right) provides the pseudocode security game defining index binding for append-only

vector commitments. The game requires an adversary to produce two valid lookup proofs to the same

index for different values. The adversary is allowed to give lookup proofs for different digests as long

as they additionally prove that the two digests share prefixes. We define an adversary’s advantage

against index binding as:

Advbind
VC,A(λ) = Pr[BindVC

A (λ) = 1] .

13

CHAPTER 3

SECURE REPORTING FOR CONTENT MODERATION

Billions of users communicate via private messaging on platforms like Facebook, Twitter, and

Signal. Their success means these platforms are increasingly used for large-scale spam, harassment,

and propagation of misinformation. One way platform operators address these threats is via content

moderation: the receiver of a message can report it to a moderator. If the moderator determines (via

human judgment, machine learning algorithm, or both) that the message violated the platform’s

policies, the platform can ban its sender.

To ensure moderation is not itself abused, the platform must be able to verify both the content

of the reported message and associated metadata, e.g. the sender and receiver identity. Doing this

is challenging for end-to-end (E2E) encrypted messaging because the platform does not see the

plaintext messages.

As cryptography was used to hide message content, it can also be used to provide message

authenticity for reports. A naive solution for moderation in the encrypted setting is to require per-

message digital signatures. These provide accountability: even if the moderator does not initially

see the message content, a digital signature of the message will convince the moderator of a user’s

authorship.

However, digital signatures violate the privacy that users expect from messaging systems: a

moderator or their communicating partner may post their messages publicly. Just as a digital signature

convinces the moderator of a user’s authorship, it will also convince any other party to which the

signature is shared. Our modern private messaging systems are carefully designed to protect against

such attacks on user privacy by providing deniability [BGB04, PM16].

The first forays into addressing moderation with appropriate user deniability stem from Face-

book’s pioneering efforts on message franking [Fac17, GLR17]. Message franking has two main

components. First, the E2E encryption uses specially-constructed ciphertexts that include a compact

commitment to the plaintext. Second, the platform cryptographically binds the sender and receiver

identities to the ciphertexts using a reporting tag (concretely, a MAC over the relevant metadata

and the commitment). This “message franks” or the MAC over the metadata and commitment are

deniable in that they could have been forged using the moderator’s keys. Because this approach only

14

uses symmetric-key cryptography, we call it symmetric message franking (SMF).

SMF carefully navigates the three security requirements of content moderation for E2E encrypted

messaging. First, messages not included in reports should remain private. Second, moderation should

achieve accountability: given a reported message and sender identity, the moderator should always be

able to verify the sender sent that message. Without accountability, moderation can itself be abused:

malicious receivers can target senders with fake reports, or malicious senders can send messages that

cannot be reported. Finally, moderation for E2E-encrypted messages should be deniable: only the

moderator should be able to verify the report. User messages are privy only to their communication

partner and the moderator; this protects users from backlash or embarrassment if their messages are

posted publicly after a compromise.

While SMF offers an efficient solution to the problem of abuse reporting, this chapter will explore

two messaging and abuse settings in which SMF falls short. The first is metadata-private messaging.

Some modern messaging protocols, such as “sealed sender” [Lun17] introduced by Signal, hides the

communication metadata of who is communicating with whom from the platform. SMF relies on this

metadata to be available to the platform so that it may be included in the message frank. The second

is abuse of misinformation campaigns and viral forwarding. SMF reveals the sender of a reported

message, but does not help with identifying the source of a forwarded message, or the set of users to

which it was ultimately sent. In each of these settings, new cryptographic techniques are needed to

address the privacy and accountability goals that are raised.

3.1 Asymmetric Message Franking

As described above, SMF cannot be used for moderation when it is impossible to associate identities

to encrypted messages. One such setting is metadata-private messaging, depicted in the middle

diagram of Figure 3.1. Metadata-private messaging systems not only use E2E encryption, but also

hide the sender and/or receiver identities of messages from the platform. In these systems the platform

knows the identities of all registered parties but does not learn those identities during communication,

for example, as in Signal’s sealed sender feature. Similarly, one may consider decentralized or

federated settings where the moderator is decoupled from the platform. (See the right-hand diagram

of Figure 3.1.) Third-party moderation is necessary in decentralized or federated messaging systems

like Matrix or Mastodon. In such systems no single party operates the platform, so the moderator

15

c. Third-party (AMF)b. Metadata-private (AMF) a. Standard (SMF)

S R

M

S R

Platform

? ?

S R

M

S R

S R

M

Figure 3.1: Settings for content moderation of messaging. The solid arrow denotes sending a message across
the platform and the dashed arrow denotes reporting a message to the moderator. In the standard setting,
messages sent across the platform are associated with sender and receiver identities and the platform is the
moderator. In the metadata-private setting, the associated sender and receiver identities of messages are hidden
from the platform, and by extension, the moderator. In the third-party setting, the moderator is separate from
the platform, and thus also cannot associate sender and receiver identities to messages. Our AMF primitive
targets the latter two settings.

must be distinct. Even in centralized systems like Twitter, third-party moderation is advantageous if

the platform cannot adequately moderate messages, or if sub-communities want to enforce their own

content policies. Allowing the moderator to be distinct can also enable cross-platform moderation of

multiple messaging systems. As in the metadata-private setting, a third-party moderator does not

learn the needed sender and receiver identities associated with messages. In metadata-private settings,

this information is cryptographically hidden, whereas in third-party settings it is simply unavailable

because the moderator doesn’t run the identity infrastructure. Because AMF schemes are public-key,

they can be used in conjunction with PKI to build third-party moderation.

A naive solution for moderation in these settings is per-message digital signatures. These provide

accountability even if the moderator cannot see metadata or messages, but not deniability: anyone

can verify signatures, not just the moderator. Indeed, this and other approaches based on existing

primitives fail because of a fundamental tension between accountability and deniability. To make

moderation a reality for metadata-private messaging and other settings, new cryptography is needed.

This work defines and constructs asymmetric message franking (AMF) schemes. AMF schemes

are special signatures in which a sender signs a message so that only one of two designated parties,

the receiver or the moderator, can verify it. The signature also proves to the receiver that the signature

can be verified by the moderator. AMF schemes are deniable and do not require the platform to

associate identities with encrypted messages. Thus, AMF schemes resolve the main technical barrier

16

to content moderation for metadata-private messaging.

3.1.1 Meaningful Deniability in Messaging

We want AMFs to provide deniability in the event that keys or messages are posted publicly after a

compromise. Our setting is therefore most similar to the deniability guarantees sought for designated

verifier signatures and proofs [JSI96], but different than settings that allow one to deny encrypted

message contents even to an eavesdropper that sees all traffic [CDNO97]. An adversary that observes

the actual transmission of a message or ciphertext is totally convinced of its origin in our setting.

Instead, our concern is not this adversary’s conviction, but its ability to convince others. As long

as the attacker cannot use what it learns through network manipulation or endpoint compromise to

convince others, we have achieved deniability.

The types of deniability guarantees we target have long been a goal in various contexts [CA89,

Cha90], including messaging [Fac17]. The inability to prevent major compromises has made lack of

deniability an increasingly pressing concern. In the 2016 United States’ and 2017 French presidential

elections, certain candidates’ systems were compromised and sensitive data was dumped publicly

online. DKIM email signatures prevented the Clinton campaign from denying authorship for hacked

emails posted by Wikileaks in 2016. In contrast, in 2017 the Macron campaign was able to effectively

deny the authenticity of leaked messages by including decoy messages as a countermeasure. This

defense was only possible because of a lack of cryptographic evidence. One result of these breaches is

that politicians and others increasingly use E2E encrypted messaging systems that provide deniability.

If E2E encryption provides deniability, the cryptography used for moderation must preserve this

deniability. This is a crucial reason why AMFs must be deniable.

These examples additionally demonstrate that deniability in messaging is practically important:

it is necessary, but not always sufficient, for (what we call) social deniability, i.e., that people are

convinced by a denial [RMA+23]. Our goal is to ensure that whatever prior belief people have about

the likelihood a message is valid should remain unchanged by the use of cryptography, and to have a

system that works with other techniques for increasing the success of social deniability (e.g., use of

decoys). We do note that because of pervasive propaganda campaigns an awareness has developed

among the general public that malicious parties will try to influence popular sentiment by forging

17

content. This would seem to make social deniability more feasible, as people are unlikely to be

convinced by an unverified attribution in the era of “fake news”.

An important implication of all this is that, to issue a denial that will convince the general public,

it is not sufficient to demonstrate the (perhaps non-constructive) existence of a forger who could

have forged a message—there must exist concrete and runnable forgery algorithms that could have

been used by influence campaigns or other adversaries. Our eventual construction has three such

implemented algorithms for different compromise scenarios.

3.1.2 Syntax and Security Notions

We introduce a new primitive, asymmetric message franking (AMF), that provides the cryptographic

algorithms needed for secure metadata-private moderation. We will present the algorithms and

security definitions of an AMF scheme in three parts. First, we present a brief preliminary on key

generation. Then, we describe the accountability algorithms and definitions. Finally, we present the

three algorithms used for deniability and definitions. We choose to decouple our security treatment

of AMFs from the accompanying end-to-end (E2E) encryption scheme to simplify and modularize

the analysis.

Formally, an asymmetric message franking scheme AMF = (Keygen, Frank, Verify, Judge,

Forge, RForge, JForge) is a tuple of seven algorithms. An AMF scheme is associated with a public

key space PK, secret key space SK, message space M, and signature space Σ. To simplify notation

of inputs in the algorithms, we assume all pk inputs are in PK, all sk inputs are in SK, all m inputs

are in M, and all σ inputs are in Σ.

AMF key generation. Following a setup to generate global public parameters pp←$Setup(λ), AMF

key generation, (pk,sk)←$Keygen(pp), is a randomized key generation algorithm which outputs a

public key pair (pk,sk) ∈ PK×SK. We assume the public key pk can be uniquely recovered from

the private key sk. Our schemes have this property. We also assume for simplicity that the judge,

senders, and receivers all use the same key generation algorithm.

We will assume that key pairs can be confirmed to be valid. More precisely, we will require a

deterministic algorithm valid PK×SK→{0,1} which takes as input a key pair (pk,sk) ∈ PK×SK

and outputs a bit b denoting whether the key pair is a valid pair (b= 1) or not (b= 0). The purpose of

18

this procedure is to verify that a (possibly adversarially chosen) key pair is well-formed relative to

some relationship between pk and sk. In our schemes this will be a single exponentiation.

Accountability Notions

For an AMF= (Setup, Keygen, Frank, Verify, Judge, Forge, RForge, JForge), the three accountabil-

ity algorithms are Frank, Verify, and Judge. These algorithms are used for creating and verifying

signatures. We explain the syntax of each algorithm in turn, then describe the corresponding account-

ability security notions.

• σ←$Frank(sks,pkr,pkj ,m): The (randomized) message signing or franking algorithm takes

as input a receiver public key pkr, a judge public key pkj , a sender secret key sks, and a message

m. It outputs a signature σ.

• b← Verify(pks,skr,pkj ,m,σ): The deterministic receiver verification algorithm takes as input

a sender public key pks, receiver secret key skr, judge public key pkj , message m, and signature

σ, then outputs a bit. The receiver runs this to ensure the message, signature pair (m,σ) is

well-formed and reportable to the judge.

• b← Judge(pks,pkr,skj ,m,σ): The deterministic judge authentication algorithm takes as input

a sender public key pks, receiver public key pkr, judge secret key skj , message m, and signature

σ, then outputs a bit. This algorithm is used by the judge to check the authenticity of reported

messages, ensuring the message was really sent from the sender and was meant for the recipient.

This formalization restricts attention to non-interactive schemes for which franking, verification,

and judging requires sending just a single message. Such non-interactive schemes have important

practical benefits, but it is conceivable that there might be some benefits of generalizing our treatment

to include interactive schemes, which we leave for future work.

Correctness. Informally, we require AMF signatures created by the franking algorithm are both

verified and judged successfully. Formally, for all messages ,m, and for all pairs of public keys,

(pk{s,r,j},sk{s,r,j}), it holds that

Pr
[
Verify(pks,skr,pkj ,m, Frank(sks,pkr,pkj ,m)) = 1

]
= 1

19

Game RBindA
AMF(λ)

pp←$AMF.Setup(λ)

(pks,sks)←$AMF.Keygen(pp)

(pkj ,skj)←$AMF.Keygen(pp)

(pkr,m,σ)←AFrank,Judge(pks,pkj)

Return
∧ (pkr,pkj ,m) ̸∈ Q

AMF.Judge(pks,pkr,skj ,m,σ)


Oracle Frank(pk′r,pk

′
j ,m)

Q←Q∪{(pk′r,pk′j ,m)}
Return AMF.Frank(sks,pk

′
r,pk

′
j ,m)

Oracle Judge(pk′s,pk
′
r,m,σ)

Return AMF.Judge(pk′s,pk
′
r,skj ,m,σ)

Game SBindA
AMF(λ)

pp←$AMF.Setup(λ)

(pkr,skr)←$AMF.Keygen(pp)

(pkj ,skj)←$AMF.Keygen(pp)

(pks,m,σ)←AVerify,Judge(pkr,pkj)

Return
∧ AMF.Verify(pks,skr,pkj ,m,σ)

¬AMF.Judge(pks,pkr,skj ,m,σ)


Oracle Verify(pk′s,pk

′
j ,m,σ)

Return AMF.Verify(pk′s,skr,pk
′
j ,m,σ)

Oracle Judge(pk′s,pk
′
r,m,σ)

Return AMF.Judge(pk′s,pk
′
r,skj ,m,σ)

Figure 3.2: Accountability games for AMF schemes: receiver binding (left) and sender binding (right).

and

Pr
[
Judge(pks,pkr,skj ,m, Frank(sks,pkr,pkj ,m)) = 1

]
= 1

where the probabilities are taken over the random coins used in Frank.

Security notions for accountability. First and foremost an AMF scheme should prevent a party from

impersonating a sender to a receiver. This goal, which we call unforgeability, is a lifting of standard

digital signature unforgeability to the setting of AMF schemes. AMFs should also (1) prevent any

sender from creating a signature that can be verified by the receiver but not the moderator, and (2)

prevent any receiver from framing a sender by creating a signature on a message that wasn’t sent.

Following the terminology used in symmetric message franking [GLR17] we refer to these goals as

sender binding and receiver binding, respectively.

It turns out sender binding and receiver binding together imply unforgeability. In this section,

we proceed by formalizing the sender binding and receiver binding accountability notions.

Receiver binding is specified formally in game RBind on the left-hand side of Figure 3.2. The

adversary plays the role of a reciever and attempts to create a signature that from a sender pks to

an adversarially chosen pkr that correctly judges by pkj . The adversary is given a Frank oracle for

some (honest) sender, to which it can query messages signed to chosen receiver and judge public

20

keys. We also give the adversary access to a Judge oracle to query chosen message and signature

pairs. It tries to output a message and signature, distinct from all Frank oracle outputs, for which

Judge outputs 1. For an adversary A and message franking scheme AMF we define the RBind

advantage of A against AMF as Advrbind
AMF,A(λ) = Pr

[
RBindA

AMF(λ) = 1
]

where the probability

here (and for subsequent use of games) is over all the random coins used in the game, including those

of the adversary.

Sender binding is specified formally in game SBind on the right-hand side of Figure 3.2. The

adversary plays the role of a sender and its goal is to generate, for some adversarially chosen pks,

an AMF signature that Verify validates but Judge rejects with pkr and pkj . The adversary is given

a pair of oracles for Verify and Judge to which it can query message and signature pairs. For an

adversary A and message franking scheme AMF we define the SBind advantage of A against AMF

as Advsbind
AMF,A(λ) = Pr

[
SBindA

AMF = 1
]

.

Deniability Notions

To support deniability, we equip AMF schemes with three deniability algorithms and associate to

each a security notion. We include the forging algorithms as part of the scheme to emphasize their

importance in providing practically-meaningful deniability guarantees. They will be efficient to

execute and as easy to implement as the other algorithms. The deniability algorithms for an AMF

scheme AMF are Forge, RForge, and JForge. We give a formal description of each along with some

intuition about the deniability setting they correspond to.

Universal deniability requires that any non-participating party (no access to sender, receiver, or

judge secret keys) can forge a signature that is indistinguishable from honestly-generated signatures

to other non-participating parties. Intuitively, this allows the sender to claim a message originated

from any non-participating party. This is the purpose of the Forge algorithm of an AMF scheme.

• σ←$Forge(pks,pkr,pkj ,m): The forge algorithm takes a sender public key pks, receiver

public key pkr, a judge public key pkj , and a message m, then outputs a “forged” AMF

signature σ.

We formalize universal deniability in game UDen, the leftmost in Figure 3.3. The adversary is given

access to a frank oracle that outputs a signature created from Frank or Forge depending on a challenge

bit that is the adversary’s goal to guess. In this deniability game and all subsequent deniability games,

21

Game UDenA,b
AMF(λ)

pp←$AMF.Setup(λ)

(pks,sks)←$AMF.Keygen(pp)

(pkr,skr)←$AMF.Keygen(pp)

(pkj ,skj)←$AMF.Keygen(pp)

b′←AFrank(sks,pkr,pkj)

Return b′

Oracle Frank(m)

σ0← AMF.Frank(sks,pkr,pkj ,m)

σ1← AMF.Forge(pks,pkr,pkj ,m)

Return σb

Game RCompDenA,b
AMF(λ)

pp←$AMF.Setup(λ)

(pks,sks)←$AMF.Keygen(pp)

(pkj ,skj)←$AMF.Keygen(pp)

(pkr,skr,aux)←A1(pks,pkj)

Return
∧ valid(pkr,skr)

AFrank
2 (sks,skr,pkj ,aux)


Oracle Frank(m)

σ0← AMF.Frank(sks,pkr,pkj ,m)

σ1← AMF.RForge(pks,skr,pkj ,m)

Return σb

Game JCompDenA,b
AMF(λ)

pp←$AMF.Setup(λ)

(pks,sks)←$AMF.Keygen(pp)

(pkr,skr,pkj ,skj ,aux)←A1(pks)

Return
∧


valid(pkr,skr)

valid(pkj ,skj)

AFrank
2 (sks,skr,skj ,aux)


Oracle Frank(m)

σ0← AMF.Frank(sks,pkr,pkj ,m)

σ1← AMF.JForge(pks,pkr,skj ,m)

Return σb

Figure 3.3: Deniability security games for AMF schemes: universal deniability (left), receiver compromise
deniability (middle), and judge compromise deniability (right).

the adversary is given access to the sender’s secret key sks to model sender compromise. For an

adversary A and asymmetric message franking scheme AMF we define the UDen advantage of A

against AMF as

Advuden
AMF,A(λ) =

∣∣∣Pr[UDenA,1
AMF(λ) = 1

]
−Pr

[
UDenA,0

AMF(λ) = 1
]∣∣∣ .

Receiver compromise deniability requires that a party with access to the receiver’s secret key can

forge a signature that is indistinguishable from honestly-generated signatures to other parties with

access to the receiver’s secret key. This captures deniability in the case where the receiver’s secret

key is compromised, and allows the sender to claim a message originates from a compromising party

or malicious receiver. The RForge algorithm is used for receiver compromise deniability.

• σ←$RForge(pks,skr,pkj ,m): The receiver forge algorithm takes a sender public key pks,

receiver secret key skr, a judge public key pkj , and a message m, then outputs a “forged” AMF

signature σ.

We formalize receiver compromise deniability in two-stage game RCompDen, the middle game in

Figure 3.3. The second-stage adversary A2 is given access to a frank oracle that outputs a signature

created from Frank or RForge depending on a challenge bit. The goal is to guess the challenge bit

given the sender and receiver secret keys, sks and skr. We strengthen the definition by answering the

frank oracle queries using a public key pair for the receiver generated in the first stage by adversary

22

A1. For an adversaryA= (A1,A2) and message franking scheme AMF, we define the RCompDen

advantage of A against AMF as

Advrden
AMF,A(λ) =

∣∣∣Pr[RCompDenA,1
AMF(λ) = 1

]
−Pr

[
RCompDenA,0

AMF(λ) = 1
]∣∣∣ .

Judge compromise deniability requires that a party with access to the judge’s secret key can

forge a signature that is indistinguishable from honestly-generated signatures to other parties even

with access to the judge’s secret key and receiver’s secret key. This captures deniability in the case

where the judge’s secret key has become compromised, and allows the sender to claim a message

originates from a compromising party or malicious judge. Our definition maintains deniability even

in the case where the receiver’s secret key is compromised as well. We discuss alternate, weaker

deniability notions at the end of this section. The JForge algorithm is used for judge compromise

deniability.

• σ←$JForge(pks,pkr,skj ,m): The judge forge algorithm takes a sender public key pks, re-

ceiver public key pkr, a judge secret key skj , and a message m, then outputs a “forged” AMF

signature σ.

We formalize judge compromise deniability in two-stage game JCompDen, the right-most game in

Figure 3.3. The second-stage adversary A2 is given access to a frank oracle that outputs a signature

created from Frank or JForge depending on a challenge bit. In contrast to receiver compromise

deniability, A1 generates the judge public key pair in addition to the receiver public key pair and

A2 is given access to all secret keys. For an adversary A= (A1,A2) and message franking scheme

AMF we define the JCompDen advantage of A against AMF as

Adv
jden
AMF,A(λ) =

∣∣∣Pr[JCompDenA,1
AMF(λ) = 1

]
−Pr

[
JCompDenA,0

AMF(λ) = 1
]∣∣∣ .

Space of deniability definitions. Notice that our deniability definitions are implicitly parameterized

by the combination of secrets keys given to the forger and the combination of secret keys given to

the distinguisher, i.e., who is able to fool whom. In this work, we target three specific deniability

definitions within this space that we believe have real-world significance. However, this is not the

only set of meaningful deniability definitions that one might desire from a scheme. Consider the

following two examples. First, our definitions give the distinguisher access to the sender’s secret key

which models deniability in the face of sender compromise. An alternative definition may dispense

23

with this goal in favor of an accountability notion, disavowability, in which a sender has the ability to

cryptographically prove forged signatures were not created using their sender secret key, i.e., disavow

forgeries. Second, our judge compromise deniability definition conflicts with strong authentication

between sender and receiver — forgeries by the moderator cannot be detected by the receiver. Instead,

a stronger unforgeability definition could be satisfied in which the judge’s secret key alone is not

sufficient to forge messages accepted by the receiver.

3.1.3 Construction

In this section, we present our construction for building an asymmetric message franking scheme.

First, we give intuition for our approach by drawing connections to the literature on designated

verifier signatures [JSI96, LWB05, KP05, LV04a]. Then, we describe our particular instantiation built

using signatures of knowledge [Cam98] and detailed in Figure 3.5.

Intuition: AMF from Designated Verifiers

Designating the moderator as verifier. The tension between accountability and deniability arises

from the desire for franking signatures to be forgeable (deniability) as well as verifiable by certain spe-

cial parties, e.g. the moderator (accountability). This suggests designated verifier signatures [JSI96]

as a natural starting point from which to build asymmetric message franking. The sender would

designate the moderator as a verifier for a signature of the message.

A designated verifier signature or, more generally, a designated verifier proof system allows a

prover to provide a proof of a statement that convinces a designated verifier but no one else. The

designated verifier can efficiently forge the proof such that the forged proof is indistinguishable from

a real proof even with access to the designated verifier’s secret key. This security property, known

as non-transferability, ensures there are two possible parties that could have created the signature,

the alleged sender or the (compromised) moderator. It matches closely to receiver compromise

deniability and judge compromise deniability for AMFs which extends the idea of non-transferability

to relationships between three parties.

Universal deniability from strong designated verifiers. To expand the set of possible forgers to any

24

non-participating party, i.e. universal deniability, we additionally make use of a strong deniability

property of strong designated verifier signatures [JSI96, SKM03, HYWS11]. This property allows

anyone to forge a signature between two parties such that the resulting forgery is indistinguishable

from real signatures to anyone without secret key access. Without care, universal deniability poses a

problem for accountability. Consider a franking signature that consists of the sender creating a strong

designated verifier signature for the moderator. A sender can send an abusive message and sign with

a universal forgery. If the recipient of the message attempts to report to the moderator, the moderator

will not be convinced the message was sent by the sender. This violates sender binding.

Chaining designated verifier proofs. To achieve sender binding, the receiver must have some way of

verifying whether messages it receives are reportable to the moderator. Specifically, the receiver must

be able to verify the sender’s strong designated verifier signature for the moderator is well-formed

and not a forgery. This leads us to the final step: the sender can attach a strong designated verifier

proof [DFN06, CC18] for the receiver proving that the strong designated verifier signature for the

moderator is well-formed. By using a strong designated verifier proof for this step, the deniability

goals are preserved.

The challenge in building AMFs with this approach is in instantiating schemes such that the

signing algorithm of the strong designated verifier signature falls into a language compatible with

the strong designated verifier proof system. Existing strong designated verifier signatures [SKM03,

HYWS11, JSI96] do not appear to have this desired structure-preserving property [AFG+10] that

would lend to using efficient proof systems. Strong designated verifier proof systems for arbitrary

languages would likely be prohibitively expensive for low latency messaging. It is worth noting that

this approach is also conceptually similar to multi-designated verifier signatures, but in our case, the

different parties have different forging powers [LV04b, DHM+20]. We next turn to building practical

AMFs.

AMF from Signatures of Knowledge

While we do not build off the abstraction of designated verifiers, our construction is modeled off

the intuition that an AMF can be composed of a strong designated verifier proof to the receiver

of the well-formedness of a strong designated signature to the moderator. Our construction is

25

Algorithm Security notion
How to prove first clause?

(pks = gt∨J = gu)
How to prove second clause?(

(J = (pkj)
v ∧EJ = gv)∨R= gw

)
Verify? Judge?

Frank Correctness α←$Zp; J ← (pkj)
α; t= sks β←$Zp; R← (pkr)

β ; v = α ✓ ✓

Forge Universal deniability γ←$Zp; J ← gγ ; u= γ δ←$Zp; R← gδ; w = δ × ×
RForge Receiver compromise deniability γ←$Zp; J ← gγ ; u= γ β←$Zp; R← (pkr)

β ; w = β · skr ✓ ×
JForge Judge compromise deniability α←$Zp; J ← (pkj)

α; u= α · skj β←$Zp; R← (pkr)
β ; v = α ✓ ✓

Figure 3.4: Summary of how AMF signing and forging algorithms construct signatures. The rightmost columns
indicate with a checkmark (✓) which verification algorithms accept that signature and with a cross (×) which
will reject that signature.

inspired by the strong designated verifier signature scheme of Huang et al. built using signatures of

knowledge [HYWS11], which we modify to allow for proofs of well-formedness.

Our construction can be based on any suitable cyclic group. In the following we let G be a group,

let p be its order, and g be a generator for G. Secret keys are uniformly chosen from SK= Zp, and

public keys are set to be pk← gsk . We denote this key generation as Keygen. Note that it is easy to

check the well-formedness of such keys.

Overview of construction. Consider the strong designated verifier signature (between sender and

moderator) derived as a signature of knowledge from the following relation:

RSDVS =
{(

(t, u), (g, pks, J)
)
: pks = gt∨J = gu

}
,

in which an honest sender will construct Diffie-Hellman value J = (pkj)
α for random choice of

α←$Zp, and send ephemeral value EJ = gα along with the RSDVS signature proof, where pks and

pkj are the public keys of the sender and moderator, respectively. If J is indeed constructed in this

manner, J = gu = gα·skj , then knowledge of u cannot be proved by anyone who does not know the

moderator’s secret key skj . This means a moderator that receives a valid signature and well-formed

J will be convinced that the signature comes from a sender with knowledge of t= sks.

On the other hand, anyone can create a valid signature of RSDVS by using a malformed J set as

a random group element, J = gγ for γ←$Zp, proving knowledge of u= γ, and sending EJ = gα

for independent α←$Zp. Importantly, only the moderator has the ability to distinguish between

well-formed and malformed J , by using the secret key skj to check whether (pkj ,EJ ,J) forms a

valid Diffie-Hellman triple (J ?
=E

skj

J). This means that anyone can create a forged signature that is

indistinguishable from a valid sender signature to everyone but the moderator.

26

RAMF =
{(

(t, u, v,w), (g, pks, pkr, pkj , J, R, EJ)
)
:
(
pks = gt∨J = gu

)
∧
(
(J = (pkj)

v ∧EJ = gv)∨R= gw
)}

AMF.Frank(sks,pkr,pkj ,m)

(α,β)←$ (Zp)
2

J ← (pkj)
α

R← (pkr)
β

EJ ← gα

ER← gβ

w ← (sks,⊥,α,⊥)
x← (g,pks,pkr,pkj ,J,R,EJ)

π←$Π.SignProve(m,w ,x)

Return (π,J,R,EJ ,ER)

AMF.Forge(pks,pkr,pkj ,m)

(α,β,γ,δ)←$ (Zp)
4

J ← gγ

R← gδ

EJ ← gα

ER← gβ

w ← (⊥,γ,⊥, δ)
x← (g,pks,pkr,pkj ,J,R,EJ)

π←$Π.SignProve(m,w ,x)

Return (π,J,R,EJ ,ER)

AMF.RForge(pks,skr,pkj ,m)

(α,β,γ)←$ (Zp)
3

J ← gγ

R← (pkr)
β

EJ ← gα

ER← gβ

w = (⊥,γ,⊥,β · skr)
x← (g,pks,pkr,pkj ,J,R,EJ)

π←$Π.SignProve(m,w ,x)

Return (π,J,R,EJ ,ER)

AMF.JForge(pks,pkr,skj ,m)

(α,β)←$ (Zp)
2

J ← (pkj)
α

R← (pkr)
β

EJ ← gα

ER← gβ

w ← (⊥,α · skj ,α,⊥)
x← (g,pks,pkr,pkj ,J,R,EJ)

π←$Π.SignProve(m,w ,x)

Return (π,J,R,EJ ,ER)

AMF.Setup(λ)

Return GGen(λ)

AMF.Keygen(pp)

(p,G,g)← pp

r←$Zp

Return (gr, r)

AMF.Verify(pks,skr,pkj ,m,σ)

(π,J,R,EJ ,ER)← σ

x← (g,pks,pkr,pkj ,J,R,EJ)

Return
∧ R= Eskr

R

Π.Ver(m,π,x)


Judge(pks,pkr,skj ,m,σ)

(π,J,R,EJ ,ER)← σ

x← (g,pks,pkr,pkj ,J,R,EJ)

Return
∧ b1← J = E

skj

J

Π.Ver(m,π,x)



Figure 3.5: Algorithms for our deniable AMF scheme AMF[GGen,Π]. The protocol is parameterized by a
group generation algorithm GGen and a signature of knowledge Π for relation RAMF.

Following the intuition from the previous section, to achieve accountability, the sender must

prove to the receiver that the strong designated verifier signature for the moderator is well-formed.

This corresponds to proving that J is well-formed, i.e., (pkj ,EJ ,J) form a Diffie-Hellman triple.

Putting it together, our final AMF construction is the signature of knowledge derived from the

following relation:

RAMF =
{(

(t, u, v,w), (g, pks, pkr, pkj , J, R, EJ)
)
:(

pks = gt∨J = gu
)
∧
(
(J = (pkj)

v ∧EJ = gv)∨R= gw
)}

.

An honest sender constructs J = (pkj)
α and R= (pkr)

β for (α,β)←$ (Zp)
2, and sends ephemeral

values (EJ = gα,ER = gβ) along with the RAMF signature, where pkr is the public key of the receiver.

The first conjunction clause represents the strong designated verifier signature to the moderator and

the second conjunction clause represents the strong designated proof to the receiver that the first

27

clause is constructed properly. Forgeries for universal deniability are created with malformed J

and R, forgeries for receiver compromise deniability with malformed J , and forgeries for judge

compromise deniability do not use any malformed elements. Lastly, the receiver’s public key is

added to the statement even though it does not appear in the proof relation, so that it is bound by the

Fiat-Shamir hash challenge. This prevents certain types of identity misbinding attacks. A complete

summary of how different signatures and forgeries are proved is given in Figure 3.4 and our full

construction is detailed in pseudocode in Figure 3.5. The resulting primitive can be thought of as a

sort of multi-designated verifier signature [DHM+20] where the designated verifiers have differing

hierarchical deniability properties.

3.1.4 Security Analysis

We now explore the security of our deniable AMF scheme, arguing it achieves the accountability and

deniability properties detailed in Section 3.1.2. We treat each set of properties in turn.

Accountability. As we discussed in the last section, the accountability properties intuitively follow

from the underlying signature of knowledge’s soundness properties: demonstrating forgeries that

fool the recipient (unforgeability or sender binding) or the judge (receiver binding) implies the ability

to generate a proof without a witness. However, it is not clear how to modularly define a suitably

strong knowledge soundness property of the signature of knowledge underlying our construction.

Our analyses therefore take a different tack, reducing to the soundness properties of the underlying

proof of knowledge protocol.

We discuss receiver binding, which shares the same high level strategy as sender binding. Our

strategy is to show a winning adversary A breaks the one-wayness of the witness-statement relation

RAMF, which we can use to build a discrete log adversary B extracting secret keys from the witness.

The approach of the proof uses some techniques related to the proof of existential unforgeability under

chosen message attack (EUF-CMA) for Fiat-Shamir-derived signatures (c.f., [BS17]), but the need of

B to simulate A’s oracle queries requires a more nuanced analysis. In fact performing this simulation

leads us to make an additional knowledge-of-exponent assumption (KEA) assumption [BP04] about

G. The full theorem for receiver binding is given below along with a proof sketch; the full proofs and

theorem statement for sender binding and unforgeability are deferred to the full version [TGL+19b].

28

Theorem 1. Let AMF be the asymmetric message franking scheme defined in Figure 3.5 where

the signature of knowledge is derived from the proof of representation Sigma protocol for RAMF

using the Fiat-Shamir heuristic as described in Section 2.4 with hash function H. If H is modeled as a

random oracle, for any RBind adversary Arbind making at most qf franking oracle queries, qj judge

oracle queries, and qro random oracle queries, we give adversaries Adl and Akea such that

Advrbind
AMF,Arbind

(λ)≤ qf(qf +qro+1)

p4
+(qj+1) ·Advkea

GGen,Akea,X
(λ)

+
qro+1

p
+
√
2(qro+1) ·Advdl

GGen,Adl
(λ)

where p is the order of G output by GGen(λ). If A runs in time T and KEA extractor X runs in time

tX, then Adl runs in time T ′ ≈ 2T +2(qj+1) · tX and Akea runs in time T ′ ≈ T .

Proof sketch: Our proof proceeds via a sequence of games. The first set of game hops show how

the game can be modified to answerArbind’s franking queries without using the sender’s secret key sks.

Similarly to proving non-interactive zero knowledge for Fiat-Shamir-derived proofs [BS17, Theorem

20.3], this is done by programming the random oracle H to be consistent with the commitments

used in the underlying Sigma protocol. This programming fails if a (randomly chosen) commitment

collides with a value previously used as input to the random oracle. This happens with low probability

as commitments are four uniformly chosen group elements. The birthday-bound term accounts for

the probability of such a commitment collision.

The second set of game hops handles simulating the judge oracle without the judge’s secret

key. To do so we argue that one can simulate the queries using KEA extractors and, if that fails, we

can build an adversary Akea that violates the KEA. In fact this step uses a hybrid argument which

gradually replaces each oracle call with an extractor-utilizing simulation of the check. This accounts

for the second term of the theorem’s advantage bound.

Finally we are in a game now in which the only use of the judge and sender secret keys is to

define the public keys. We use a rewinding lemma [BS17, Lemma 19.2]. IfArbind succeeds at forging

in one execution against a particular message, we can rerun Arbind (“rewind” it) with a different

random oracle output for that message. The rewinding lemma lower bounds the probability that

Arbind succeeds twice in a row by the probability that it succeeds once. In turn, if one can forge twice

29

with different hash outputs, this allows extracting a witness from the Fiat-Shamir proof of knowledge.

The last step involves a case analysis over the relation RAMF to show that extracting a witness implies

learning sks or skj , which we use to build our desired discrete log adversary Adl. A subtlety in this

final step is that extracting a witness implies learning u= skj ·α, but not skj directly. We use a KEA

extractor again to extract α, and thus complete the proof. This accounts for the final two terms of the

advantage relation.

Deniability. Intuitively, the deniability properties fall out of the non-interactive zero knowledge

property of the signature proofs of knowledge. Our signature proof of knowledge is carefully

designed so that a variety of different witnesses can satisfy the statement relation RAMF (as laid

out in Figure 3.4). This allows forgers to create signatures that can only be caught by checking

well-formedness of the statement using secret keys.

In more detail, the deniability proofs all follow the same outline. First notice that there are two

high level differences between the frank algorithm and the forge algorithms: (1) the witnesses used

to prove the statement are different, and (2) how the elements of the statement are formed is different.

Different witnesses are handled by using the zero-knowledge property of the signature proof to switch

between witnesses by hopping to a simulated proof and back. In fact, for judge compromise deniability,

witness indistinguishability [FS90] is all that is needed since elements of the statement are well-

formed and identical in Frank and JForge. Extra care needs to be taken for Forge and RForge, since

some elements of the statement are malformed. Well-formed means, for example, that J is constructed

as J← (pkj)
α forming a Diffie-Hellman triple, (pkj = gskj ,EJ = gα,J = gα·skj). While malformed

means J ← gγ is constructed as a random group element. In RForge, J is malformed, while in Forge

both J and R are malformed. This leads to an additional DDH term to bound the advantage of an

adversary in distinguishing between each well-formed and malformed statement elements.

The theorem statement for universal deniability is given below. The first term of the advantage

comes from hopping between two witnesses through a simulator. The second term of the advantage

comes from a decisional Diffie-Hellman hop for each of the two malformed elements of Forge.

Theorem 2. Let AMF be the asymmetric message franking scheme defined in Figure 3.5 where the

signature of knowledge is derived from the proof of representation Sigma protocol Π for RAMF using

the Fiat-Shamir heuristic as described in Section 2.4 with hash function H. For all simulators S for Π,

30

for any UDen adversary Auden, we give adversaries Azk and Addh such that

Advuden
AMF,Auden

(λ)≤ 2 ·Advzk
Π,RAMF,S,Azk

(λ)+2 ·Advddh
GGen,Addh

(λ) .

where if Auden runs in time T and makes at most qf queries to the frank oracle, then Azk and Addh

run in time T ′ ≈ T and Azk makes at most qf queries to its proof oracle.

The advantage terms for receiver compromise deniability and judge compromise deniability

follow a similar structure. The full proofs for all deniability properties are deferred to the full

version [TGL+19b].

3.2 Message Tracing

Another setting in which traditional SMF fails is in combatting misinformation campaigns. Such

campaigns are being increasingly hosted on messaging platforms in which parties send messages

with misleading or false information, and encourage them to be forwarded by the recipient. Such

campaigns can have serious consequences, contributing political instability and inciting violence.

In unencrypted contexts, such as Twitter or the Facebook news feed, platforms have started to

combat misinformation campaigns with content moderation, tracing harmful messages sent through

their network and intervening as deemed appropriate, e.g., by banning the “factory” accounts that are

injecting such content into the network. But E2E encryption complicates moderation because the

platform never observes plaintext content. Message franking [Fac17, GLR17, DGRW18, TGL+19b]

(both symmetric and asymmetric) allows cryptographically verified content moderation, but current

techniques only reveal the sender of a received message and do not by themselves help identify the

source of a forwarded message. Platforms have so far relied solely on crude techniques like limiting

the number of people to which any message can be forwarded.

We explore a new tool for content moderation in E2E encrypted messaging: traceback. At a high

level, tracing should allow users to report an abusive message along with supporting cryptographic key

material to the messaging platform. Using this material, the platform can recover a cryptographically

verifiable trace of the message, revealing the source and how the message was forwarded between

users.

We design two traceback schemes. The first, called path traceback, uses lightweight symmetric

encryption techniques to add specially constructed tracing tags to ciphertexts. A tracing tag is an

31

encrypted pointer to either the prior message, in the case of a forward, or a distinguished symbol in

the case of a freshly authored message. The ability to decrypt the tracing tag is secret-shared across

the platform and the recipient, so that only when a recipient reports the message can the platform

decrypt the tracing tag and reveal information about forwards. By carefully ensuring that subsequent

forwards’ tracing tags form an encrypted linked list, the platform can, given an abuse report, trace

back to the source of the message content.

Our second scheme is called tree traceback. It extends path traceback to additionally allow

tracing forward from the original source to recover all the recipients of forwards of the message

content. Tree traceback could be useful to platform operators when mitigating and cleaning up after

abuse, since it allows, for example, identifying the victims of misinformation campaigns. Achieving it

is more complicated, however, in particular because we want to build an encrypted tree data structure

incrementally, allowing tracing to connect all forwards of a message, including ones that will happen

in the future. We nevertheless show how to achieve it.

Our two schemes are practical to deploy. By design, they work with arbitrary E2E encryption

systems. They utilize only fast symmetric encryption and cryptographic hashing, and add a small

number of bytes to each encrypted message. The schemes do require that the platform store a short

trace tag (<100 bytes) for each encrypted message sent, which is nevertheless practical even for

high-volume messaging systems. We implement a prototype of both of our schemes, report on

initial performance evaluation, and detail how traceback can be easily integrated into existing E2E

encryption protocols such as Signal.

Related work. A number of works, including [CMS96, FTY96, KV02] have considered the problem

of tracing payments in electronic cash systems. This is a conceptually related problem. However, the

techniques are not directly applicable. First, these systems do not deal with binding the content of a

message to the trace. Second most systems assume far more interaction with a central party (e.g., a

bank) than is allowed in our setting.

Another line of work [SWKA00, SP01, Sno01] considered IP packet traceback. But the ap-

proaches taken here are probabilistic. The point is not to trace an individual packet, but to get a trace

of a stream of packets. As such packets are probabilistically marked [SWKA00] or kept in a Bloom

filter [Sno01]. They cannot be used to reliably trace an individual message.

32

Lastly, another line of work explores traitor tracing mechanisms [CFN94, BF99] for identifying

who within a group leaked a particular piece of content or a key to an outside party. These schemes

are not directly applicable for a few reasons. First, the goals of message tracing are not to trace

who leaked/reported the message to the platform (out of the forwarding chain “group”). Second,

message tracing has very specific restrictions on who is able to perform tracing. For example, by user

trace confidentiality, even members of the forwarding chain “group” should not be able to learn the

message trace.

3.2.1 Traceback Setting in Messaging

We consider an E2E encrypted message setting, in which a platform helps users send encrypted

messages. A primary goal of such messaging services is confidentiality of user messages. While some

systems [vdHLZZ15, TGL+17, WCFJ12] also target metadata privacy, i.e., obfuscating from the

platform who is the sender or recipient (or both), we restrict attention to systems such as Facebook

secret messenger and Whatsapp that reveal such metadata to platforms.

Messaging clients allow forwarding of encrypted messages. While forwarding is beneficial to

legitimate users, it has also been subject to abuse by users spreading malicious content. In this chapter,

we show how to augment encrypted messaging systems to allow users to report a malicious message.

The platform can, given this report, trace the path a message took as it was forwarded across the

network of users. This enables new moderation approaches, as we discuss more at the end of this

section. We first discuss our confidentiality and accountability goals in more detail.

Confidentiality goals. We want to support traceback while minimizing impact on E2E confidentiality

guarantees. Messages and forwarding behavior (whether an encrypted message is a forward, and

from whom) should be confidential even from the platform, except in the case that the message was

reported. For non-reported messages, neither the platform nor users should ever learn anything new

due to the tracing functionality. In particular, we want:

• Trace confidentiality for users: Users should not learn any information about message paths

beyond their local view of receiving and sending messages.

• Pre-report trace confidentiality for platform: Before a report, the platform should not learn any

additional information about the message path beyond communication metadata (e.g., receiver,

33

sender, timing, message length).

• Post-report trace confidentiality for platform: After a report, the platform should learn the

message trace and nothing more.

These confidentiality goals emanate from our intention to hew closely to the existing behavior and

privacy offered by deployed E2E messaging systems. First, we have chosen to ensure that tracing

does not reveal to even a malicious user if they are receiving a forwarded message or a fresh one. Here,

deployed systems take different approaches and we chose the approach that maximizes compatibility.

Whatsapp reveals to the recipient that a message is a forward, but does not reveal from whom. Signal,

in contrast, does not identify forwarded messages. By providing forwarding privacy, our tracing

schemes work in both contexts.

Second, we have chosen to explicitly reveal messaging metadata. This means the platform can

tell that A communicated with B who then communicated with C. Our second choice is to conceal

from the platform whether B sent a fresh message to C or forwarded the message they got from A.

Together these choices preserve the general property of E2E encrypted messaging systems such as

WhatsApp and iMessage: the platform learns who messages who but nothing about the content of

the message.

Traffic analysis by a (compromised or otherwise malicious) platform may allow inferring

forwarding behavior. For example, if the platform observes a single 125 byte inbound message to

some user followed shortly after by 20 outbound messages of size 125 bytes, it is likely a sequence

of forwards. We will not attempt to prevent such traffic analysis, which would require expensive

padding and timing obfuscations.

Finally we note that our schemes will not interfere with cryptographic deniability. In the mes-

saging setting, this refers to the idea that recipients should not be able to provide to a third party

cryptographic evidence proving that the sender sent a particular plaintext. For example, providing a

recipient with a digital signature of a plaintext using the sender’s private key would violate our goals.

Deniability was explicitly sought by Facebook’s message franking system [Fac17], and by using

symmetric primitives we will achieve whatever level of deniability is offered by the underlying E2E

encryption mechanisms.

Accountability goals. In this paper, we propose two different types of traceback. The simplest form

34

(a) Forwarding paths (b) Pre-report view (d) Path traceback (e) Tree traceback (c) Message franking

Figure 3.6: Example of message forwards and what different traceback mechanisms report. Nodes are users
and edges are message sends, with forwarding paths denoted in the same color. Subfigures (c), (d), and (e)
depict what is revealed to the platform when the blue message is reported by the user indicated by the red
circle.

is path traceback which allows a platform to trace a reported message back to its origin, identifying

every forward along the path. This allows the originator to be held accountable for a message that is

forwarded. Separately, we consider tree traceback, which allows messages to be traced both back to

their origin and to identify all forwards of the message. This enables not only the identification of the

sender, but also of recipients. It may be useful for helping notify users about malicious content, or

blocking further forwards of the message. A particular complication for tree traceback is that the

platform should be able to trace all forwards including those that occur after the report is made. A

visualization of the different traceback policies are shown in Figure 3.6. Shown also there is what

message franking [Fac17, GLR17, DGRW18] supports in terms of accountability. Our path and tree

traceback can be seen as generalizations of message franking.

As was done previously with message franking, we want to ensure various accountability

properties even in the face of malicious users. But our setting is more complicated because tracing

requires reasoning about multiple messages sent, as opposed to a single one. Intuitively, we require

that no colluding set of adversarial users can frame an honest user as having performed some action

(sending, receiving, or forwarding a message with some particular plaintext content) that they did

not, in fact, perform. This implies, for example, the following accountability goals:

• Trace unforgeability: No group of colluding users can generate a report implicating an honest

user as having performed an action they did not, in fact, perform.

• Sender binding: No user can author a message that cannot be traced back to them.

Note that trace unforgeability can be seen as a generalization of the receiver binding property targeted

by message franking.

There are some limits to the level of accountability that we target (and that our eventual schemes

35

will provide). In particular, we allow for malicious users to partition the traceback. In these “partition

attacks”, a malicious user can split a forwarding chain so as to make themselves appear as the end

of one side of the split and the source of the other side. This seems fundamentally unavoidable.

Consider that a malicious user can bypass the cryptographic forwarding mechanism and emulate

a forward by resending a message via a copy-paste of the received plaintext. In theory, the client

software could be modified to flag such copy-paste forwards by comparing incoming and outgoing

plaintexts (after decryption and before encryption, respectively). Detection is not straightforward,

particularly if one wants it to be robust to small changes in the message. Moreover, this kind of

defense relies upon the integrity of the client software, as an adversary using a compromised client

can avoid client-side detection logic and directly submit encrypted content to the platform. Future

work might target prevention of partition attacks despite compromised clients through the use of

more heavyweight tools such as trusted hardware and expensive zero-knowledge proofs.

For the purposes of this work, we require only that a malicious user will be left holding “both

ends” of a partitioned chain. That is, there will be a trace including the malicious user as having

received the original message and a (possibly different) trace including the malicious user as having

sent the message. In the end, this means that we will guarantee messages will be traceable either to

the original source or to a malicious user that partitioned the chain.

The effectiveness of tracing. A final question arises: if it is possible for a user to bypass our proposed

tracing protections via a hacked client, is tracing effective? We believe so. Abuse mitigation tech-

niques need not be perfect to be effective, and even just reducing the amount of abuse is worthwhile.

There is empirical evidence that protections that can be bypassed even by simple copy-paste behavior

can still be effective. WhatsApp ran an experiment on the effectiveness of limiting the number of

forwards a user could make of a given message. They found that this was effective despite the fact

that the user could circumvent the limit after they reached it by simply copy and pasting the message.

As a result, this forward limitation is now deployed globally.

3.2.2 Syntax and Security Notions

In this section, we present the syntax and semantics we will use to describe message tracing schemes.

We assume users u1,u2, . . . ,un each represented by a unique identifier taken from some set U . For

36

convenience later, we assume a distinguished user identifier ⊥ that no real user can use. We make

minimal assumptions on user identities, assuming only that they are unique and that the platform can

authenticate them. In practice one will use the identifiers already used in E2E messaging systems.

We use the term message to refer to the sending of some plaintext from one user to another at

some point in time. Multiple messages may have the same plaintext (e.g., because someone forwards

message plaintext or sends the same message to multiple people). The distinction between message

and plaintext will be particularly critical in our discussion of tracing scheme accountability properties.

Our formalization of a message tracing scheme is decoupled from the underlying end-to-end

encryption. This leads to a modular and flexible deployment path in that any message tracing scheme

can be used in conjunction with any (non-metadata-private) end-to-end encryption algorithm.

A message tracing scheme MT = (Setup, InitU, InitP,NewMsg, TagGen, RecMsg, Process,

Trace) is a tuple of algorithms. The setup algorithm produces public parameters pp given a security

parameter input λ. The public parameters are input to all following algorithms; here we denote as

a superscript, but we will omit if clear from context. The initialization algorithms produces initial

states for users and the platform. The following three algorithms are called by users when sending

and receiving messages. The last two algorithms are for the platform to trace messages given the

proper user-provided key material.

• tmd←$NewMsgpp(u,pt : stu): The randomized message authorship algorithm takes in a user,

a message plaintext, and outputs trace metadata to be associated with this particular authored

message instance.

• (k,tts)←$TagGenpp(us,ur ,pt,tmd : stu): The randomized tag generation algorithm takes in

the sender us and recipient ur identities, a message plaintext, and trace metadata. The algorithm

outputs a sender trace tag tts and tracing key k. The tracing key is to be included with the

plaintext in the end-to-end encrypted ciphertext which is sent along with the sender trace tag to

the recipient over the platform.

• tmd←RecMsgpp(k,us,ur ,pt,ttr : stu): The tag receive algorithm takes in a key, the sender us

and recipient ur identities, a message plaintext, and a recipient trace tag, then outputs trace

metadata that cryptographically identifies the received message. The algorithm may return an

error symbol ⊥ (e.g., in the case ttr is malformed).

37

• ((mid,ttp),ttr)←$Processpp(us,ur ,tts : stp): The processing algorithm is run by the platform

and takes in the platform state, the sender and receiver identities, and a sender trace tag. It outputs

a recipient trace tag ttr to deliver to the recipient as well as a message identifier mid and a

platform trace tag ttp. In our schemes, the platform updates stp, which is a simple key-value

store, to include (mid,ttp).

• tr← Tracepp(u,pt,tmd : stp): A user can report a received message by sending the plaintext

pt and trace metadata for the message to the platform. The tracing algorithm is run by the

platform and takes in the platform state, the reporting user identity, the message plaintext, and

trace metadata. It then returns a trace tr of the reported message instance, the detailed structure

of which depends on the tracing goal. For path traceback it corresponds to a path with nodes

labeled by users and edges labeled by message identifiers. For tree traceback, a similarly-labeled

tree is returned.

Usage. The algorithms for tracing described above are designed to be decoupled from the end-to-end

encryption algorithms used by the messaging platform. A typical message is sent in the following

manner. First, the sender must specify the message they wish to send, i.e., whether it is a new message

or a forward. In either case we want to associate some trace metadata to the message. If the user

authors their own message, this metadata is created using NewMsg. Otherwise, RecMsg generates

trace metadata for a previously received message that can be used when forwarding. To send a

message, the sender generates a tracing key k and a sender trace tag tts using TagGen with the

appropriate trace metadata. The sender encrypts the tracing key and message plaintext using the E2E

encryption protocol, and sends the resulting ciphertext along with tts to the platform.

The platform processes tts using Process, updating its internal state to log a message identifier

mid and associated platform trace tag ttp. Note that ttp does not necessarily equal tts. It also derives

a recipient trace tag ttr and sends the E2E ciphertext and ttr to the recipient. The recipient decrypts

the ciphertext to recover the tracing key k and plaintext, and then uses RecMsg to both verify the

received trace tag and generate the trace metadata that can be used to forward the message in the

future. The recipient may report a message to the platform by sending the message plaintext and

associated trace metadata to the platform. The platform uses Trace with its internal state to learn a

trace of the reported message instance.

38

Correctness. Informally, correctness dictates that trace tags created with honest calls to NewMsg,

TagGen, and RecMsg and processed by an honest platform using Process should (1) not fail well-

formedness verification in RecMsg, and (2) provide the correct trace with Trace when reported.

Correctness is therefore context dependent, and we will discuss it more in subsequent sections. We

just note that most of our schemes will not be perfectly correct, but rather be correct with all but

negligible probability.

Confidentiality Notions

We start by formalizing notions of security capturing our confidentiality goals. Recall that our

confidentiality goals include: (1) trace confidentiality from the platform, meaning the platform learns

nothing about message contents or message history unless a report implicates that message, and (2)

trace confidentiality from users, meaning a user learns nothing about the history of messages they

receive. We therefore formalize two notions of confidentiality.

Our confidentiality definitions isolate what might leak from the output of a specific honest node,

even for adversarially chosen keys, tracing information, and messages. This ensures confidentiality

goals even in more complicated attack settings, as well, for example distinguishing between a

sequence of forwards and a sequence of new messages being sent.

Platform trace confidentiality. For platform trace confidentiality, we propose a real-or-random

definition for the platform view, i.e., the sender trace tag of a sent message. By using a real-or-random

style definition, we capture both goals of platform traceback, hiding message content and hiding

message history, within a single definition. In this game, given in Figure 3.7 (left), the adversary A

plays the role of the platform and is provided with a tag generation challenge oracle that either returns

the trace tag output from TagGen or a random string. The task of the adversary is to distinguish

between the two where an adversary’s advantage is defined as

Adv
p-tr-conf
MT,A (λ) =

∣∣∣Pr[PTrConfA,1
MT(λ) = 1

]
−Pr

[
PTrConfA,0

MT(λ) = 1
]∣∣∣ .

User trace confidentiality. In user trace confidentiality, a real-or-random style definition will not

work, as the recipient’s view of tracing key, plaintext, and recipient trace tag have a related structure

and must verify under RecMsg. Instead, we focus on the specific goal we aim to achieve under user

39

Game PTrConfA,b
MT (λ)

pp←$MT.Setup(λ)

For u ∈ U do
stu← InitUpp

Tu← [·] ; ctru← 0

b′←$ANewMsg,RecMsg,Chal

Return b′

Oracle NewMsg(u,pt)

tmd←$NewMsgpp(u,pt : stu)

Tu[ctru]← (tmd,pt) ; ctru← ctru+1

Oracle RecMsg(us ,ur ,pt,ttr)

tmd← RecMsgpp(k,us ,ur ,pt,ttr : stur)

Tu[ctru]← (tmd,pt) ; ctru← ctru+1

Oracle Chal(us ,ur ,ctr)

Require ctr ∈ Tus ; (tmd,pt)← Tus [ctr]

(k,tt1s)←$TagGenpp(us ,ur ,pt,tmd : stus)

tt0s←${0,1}MT.ttlen(λ)

Return ttbs

Game UTrConfA,b
MT (λ)

pp←$MT.Setup(λ)

For u ∈ U do
stu← InitUpp

Tu← [·] ; ctru← 0

b′←$ANewMsg,RecMsg,Chal

Return b′

Oracle NewMsg(u,pt)

tmd←$NewMsgpp(u,pt : stu)

Tu[ctru]← (tmd,pt) ; ctru← ctru+1

Oracle RecMsg(us ,ur ,pt,ttr)

tmd← RecMsgpp(k,us ,ur ,pt,ttr : stur)

Tu[ctru]← (tmd,pt) ; ctru← ctru+1

Oracle Chal(stp,us ,ur ,ctr)

Require ctr ∈ Tus ; (tmd0,pt)← Tus [ctr]

If tmd0 =⊥ then return ⊥
tmd1←$NewMsgpp(us ,pt : stus)

(k′,tts)←$TagGenpp(us ,ur ,pt,tmdb : stus)

((mid,ttp),tt
′
r)← Processpp(us ,ur ,tts : stp)

Return (k′,tt′r)

Figure 3.7: Security games for platform trace confidentiality (left) and user trace confidentiality (right).
Highlighted portions are included for schemes targeting tree traceback.

trace confidentiality, namely that message history is not revealed. We thus task the adversary with

distinguishing between the result of an authored message and a forwarded message. The adversary

gets to choose the plaintext and, in the case the challenge oracle is forwarding, the trace metadata

for the message to be forwarded. The game pseudocode is given in Figure 3.7 (right). We define the

distinguishing advantage of the adversary as:

Advu-tr-conf
MT,A (λ) =

∣∣∣Pr[UTrConfA,1
MT(λ) = 1

]
−Pr

[
UTrConfA,0

MT(λ) = 1
]∣∣∣ .

Accountability Notions

Tracing should accurately identify the source of a message, but malicious users can always obfuscate

from whom they’ve received a message. We therefore want tracing never to result in an honest user

erroneously implicated in having taken an action (sent, forwarded, or received a message) they did

not, in fact, perform.

40

To formalize accountability we use a game-based approach in which an adversary interacts with

some number n of honest users. See Figure 3.8. The adversary can cause honest users to author and

send (adversarially chosen) messages via two oracles NewMsg and Send. The adversary can also

pose as any number of malicious users, sending messages via a malicious send oracle SendMal.

We assume U labels users by numbers, thus user i is honest if i ∈ [1,n] and user i is malicious if

i /∈ [1,n]. In our exposition we often use variables u1, . . . ,un to refer to the honest users, and aj for

j /∈ [1,n] for a malicious user. The security experiment here assumes authenticated channels — the

adversary cannot send messages as an honest user nor manipulate messages sent between the honest

users and the platform. On the other hand, we give the adversary the power to observe trace tags

generated by, or sent to, honest users, but they only see the tracing keys sent by honest parties to

malicious users. Given the use of secure channels to send messages, it would seem sufficient to not

reveal communications from honest parties to the platform and from the platform to honest parties,

but giving the adversary this information only makes the security achieved stronger.

The adversary’s goal is to generate a report that results in an invalid trace, one that indicates that

an honest user took some action that they did not, in fact, take. Note that the adversary can either

have an honest user or malicious user make a report. In the honest case, the adversary outputs a

value mctr∗ indicating which message received by i∗ is being reported, and in the malicious case

the adversary directly outputs an opening k∗. The game loops over the reported trace (skipping

the loop entirely if Trace output an error), and checks for each honest user implicated in the trace

whether the reported trace matches an action they in fact performed. We do this via a set of predicates,

corresponding to where in the trace the honest user appears, and whether they actually received

and/or sent the indicated messages.

As a non-exhaustive list of example invalid traces ruled out by these predicates, consider the

following scenarios, where for simplicity we use a single honest user (n= 1):

• Message replacement: Honest user u1 sends a message mid with plaintext pt to a malicious user

a2, who then successfully reports the trace pt∗ : u1
mid−→a2 for some plaintext pt∗ ̸= pt. This

frames the honest user as having sent the wrong plaintext. The only valid trace in this case is

pt : u1
mid−→a2.

• Identity replacement: Honest user u1 sends a message mid with plaintext pt to a malicious user

41

Game TrUnfAMT,n(λ)

pp←$MT.Setup(λ)

stp← InitPpp

For u ∈ [1,n] do
stu← InitUpp

Tu← [·] ; ctru← 0

(u∗,pt∗,tmd∗,ctr)←$ANewMsg,Send,SendMal

If u∗ ∈ [1,n] then (tmd∗,pt∗,mids)← Tu∗ [ctr]

tr← Tracepp(u∗,pt∗,tmd∗ : stp)

([
(tri,midi,i+1)

]τ
i=1

,trτ
)
← tr

Return



(u∗ ∈ [1,n]∧ τ = 1)∨
τ∨

j=1

trj ∈ [1,n] ∧

∨


(
j = 1∧¬WasSent(tr1,tr2,mid1,2,pt

∗)
)

(
j = τ ∧¬WasRec(trτ−1,trτ ,midτ−1,τ ,pt

∗)
)

(
1< j < τ ∧¬WasFwd(tri−1,tri,midi−1,i,midi,i+1,pt

∗)
)






(tr0,clist0)← tr

Return
∨

(mid0,1,tr1,clist1)∈clist0

 (
u∗ ∈ [1,n]∧¬WasSent(tr0,tr1,mid0,1,pt

∗)
)

check_tree(tri,midi,i+1,tri+1,clisti+1)


check_tree(tr)

(tri−1,midi−1,i,tri,clisti)← tr

Return
∨


clisti = ∅ ∧ tri ∈ [1,n] ∧ ¬WasRec(tri−1,tri,midi,pt

∗)∨
(midi,i+1,tri+1,clisti+1)∈clisti

 tri ∈ [1,n] ∧ ¬WasFwd(tri,tri+1,midi−1,i,midi,i+1,pt
∗)

check_tree(tri,midi,i+1,tri+1,clisti+1)




Oracle NewMsg(u,pt)

Require u ∈ [1,n]

tmd←$NewMsgpp(u,pt : stu)

Tu[ctru]← (tmd,pt,auth)

ctru← ctru+1

Oracle Send(us ,ur ,ctr)

Require us ∈ [1,n]∧ ctr ∈ Tus

(tmd,pt,mids)← Tus [ctr]

(k,tts)←$TagGenpp(us ,ur ,pt,tmd : stus)

((mid,ttp),ttr)←$Processpp(us ,ur ,tts : stp)

TP [mid]← ttp

If mids = auth then
WasSent(us ,ur ,mid,pt)← true

Else WasFwd(i, j,mids,mid,pts)← true

If ur ∈ [1,n] then
tmd← RecMsgpp(k,us ,ur ,pt,ttr : stur)

Tu[ctru]← (tmd,pt,mid)

ctru← ctru+1

WasRec(us ,ur ,mid,pt)← true

Return ttr

Return (ttr,k)

Oracle SendMal(us ,ur ,pt,tts)

Require us ̸∈ [1,n]

((mid,ttp),ttr)←$Processpp(us ,ur ,tts : stp)

TP [mid]← ttp

If ur ∈ [1,n] then
tmd← RecMsgpp(k,us ,ur ,pt,ttr : stur)

If tmd ̸=⊥ then
Tu[ctru]← (tmd,pt,mid)

ctru← ctru+1

WasRec(us ,ur ,mid,pt)← true

Return ttr

Figure 3.8: Trace unforgeability security game with adversary winning condition for path traceback highlighted
in gray and for tree traceback highlighted in blue.

42

a2, who then successfully reports the trace pt : u1
mid−→a3 for some distinct user a3. This frames

the honest user as having sent the message to a different user. The only valid trace in this case is

pt : u1
mid−→a2.

• Path suffix: Malicious user a2 sends a message mida with plaintext pt to the honest user u1,

and then u1 forwards mida to another user a3 in message midb. Then a3 successfully reports

the trace pt : u1
midb−→a3. This frames the honest user as having originated a message that they

instead forwarded from someone else. The valid traces that can be reported in this case are

pt : a2
mida−→u1 and pt : a2

mida−→u1
midb−→a2.

• Same-message, wrong path: Two malicious users a2,a3 send messages mida,midb with the

same plaintext pt to the honest user u1. The honest user forwards the message mida from a2 to a

user a4 in a message midc. Finally a4 generates a report resulting in trace pt : a3
midb−→u1

midc−→a4.

This frames the honest user as having forwarded a different message, despite the plaintext being

the same this could be an accountability problem given that the sender and message time are

incorrect. The valid traces that can be reported in this case are pt : a2
mida−→u1, pt : a3

midb−→u1,

and pt : a2
mida−→u1

midc−→a4.

Notice that the prefix of any valid trace is also a valid trace (though the reporter would be different in

each case), but suffixes of a valid trace are not always valid (second example). Also the examples

highlight the importance of tracing particular messages, not just plaintexts, as we want the platform

to be able to reliably associate metadata (senders, receivers, timing) of messages to a reported trace.

We associate to any tracing scheme MT, number of honest users n, and adversary A the path

traceback forging advantage

Advtr-unf
MT,n,A(λ) = Pr

[
TrUnfAMT,n(λ) = 1

]
,

where the probability is taken over the random choices made in the game, including those made by

the adversary.

Modifications for tree traceback. The unforgeability game remains largely the same, given in

Figure 3.8 highlighted in blue. We add a recursive predicate check on all subtrees returned in the

trace. Furthermore, the WasRec predicate is set even if a received message was not accepted. This

captures the fact that a message will be traced as sent to a user regardless of whether the message

43

was accepted.

3.2.3 Construction

In this section, we present two constructions for message traceback targeting different traceback

goals: path traceback and tree traceback.

Path Traceback

We start with path traceback. The goal is to allow reporting a message with plaintext pt, with the

platform then able to identify the sequence of forwarded messages back to the original author of pt.

In this case, Process outputs a trace

tr = (tr1,mid1,2,tr2,mid2,3,tr3, . . . ,midτ−1,τ ,trτ)

where τ is called the trace length and each tri ∈ U identifies a user and each midi,j is an identifier for

a message. These message identifiers correspond to the ones output by the platform tag processing

algorithm (Process), allowing the platform to store, and later recover during traceback, any desired

metadata associated with a sent message. This can be visualized as a directed graph where nodes are

associated to users and edges to messages. The trace can then be denoted via

pt : tr1
mid1,2−→ tr2

mid2,3−→ ·· ·
midτ−1,τ−→ trτ

where pt represents the plaintext traced and the arrow diagram the path.

As discussed in Section 3.2.1, an adversarial user can always obfuscate the source from which

they received a message by a partition attack, in which case path traceback will result in identifying

the first misbehaving user (from the end) as the originator. For example, if tr2 behaved maliciously,

they can deviate from the proper client implementation and prevent traceback from identifying tr1,

and instead tr2 would be considered the source of the message.

The linked tags scheme. Each message sent between two users is associated with a message identifier,

denoted by mid. The message identifier is chosen by the sender, who samples a random tracing key

k and calculates the message identifier as the output of a PRF on the plaintext, PRF.Ev(k,pt). In

this manner, the message identifier also acts as a commitment to the plaintext, and the tracing key

acts as an opening key. Looking forward, our trace unforgeability property will rely on the collision

44

LT.Setup(λ)

Return λ

LT.InitU(λ)

Return ⊥

LT.InitP(λ)

Return TP ← [·]

LT.NewMsg(u,pt :⊥)
k←${0,1}λ

Return k

LT.TagGen(us ,ur ,pt,ki−1 :⊥)
ki←${0,1}λ

k̃i← H(ki)

mid← PRF.Ev(ki,pt)

ct← SE.Enc(k̃i,ki−1)

tts← (mid,ct)

Return (ki,tts)

LT.RecMsg(ki,us ,ur ,pt,ttr :⊥)
mid← ttr

If mid ̸= PRF.Ev(ki,pt) then return ⊥
Return ki

LT.Process(us ,ur ,tts : TP)

(mid,ct)← tts

Require mid ̸∈ TP

ttp← (ct,us ,ur)

TP [mid]← ttp

ttr←mid

Return ((mid,ttp),ttr)

LT.Trace(u,pt,k : TP)

tr← [·] ; i← 0

tr[i]← u ; mid← PRF.Ev(k,pt)

While mid ∈ TP do
(ct,us ,ur)← TP [mid]

If ur ̸= tr[i] then break loop
tr[i+1]←mid ; tr[i+2]← us

k̃← H(k) ; k← SE.Dec(k̃,ct)

mid← PRF.Ev(k,pt)

i← i+2

Return tr−1

Figure 3.9: Linked tags construction LT[PRF,SE] for path traceback. It is parameterized by a PRF PRF and
symmetric encryption scheme SE that we assume has keyspace K : {0,1}λ, which we also assume to be the
output space of hash function H.

resistance of the PRF to bind message identifiers to a plaintext and tracing key. To link the message

as a forward of a previous message, the sender also encrypts the previous message’s tracing key with

the tracing key for the new message. If the message is not a forward, the sender samples and encrypts

a random value. This ciphertext acts as an encrypted pointer to the previous message’s identifier.

The current message identifier and the encrypted pointer are sent to the platform and are stored in

a key-value table in server state, keyed by the message identifier. The platform sends the message

identifier to the recipient, who verifies the commitment is well-formed with respect to the tracing key

and plaintext before accepting the message.

Traceback is then simply a matter of decrypting and following the pointers between message

identifiers in server state. Given a report consisting of a tracing key kτ and plaintext pt, the platform

will lookup midτ−1,τ = PRF.Ev(kτ ,pt) in server state and decrypt the encrypted pointer to learn

the tracing key kτ−1. Tracing key kτ−1 is in turn used to lookup midτ−2,τ−1 = PRF.Ev(kτ−1,pt),

the previous message in the forwarding chain. The chain ends when a lookup of k1 fails, i.e., the

value mid = PRF.Ev(k1,pt) is not found in the server state. Pseudocode for the construction and a

diagram of one step of traceback is given in Figure 3.9.

Our scheme can be thought of as a sort of secret share between the platform and the recipient.

The recipient gets the tracing key and the plaintext, while the platform gets the ciphertext containing

the previous message’s tracing key. User trace confidentiality is preserved from the recipient’s share

45

as it has no dependence on the previous message. Platform trace confidentiality is preserved from the

platform’s share as the message identifier and ciphertext appear as random bytes without knowledge

of the tracing key. The two shares combined allow for the previous message’s tracing key to be

decrypted and traceback to proceed.

The linked tags scheme provides path traceback cheaply. It does require O(m) storage at the

platform for m the total number of messages sent by users. But storage is relatively cheap, and this is

a write-heavy workload, potentially allowing cheaper storage options. Of course, the platform can

expunge tracing tags after a predefined time (e.g., one week or one month), allowing tracing in the

interim but not after. This may be preferable since it improves confidentiality in the long term, but

still allows platforms to respond to pressing issues such as an ongoing misinformation campaign

targeting candidates within an election.

Tree Traceback

Next, we consider an alternative traceback goal, tree traceback. The goal in tree traceback is to

allow reporting of a message with plaintext pt, enabling the platform to identify not just the path

of forwarded messages to the original author, as in path traceback, but the entire forwarding tree

of messages for pt rooted at the original author. A tree is denoted as a tuple of user identifier and

list of children subtrees, where each element of the children subtree list is recursively a tree, i.e., a

user identifier and list of children subtrees, along with the message identifier for the message sent

between parent and child:

tr =
(
tra,

[(
mida,0,trb, [. . .]

)
,
(
mida,1,trc , [. . .]

)
, . . .
])

where trα ∈ U identifies a user and each midα,i is an identifier for a message sent by trα.

The doubly-linked tags scheme. The doubly-linked tags construction for tree traceback extends the

strategy taken in path traceback of storing encrypted pointers between message identifiers. In the

path traceback construction, for each message between a sender and recipient, the platform stored an

encrypted pointer to trace backwards to the previous message, i.e., where the sender received the

message from. Intuitively, in tree traceback, we need to extend this approach to also trace forwards

in order to build the forwarding tree. This includes storing pointers to forwards made by the sender

and forwards made by the recipient. However, attempting to explicitly store encrypted pointers to

46

other forwards is problematic as the number of forwards of a message are not known at the time of

sending; the recipient has not yet even received the message, let alone forwarded it, and the sender

could choose to forward the message to new recipients in the future.

We address this challenge by efficiently representing an unbounded set of pointers with a PRF

key, gk, which acts as a generator for all the tracing keys associated to forwards of a particular

message. One enumerates the tracing keys by evaluating the PRF on a counter ctr which is stored in

the client’s state, k← PRF.Ev(gk,ctr). As in the path traceback construction, a tracing key points

to a message identifier through the evaluation of a PRF, mid← PRF.Ev(k,pt). Thus, the platform

stores three encrypted values with each message identifier: (1) an encrypted tracing key ctki−1
for

the previous message; (2) an encrypted tracing key generator ctgki
for other forwards by the sender;

and (3) an encrypted tracing key generator (ctgki+1
,ks1) for forwards by the recipient.

The three encrypted values stored by the platform correspond to three stages of performing tree

traceback, each illustrated in Figure 3.10. Given a report consisting of a tracing key and plaintext,

first the platform follows the tracing keys, ki−1, for previous message identifiers until reaching the

message source, essentially performing path traceback (Figure 3.10 (a)). Next, using the sender

tracing key generator, gki, the platform enumerates the tracing keys and message identifiers for all

sends of the message from the source sender (Figure 3.10(b)). Lastly, for each of these message

identifiers, the platform recursively builds out a subtree by enumerating the tracing keys and message

identifiers for the recipient’s forwards using the recipient tracing key generator, gki+1 (Figure 3.10

(c)). The full pseudocode for the scheme is also given in Figure 3.10.

There are a few subtle design points to our tree traceback scheme that we highlight here. The

first concern is how to securely escrow the three encrypted values for each message identifier with

the platform. The sender can encrypt and send the previous message’s tracing key and its own tracing

key generator, but the sender cannot know and therefore cannot escrow the recipient’s tracing key

generator. For confidentiality, the recipient’s tracing key generator should only be known by the

recipient. Instead, the sender and the platform each create key shares for the recipient tracing key,

ks0 and ks1, such that neither the sender nor the platform learn the key, but the sender’s key share

needed to derive the key is stored encrypted on the platform. The recipient derives their tracing key

generator as gki+1← H(ks0 ∥ks1) which appears random (given that the sender and platform are

not colluding).

47

DLT.Setup(λ)

Return λ

DLT.InitU(λ)

Return Tu← [·]

DLT.InitP(λ)

Return TP ← [·]

DLT.NewMsg(u,m : Tu)

ki−1←${0,1}λ

gki←${0,1}λ

tmd← (ki−1,gki)

Tu[tmd]← 0

Return tmd

DLT.TagGen(us ,ur ,pt,tmd : Tu)

Require tmd ∈ Tu

ctr← Tu[tmd] ; Tu[tmd]← ctr+1

(ki−1,gki)← tmd

ki← PRF.Ev(gki,ctr)

mid← PRF.Ev(ki,pt)

ks0←${0,1}λ ; k̃i← H(ki)

ctki−1
← SE.Enc(k̃i,ki−1)

ctgki
← SE.Enc(k̃i,gki)

ctgki+1
← SE.Enc(k̃i,ks0)

tts← (mid,ctki−1
,ctgki

,ctgki+1
)

Return (Tu,ki,tts)

DLT.RecMsg(ki,us ,ur ,pt,ttr : Tu)

(mid,ctgki+1
,ks1)← ttr

If mid ̸= PRF.Ev(ki,pt) then return ⊥
k̃i← H(ki)

ks0← SE.Dec(k̃i,ctgki+1
)

gki+1← H(ks0 ∥ks1)
tmd← (ki,gki+1)

Tu[tmd]← 0

Return tmd

DLT.Process(us ,ur ,tts : TP)

(mid,ctki−1
,ctgki

,ctgki+1
)← tts

Require mid ̸∈ TP

ks1←${0,1}λ

ttp← (ctki−1
,ctgki

,ctgki+1
,ks1,us ,ur)

ttr← (mid,ctgki+1
,ks1)

Return ((mid,ttp),ttr)

DLT.Trace(u,pt,tmd : TP)

(ki,gki+1)← tmd

root← u

rootgk ← gki+1

mid← PRF.Ev(ki,pt)

While mid ∈ TP do
(ctki−1

,ctgki
,ctgki+1

,ks1,us ,ur)← TP [mid]

If root ̸= ur then break loop
k̃i← H(ki)

ks0← SE.Dec(k̃i,ctgki+1
)

If ¬validgk(gki+1,ks0,ks1) then break loop
gki← SE.Dec(k̃i,ctgki

)

If ¬validk(ki,gki,TP) then
Return (us , [(PRF.Ev(ki,pt), trace_fwd(TP ,pt,ur ,gki+1)])

root← us

rootgk ← gki
ki← SE.Dec(k̃i,ctki) ; gki+1← gki
mid← PRF.Ev(ki,pt)

Return trace_fwd(pt,root,rootgk : TP)

trace_fwd(pt,u,gki : TP)

tr← [·] ; j← 0

While k← PRF.Ev(gki, j);mid← PRF.Ev(k,pt); mid ∈ TP do
(ctki−1

,ctgki
,ctgki+1

,ks1,us ,ur)← TP [mid]

k̃← H(k)

ks0← SE.Dec(k̃,ctgki+1
)

gki+1← H(ks0 ∥ks1)
tr[j]← (mid, trace_fwd(TP ,pt,ur ,gki+1))

j← j+1

Return (u,tr)

Figure 3.10: Doubly-linked tags construction DLT[PRF,SE] for tree traceback. It is parameterized by a PRF
PRF and symmetric encryption scheme SE that we assume has keyspace K : {0,1}λ, which we also assume
to be the output space of hash function H.

A second concern arises from the enumeration of tracing keys from a generator during traceback.

In stages (b) and (c) in Figure 3.10, the platform enumerates tracing keys by evaluating a PRF keyed

by the escrowed generator, gk, on a counter initialized to zero, incrementing and re-evaluating to

produce the next tracing key. This continues until the produced tracing key does not evaluate to a

valid message identifier in platform storage, indicating all forwarding branches for the user have

been enumerated. This traceback approach will only succeed if users correctly derive tracing key

generators from the escrowed key shares and correctly derive tracing keys from the generator by

48

incrementing a counter, and not, for example, skipping a counter value. Left as is, these types of

deviations would result in a class of partition attacks that are so-called “unidirectional”. In these

attacks, a malicious user is able to partition the tree trace to hide a subtree such that a report in the

main tree will end at the malicious user and not include the subtree; but at the same time, a report in

the subtree will trace through the malicious user and identify the main tree as the source.

We address this by enforcing that a message is only traced back to a sender if it would have also

been traced forward to the recipient. This invariant restricts malicious users to only being able to

mount “complete” partition attacks, in which if they choose to partition, they are implicated in two

disjoint traces: the end of one trace and the source of the other. Enforcing this invariant manifests in

tree traceback by two well-formedness checks (denoted validgk and validk in the pseudocode). The

first check simply rederives the recipient generator to make sure it matches the one escrowed by the

recipient. The second well-formedness check determines if a tracing key was properly derived from

a generator. Doing so requires enumerating with a counter, succeeding when the current message

tracing key is found, or fails when a generated tracing key evaluates to an invalid message identifier.

Both of these checks take place during stage (a) of tree traceback to identify a root that will not

include fragmented subtrees.

3.2.4 Security Analysis

We anlayze the security of our path traceback and tree traceback schemes with respect to our proposed

security definitions.

Platform trace confidentiality. The sender trace tag in our path traceback scheme is made up of a

message identifier, which is the output of a PRF, and a ciphertext. Intuitively, since the platform does

not learn the key used with the PRF or with encryption scheme, our scheme satisfies the security

property. More formally,

Theorem 3. Let LT be the message tracing scheme for path traceback defined in Figure 3.9 using

hash function H. Then if H is modeled as a random oracle, for any PTrConf adversary Ap-tr-conf

that makes at most q queries to the challenge oracle, we give adversary Aprf and Arorcpa such that

Adv
p-tr-conf
LT,Ap-tr-conf

(λ)≤Adv
prf
PRF,q,Aprf

(λ)+Adv
rorcpa
SE,q,Arorcpa

(λ)

49

where if Ap-tr-conf runs in time T , then Aprf and Arorcpa run in time T ′ ≈ T and Aprf makes at most q

oracle queries.

Proof sketch: The proof proceeds in a straightforward fashion through two main game hops.

The first replaces the PRF evaluation with that of a random function and bounds the distinguishing

advantage by the PRF security of PRF. The second replaces the encryption output with a random

bit string and bounds the distinguishing advantage by the real-or-random security of the underlying

encryption scheme. After these two steps, it is easy to see that the sender trace tag, which consists of

the output mid of PRF and a ciphertext ct, is a random bit string.

A similar approach is taken for the tree traceback scheme, formalized as a theorem statement

below.

Theorem 4. Let DLT be the message tracing scheme for tree traceback defined in Figure 3.10 using

hash function H. Then if H is modeled as a random oracle, for any PTrConf adversary Ap-tr-conf

that makes at most qnew queries to the message oracles and q challenge queries, we give adversary

Aprf and Arorcpa such that

Adv
p-tr-conf
DLT,Ap-tr-conf

(λ)≤Adv
prf
PRF,qnew+q,Aprf

(λ)+Adv
rorcpa
SE,q,Arorcpa

(λ)+
q2new
2n

where if Ap-tr-conf runs in time T , then Aprf and Arorcpa run in time T ′ ≈ T and Aprf make at most 3q

oracle queries.

Proof sketch: The proof proceeds with the same strategy as for path traceback. The first

transition replaces the PRF executions with executions of a random function, where we can bound

the distinguishing advantage by the PRF security of PRF since the PRF keys are random and not

revealed to the adversary. There is a subtlety here that since the generator can be reused across

multiple challenge oracle calls (with an incremented counter), it can be distinguished from random

if a generator is every resampled. Thus, we include a term bounding the low probability event of a

generator resampling collision. The second transition replaces calls to the encryption algorithm with

sampling random bits. After these transitions, the sender trace tag output from the challenge oracle is

a mid which is the output of a random function, and three ciphertexts which are random bit strings.

The full proofs are deferred to the full version [TMR19b].

User trace confidentiality. In our path traceback scheme, the recipient’s view consists of the message

50

identifier mid, tracing key ki, and the plaintext. Importantly, the ciphertext ct is stored by the platform

and not visible to the recipient. The tracing key is randomly generated for each sent message and the

message identifier is calculated as a function of the tracing key and plaintext, mid← PRF.Ev(ki,pt).

Thus, no part of the recipient’s view is dependent on previous message trace metadata, e.g., ki−1,

and any adversary’s advantage against our scheme is 0.

Theorem 5. Let LT be the message tracing scheme for path traceback defined in Figure 3.9. For any

UTrConf adversary A,

Advu-tr-conf
LT,A (λ) = 0 .

In tree traceback, the sender trace tag and tracing key are similarly independent of the challenge

bit leading again to an advantage of zero.

Theorem 6. Let DLT be the message tracing scheme for path traceback defined in Figure 3.10. For

any UTrConf adversary A,

Advu-tr-conf
DLT,A (λ) = 0 .

Trace unforgeability. Intuitively, trace unforgeability is achieved in our path traceback scheme due

to the binding of the plaintext to a message identifier with the tracing key. Honest users check the

binding of message identifiers they receive and send, so an adversary that wishes to frame a user

must find a collision on one of the honest user’s message identifiers. For example, to achieve the

message replacement attack described above, an adversary must find an alternate plaintext and key

that collides with the honest user’s sent message identifier. We thus provide the following theorem

statement using the collision resistance and PRF security of PRF. We provide a proof sketch here

and defer the complete proof to the full version [TMR19b].

Theorem 7. Let LT be the message tracing scheme for path traceback defined in Figure 3.9. Then,

for any TrUnf adversary Atr-unf that makes at most qnew new message queries and qsend queries, to

the send oracles, we give adversaries Aprf and Acr such that

Advtr-unf
LT,n,Atr-unf

(λ)≤Adv
prf
PRF,qnew,Aprf

(λ)+Advcr
PRF,Acr

(λ)+
qsend
2n

51

where if Atr-unf runs in time T , then Aprf and Acr run in time T ′ ≈ T and Aprf makes at most qsend

oracle queries.

Proof sketch: This proof proceeds as a careful case analysis of the four adversary winning

conditions. We show that nearly all of the winning conditions correspond to an adversary finding a

collision in PRF. In the single subcase that does not result in a collision, we argue that the probability

of reaching this subcase corresponds to guessing the output of PRF keyed by a tracing key sampled

in NewMsg. Since tracing keys sampled in NewMsg are never revealed to the adversary, we can

show this probability is low using the PRF security of PRF.

Theorem 8. Let DLT be the message tracing scheme for tree traceback defined in Figure 3.10. Then,

for any TrUnf adversary Atr-unf that makes at most qnew new message queries and qsend queries, to

the send oracles, we give adversary Acr such that

Advtr-unf
DLT,n,Atr-unf

(λ)≤Advcr
PRF,Acr

(λ)+
(qnew+qsend)

2

2n

where if Atr-unf runs in time T , then Acr runs in time T ′ ≈ T .

Proof sketch: The proof strategy is the same as in trace unforgeability for path traceback. We

will perform a case analysis of the three winning conditions of the security game and show that in

each one, we will either be able to show a collision of PRF or can show that it is a low probability

event by the PRF security of PRF.

• Case 1: honest root did not author message

WasSent(tr0,tr1,mid0,1,pt
∗) = false

For mid0,1 to be added to the trace, we know TP [mid0,1] is populated and has tr0 as the sender.

Given the oracles in our game, the only way to populate TP with tr0 ∈ [1,n] as sender is through

the honest send oracle SendMal which was called with a message id counter s indicating

sending plaintext pts. There are two subcases: (Case 2a) pts ̸= pt∗, or (Case 2b) pts = pt∗.

• Case 1a: pts ̸= pt∗

We consider the tracing key generated during tag generation in the oracle call; call this k0,1.

We will also consider the tracing key used in traceback to include mid0,1 in the trace, call

52

this trk0,1. We know from the execution of Send that PRF.Ev(k0,1,pts) = mid0,1. We

also know from the execution of Trace that for mid0,1 to have been included in the trace,

there must have been a tracing key trk0,1 used such that PRF.Ev(trk0,1,pt
∗) = mid0,1.

This constitutes a collision.

• Case 1b: pts = pt∗

For tr0 to have been identified as the root of the trace, there must have been some midb that

had tr0 as the sender. The root identifying condition is either that the escrowed tracing key

evaluates to an invalid mid or that the current tracing key is not well-formed with respect

to the escrowed generator. Since tr0 is honest, we can rule out the second case, and the

first case would only occur if tr0 was the author of the message — since our oracles do not

make it possible for an honest user to forward a message that was not received from the

server and accepted by RecMsg. So tr0 is the author of a s′ counter associated with pt∗.

Any call to Send of s′ would result in the WasSent predicate being sent to true since s′

was authored. Thus, s ̸= s′. This means that either the generator for s and the generator for

s′ collide on a tracing key, the tracing key from s and the tracing key from s′ collide on

mid0,1, or the generators are the same for s and s′. The last case we can bound as a low

probability event.

• Case 2: honest leaf did not receive message

WasRec(tri−1,tri,midi−1,i,pt
∗) = false

To be added to the trace, it must be that midi−1,i in TP contained tri−1 as sender and tri as the

recipient. From our oracle construction, the only way for a pair of users to be added to TP is

through the Send or SendMal oracles, which both set the WasRec predicate with plaintext

pt input to the oracle. In which case, if pt∗ = pt, the WasRec would have been true. Therefore,

pt∗ ̸= pt and there exists a collision with the tracing key used in traceback trk,pt∗ and the

tracing key used in the oracle k,pt on midi−1,i.

• Case 3: internal node did not forward message

WasFwd(tri,tri+1,midi−1,i,midi,i+1,pt
∗) = false

Same as in Case 1, for midi,i+1 to be added to the trace, we know TP [midi,i+1] is populated

53

and has tri as the sender. Given the oracles in our game, the only way to populate TP with

tri ∈ [1,n] as sender is through the honest send oracle SendMal which was called with a

message id counter s indicating sending plaintext pts. There are two subcases: (Case 2a)

pts ̸= pt∗, or (Case 2b) pts = pt∗.

• Case 3a: pts ̸= pt∗

We consider the tracing key generated during tag generation in the oracle call; call this ki,i+1.

We will also consider the tracing key used in traceback to include mid0,1 in the trace, call this

trki,i+1. We know from the execution of Send that PRF.Ev(ki,i+1,pts) =midi,i+1. We

also know from the execution of Trace that for midi,i+1 to have been included in the trace,

there must have been a tracing key trki,i+1 used such thatPRF.Ev(trki,i+1,pt
∗)=midi,i+1.

This constitutes a collision.

• Case 3b: pts = pt∗

We will further consider two subsubcases. If midi−1,i =mids, then since the WasFwd was

not set to true, we can infer that s was authored by tri and importantly, gk was sampled

randomly. If midi−1,i ̸= mids, then we can infer gk was the hashed output of the key

shares provided for mids, which importantly, likely differ from the key shares provided

by midi−1,i created gk′. This means that there is a collision between gk,ctr and gk′,ctr ′

to ki,i+1, a collision between ki,i+1,pt∗ and trki,i+1,pt∗ to midi,i+1, or gk and gk′ are the

same which we can bound to be low probability.

3.2.5 Evaluation

Implementation. To evaluate our tracing protocols, we provide a prototype library and tracing service

implementation in Rust that can be readily integrated into existing end-to-end encrypted messaging

systems. For our hash, collision-resistant pseudorandom function, and block cipher primitives, we

use SHA-3, HMAC derived from SHA-3, and AES-128. All of these operations are supported by the

Rust Crypto library. The tracing service uses Redis as its underlying key-value store. Both the library

and service code are available open source at https://github.com/nirvantyagi/tracing.

Our tracing service can be integrated into existing end-to-end encrypted messaging systems with

54

https://github.com/nirvantyagi/tracing

the following client and server side changes. The client will make library calls to NewMsg, TagGen,

and RecMsg when sending, forwarding, and receiving messages and it will store trace metadata

associated with messages accepted by RecMsg. The tracing key is included with the plaintext in the

end-to-end encrypted ciphertext. The sender and recipient trace tags are sent alongside the end-to-end

ciphertext to and from the platform. On the server side, the tracing service is run as an internal

service. The messaging server receives the end-to-end ciphertext and sender trace tag and sends a

“process” request including the sender trace tag and user identifiers for the sender and recipient to

the tracing service. The tracing service handles running Process, storing the appropriate information

in a key-value store, and returns the recipient trace tag, which the messaging server delivers with

the end-to-end ciphertext. The client and messaging server also need to be modified to send and

accept reports of messages (if that functionality is not already included). The client includes the trace

metadata along with the plaintext in the report. The messaging server simply forwards the reported

plaintext and trace metadata to the tracing service which runs Trace and saves the message trace to

be used downstream for moderation.

Timing benchmarks. At a high level, our tracing schemes are fast and induce minimal storage and

bandwidth overhead. This is to be expected as our schemes are composed of symmetric cryptographic

techniques over small 128 bit components. Experiments were performed on a 2.2 GHz Intel Core i7

Processor with 8 GB of RAM. The time to run the client-side algorithms, TagGen and RecMsg, for

generating and verifying trace tags is shown in Figure 3.11; the NewMsg algorithm is not shown as it

simply samples a random number. For path traceback the tag generation and verification algorithms

take < 10 microseconds, and for tree traceback the algorithms take < 50 microseconds. In practice,

client side operations will often be performed on less powerful mobile devices, e.g. running ARM

processors, but we do not expect the difference in timing to be prohibitive.

We next turn to evaluate the server side algorithms,Process andTrace. The server side algorithms

interact with a key-value store, the performance characteristics of which will affect the performance of

the algorithm. In our schemes, the Process algorithm essentially performs a key-value put operation

and relays the trace tag; no cryptographic operations are performed. As expected, this translates to a

minimal cost operation for most key-value stores – in our benchmarks, in which the server key-value

store is instantiated with an in-memory Redis data store, the Process algorithm takes on the order

55

50 100 150 200
path length (# msgs)

0

10

20

tim
e

(m
s)

50 100 150 200
path length (# msgs)

0

50

100

tim
e

/ m
sg

 (μ
s/

m
sg

)

Figure 3.11: Path traceback timing with respect to path length. (Left) Total time to complete trace. (Right)
Traceback rate of time per message in trace.

of 100 microseconds. Building a trace of messages using the Trace algorithm is where the majority

of computation is performed. Importantly, the time to build a trace is linearly dependent on the

number of messages revealed in the trace, i.e. trace size. Intuitively, this is because our schemes

traverse the trace message by message performing only a constant number of decryptions and PRF

evaluations per message. This relationship is easily seen for the case of path traceback as shown

in Figure 3.11, in which we find that building a trace takes ≈ 100 microseconds per message in

the path. For tree traceback, the traceback time is dependent not only on tree size, but also on tree

structure; in particular, the branching factor, i.e., the average number of forwards made by each user.

In our tree traceback scheme, the branching factor is the number of forward tracing keys learned per

message lookup and decryption. The cost of PRF evaluations to enumerate forward tracing keys is

less expensive than the key-value lookup and decryption cost of dereferencing a tracing key. Thus,

as the branching factor increases, the time per message decreases (Figure 3.12 (right)). In the worst

case, with branching factor equal to one, i.e. a path, the time per message is < 300 microseconds,

which still leads to efficient tree traces regardless of structure. As an example, a trace of a tree of size

20,000 is built in under two seconds.

Storage and bandwidth overhead. Our tracing schemes introduce extra tracing metadata that needs

to be stored and send by both the client and server. The absolute size of the stored trace metadata

is small — a 256-bit PRF output and a few 128-bit block cipher outputs. For client storage and

bandwidth, we expect the overhead induced by < 100B of trace metadata per message to be dwarfed

by the size of the message itself; furthermore, for client storage, when the message is deleted, the

associated trace metadata can be deleted with it. For server storage, however, in platforms like Signal

and WhatsApp, message ciphertexts are not stored, aside from a temporary staging period until they

56

4 6 80

50

100
102 103

tree size (# msgs)

4 6 8
tree branching factor

0

50

100

4 6 80

1000

2000

tim
e

(m
s)

102 103 104
tree size (# msgs)

4 6 8
tree depth

0

50

100
tim

e
/ m

sg
 (μ

s/
m

sg
)

Figure 3.12: Tree traceback with varying tree structure. (Left) Varying tree depth with constant branching
factor of 3. (Right) Varying branching factor with constant depth of 3. (Top) Total time to complete trace.
(Bottom) Traceback rate of time per message in trace.

have been delivered. In this case, trace metadata incurs the addition of a new long-term storage cost

that potentially represents a significant infrastructure change. To limit storage costs, if the goal of

message tracing is to combat ongoing misinformation campaigns, it seems reasonable to store only a

sliding window of trace metadata, say for the current month. In this case, if the platform sees one

billion messages of traffic per day, the data store would be of size ≈ 2TB for tree traceback and

600GB for path traceback. A data store of this size can be instantiated with an in-memory data store

like Redis as in our benchmarks, or more cheaply with a database, where the tradeoff would be slower

traceback.

3.3 Follow-up Work

Since the initial publication of the work presented in this chapter [TGL+19a, TMR19a], a number of

follow-up work has been conducted building and improving on the results. One direction is to extend

support for abuse reporting to groups of users [LZH+23] and committees of moderators [PH23].

Another set of works build on the problem of message traceback. Source traceback ensures that

only the originating source of the forwarded message is revealed on report [PEB21]. FACTS is

a system for enabling traceback only given a high threshold of reports of a message [LRTY22].

Hecate [IAV22] and Cerberus [PH23] support the combination of goals of metadata-privacy in AMFs

and message traceback. Lastly, another line of work takes a different strategy from user-driven abuse

57

reporting and considers the problem of automated platform detection of abuse (like misinformation)

and the associated transparency mechanisms for safe deployment [KM21,HNC+22,BGJP23,SKM23,

TMS+23].

58

CHAPTER 4

SENDER-ANONYMOUS BLOCKLISTING

End-to-end (E2E) encrypted messaging provides strong E2E confidentiality and integrity guar-

antees [ACD19, CCD+17]: the messaging platform itself cannot read or modify user messages.

The E2E encryption protocols used [PM16] do not, however, attempt to ensure anonymity, so the

platform learns the sender and recipient of every message sent over the network. While academic

systems [AKTZ17, LYK+19, vdHLZZ15, CBM15, AS16, TGL+17, LGZ18, KLD20, CF10, WCFJ12]

have developed protocols that hide the identity of senders and receivers from platforms, they introduce

expensive overheads.

A recent suggestion for pragmatic privacy improvements is to aim solely for sender anonymity.

Introduced by Signal in a feature called “sealed sender” [Lun17], sender anonymity ensures that the

sender’s identity is never revealed via messages to the platform, e.g., the sender does not authenticate

with an account password or digital signature; messages reveal only the intended recipient. While

sealed sender does not hide network-level identifiers such as IP addresses, one can do so by composing

it with Tor [DMS04] or an anonymous broadcast [CBM15, WCFJ12, PHE+17, KCDF17, LYK+19].

In this work, we explore a key tension in sender-anonymous systems: mitigating abuse by

malicious senders. Already E2E encryption makes some kinds of abuse mitigations, such as content-

based moderation, more challenging (c.f., [DGRW18, GLR17, TGL+19a, Fac17]). Sender anonymity

complicates the setting further because the lack of sender authentication means that the platform

cannot block unwanted messages on behalf of a recipient in a conventional way.

To enable platform blocking, Signal’s sealed sender has a user distribute an access key to their

contacts that senders must show to the platform when sending the user a sender-anonymous message.

If a sender cannot provide an access key, the platform drops the message. A user that blocks a sender

in their client triggers a rotation of this key and a redistribution to the (remaining) contacts. Future

messages from the blocked sender will be dropped by the platform.

We observe two deficiencies with this approach. First, access keys must be distributed over non-

sender-anonymous channels, meaning the platform learns the identities of users who can send sender-

anonymous messages to a particular recipient. This significantly lowers the anonymity guarantee—in

the limit of having only a single contact, there is no anonymity at all.

59

Second, we show a simple “griefing” attack that works despite the anti-abuse mechanism. By

design, the sender is hidden from the platform, and only the recipient can identify the sender of a

sender-anonymous message. However, a malicious sender can trivially craft malformed messages

that even the recipient will not be able to identify. The recipient’s client rejects these messages, but

not before processing them. This is particularly problematic for mobile clients as it uses up battery

life; we experimentally verify that an attacker can easily drain a target’s battery in a short period of

time. To make matters worse, neither victim nor platform can identify the attacker, and so the victim

will not know who to block.

We design a new abuse mitigation mechanism for privacy-preserving blocklisting in sender-

anonymous messaging. Our protocol, called Orca, allows recipients to register a blocklist with the

platform. The blocklist is privacy-preserving, meaning it does not reveal the identities of the blocked

users. Senders construct messages that are anonymous to the platform, but can be verified by the

platform as being attributable to a sender not present on the blocklist. If the sender is on the blocklist

or if the message is malformed, then the platform rejects the message; if the message is delivered,

the recipient is guaranteed to be able to identify the sender.

Importantly, Orca provides a new non-interactive initialization functionality that allows a user to

initiate sender-anonymous messages without having previously communicated with the recipient.

This significantly enhances the anonymity guarantees, because it expands the anonymity set to be as

large as all registered users of the system.

In summary, our contributions are:

• We build a threat model for sender-anonymous messaging and identify limitations in previous

approaches, including a new griefing attack against Signal’s sealed sender that we evaluate.

• We construct a new group signature scheme [CvH91] to make up the core of Orca’s functionality.

The new primitive is tailored to the needs of our setting and supports multiple openers, keyed

verification, and local revocation. We provide new security definitions, building upon ones from

prior work [BSZ05, BS04].

• We show an extension of Orca that integrates mechanisms from anonymous credentials [CMZ14]

to arrange that the relatively expensive group signature scheme is only used periodically when

initiating a new conversation. Initialization will generate a batch of one-time-use sender to-

60

kens [Lan16, LP16], which can be spent to authenticate messages and replenished at very low

cost.

• We implement and evaluate Orca, suggesting that it is sufficiently performant to deploy at scale.

In particular, once initialized, the token-based extension incurs only 30B additional bandwidth

cost per message and only one extra group exponentiation of computation for clients; the

platform need only compute a group exponentiation and check the token against a strikelist. The

computational cost for the platform is paid during initialization which incurs work on the order

of the size of the recipient’s blocklist (∼ 200ms for a blocklist of length 100). We find that a

medium-provisioned server can comfortably support a deployment of a million users depending

on frequency of conversation initialization.

Related work.

Anonymous credentials. Anonymous credentials [CL04] allow a user to present a cryptographic token

proving some specific statement about their identity (e.g., their authorization to send messages to a

particular recipient), without revealing anything else about their identity. A problem with anonymous

credentials in our setting is that they are — by design — not attributable. While the server processing

messages can verify the sender is authorized, the recipient cannot identify the sender. This means

there is no way for the server to block the sender in the future, even if some revocation mechanism

for the credentials did exist.

A notable design contrast to general-purpose anonymous credential schemes is Privacy

Pass [DGS+18], which offers single use credentials that encode only one bit — “I am authorized.”

Privacy Pass mints tokens using a verifiable oblivious pseudorandom function [JKK14, JKKX16],

which is more efficient than our approach of blind MACs [CMZ14], but does not provide the algebraic

structure needed to prove relations on the input. We need this property to encrypt the input to the

recipient to allow linking of tokens. Blind MACs have been previously suggested for use as one-time

tokens [LdV17] and have also been recently proposed as part of Signal’s new proposal for private

group messaging [CPZ20].

Anonymous blocklisting. Anonymous blocklisting [HG11,TAKS07,TKCS11] systems cover a variety

of cryptographic techniques. In general, these systems allow a user to authenticate anonymously to

61

third parties in such a way that the third party can block them from subsequent authentications if they

misbehave. In some systems, this blocking ability takes the form of an additional trusted third party

that can de-anonymize users much like a group signature. In others, every time a user authenticates

they provide a fresh anonymous cryptographic token derived from their identity and a proof that the

current blocklist contains no tokens generated by their own keys. Such systems are cryptographically

expensive, requiring work linear in the blocklist for the sender (with the exception of recent work

using SNARKs to allow the sender to reuse previous work efficiently [RMM22]). Moreover, much

of the overhead across both settings comes from providing anonymity from the third party. Our

setting differs in that the sender need not be anonymous (and in fact, should be identifiable) to the

party adding to the blocklist (i.e., the recipient), but only be anonymous to the party filtering on the

blocklist (i.e., the platform).

Abuse reporting in E2EE messaging. In relation to the abuse reporting work discussed in the previous

chapter which allow the recipient to verifiably reveal the content of a message to the platform to

enable content moderation. They allow attribution of message content to a sender for a known sender

identity. They do not allow the attribution of a malformed message with unknown sender as in the

griefing attack we describe.

Metadata-private messaging. A number of messaging systems have been proposed that provide

strong metadata-privacy even against strong network adversaries [AKTZ17, LYK+19, vdHLZZ15,

CBM15,AS16,TGL+17,LGZ18,KLD20,CF10,WCFJ12,PHE+17]. These systems incur significant

costs on their users, e.g. to send and receive messages at frequent intervals. These costs may dwarf

the costs of the types of abuse that Orca aims to prevent. Despite this, a subclass of these systems that

could still make use of Orca for blocklisting are based on anonymous broadcasting [CBM15,WCFJ12,

PHE+17, KCDF17, LYK+19]. Anonymous broadcasts can be converted to a sender-anonymous

messaging service by having a messaging service collect, filter, and deliver the broadcast messages

with designated recipients.

4.1 Sender Anonymity in Messaging

This chapter focuses on sender-anonymous E2E encrypted messaging hosted by a centralized messag-

ing platform. In this section and throughout the body, we will often use Signal as our running example.

62

However, the techniques that we introduce are relevant for any sender-anonymous messaging system

in which the platform learns the recipient identity.

4.1.1 Background: Signal and Sealed Sender

Non-sender-anonymous E2EE messaging. We first briefly outline Signal’s non-sender-anonymous

protocol. For simplicity we restrict attention to one client per user. A user wishing to send a message

first registers an account with the platform using a long-lived identity public key pks, retaining the

associated secret key sks. The user then must contact the platform to obtain the long-lived public

key pkr of their intended recipient. Once this phase is complete, a client can securely send messages

via Signal’s double ratchet protocol [PM16]. This provides state-of-the-art message confidentiality

guarantees even in the event of key compromise [ACD19, CCD+17].

Signal, like most other E2E encrypted messaging platforms, requires users to authenticate their

account when sending and receiving messages. Importantly, this allows for abuse prevention because

the platform can block malicious senders, and even block senders from talking to a specific recipient.

On the other hand, such account authentication, e.g., via public key signature or unique account

password, does not provide cryptographic sender anonymity.

Sender anonymity with sealed sender. Sealed sender is Signal’s protocol [Lun17] for cryptographic

sender anonymity motivated by their desire to minimize the amount of trust their users must place in

the platform. We will now walk through a high level summary of how sealed sender works.

Initialization and key exchange. As before, senders must first register a public key pks with the

platform. The user is issued a short-lived sender certificate from the platform, that we denote by cert.

The certificate contains a digital signature by the platform in order to attest to the validity of the

user’s identity key. These certificates must be periodically updated, requiring the user to rerun the

registration protocol.

To receive sealed messages a recipient must generate their long-lived identity key pair (pkr ,skr)

as usual, but now additionally generate a 96-bit access key that we denote by ak. Both pkr and ak

are registered with the platform. Looking ahead, senders will need to show ak to the platform to send

a sealed message. This means that the recipient must distribute ak to whomever they want to grant

63

the ability to send sealed messages. By default, the access key is distributed to all contacts of a user

through Signal’s original non-sender-anonymous channel. Additionally, users can opt into accepting

sealed messages from anyone, including non-contacts. In this case, senders do not need a recipient’s

access key to send them sealed messages.

Sending a sealed message. The pseudocode for sending and receiving a message via sealed sender

is provided in Figure 4.1. It is designed to work modularly as a layer on top of any non-sender-

anonymous E2E encryption protocol. At a high level, the protocol creates two ciphertexts: (1) an

identity ciphertext encrypting the sender’s long-lived public key pks to the recipient, and (2) a

content ciphertext encrypting the standard E2E encryption ciphertext along with the sender certificate.

The identity ciphertext and content ciphertext cryptographically hide the sender identity even if the

underlying E2E encryption ciphertext does not 1.

More specifically, the protocol encrypts the sender identity pks via a variant of hashed ElGa-

mal [ABR01] to produce the identity ciphertext ctid. In particular, it generates ephemeral key pair

(pke ,ske) and makes use of a hash-based key derivation function HKDF and authenticated symmetric

encryption scheme SE. The sender then encrypts the plaintext m using the original double ratchet

algorithm ratchet.Enc(m). It bundles the resulting ciphertext ctm and sender certificate cert and

encrypts this with a key derived from long-lived identity keys pks and pkr to produce the content

ciphertext ctss . The sender indicates the intended recipient and sends the triple (pke , ctid, ctss) along

with the recipient’s access key ak to the platform.

Upon receipt of the sender’s message, the platform checks that the intended recipient’s registered

access key matches ak. If this check passes, then the platform forwards the triple (pke ,ctid,ctss) to

the recipient. The recipient decrypts as shown in Figure 4.1. Once it recovers cert and ctm, it verifies

the sender as a valid account using the certificate and the recovered identity key pks. If the sender’s

identity is authenticated, then ctm is decrypted using the double ratchet algorithm.

1Signal’s use of the double ratchet algorithm produces ciphertexts that can either include the sender identity in plaintext
or include messaging metadata such as counters used for in-order processing that would leak information useful for linking
senders.

64

SealedSender.Send(m)

ctm← ratchet.Enc(m)

(pke ,ske)←$Keygen()

salt1← (pkr ,pke)

(echain,ke)← HKDF(salt1,pk
ske
r)

ctid←$ SE.Enc(ke,pks)

salt2← (echain,ctid)

k← HKDF(salt2,pk
sks
r)

ctss←$ SE.Enc(k,cert∥ctm)

Return (pke ,ctid,ctss),ak

SealedSender.Rcv(pke ,ctid,ctss)

salt1← (pkr ,pke)

(echain,ke)← HKDF(salt1,pk
skr
e)

pks ← SE.Dec(ke,ctid)

salt2← (echain,ctid)

k← HKDF(salt2,pk
skr
s)

cert∥ctm← SE.Dec(k,ctss)

b← Verify(pks ,cert)

If b= 0 then return ⊥
m← ratchet.Dec(ctm)

Return m

Figure 4.1: Pseudocode for Signal’s sealed sender feature.

4.1.2 Limitations of Sealed Sender

There are limitations to Signal’s sealed sender protocol for sender anonymity, which we raise here in

the form of three different classes of attacks.

Traffic analysis of sender-anonymous messages. An inherent leakage of the sender-anonymous

messaging setting (as opposed to the sender- and recipient-anonymous setting) is that the recipient

of each message is inherently leaked to the platform. Martiny et al. [MKA+21] demonstrate a set

of statistical disclosure attacks that use this leakage to infer communicating partners, for example,

by searching for users with interleaving messages suggesting a back-and-forth conversation pattern.

They provide a modification to Signal’s sealed sender that protects against traffic analysis of sender-

anonymous messages, which they call “sender-anonymous conversations”. This mitigation approach,

as well as another separate approach which instead relies on random message delays and/or noise

messages [PHE+17], do not provide solutions for blocklisting. The techniques we introduce for

supporting blocklists compose well with these traffic analysis mitigations. Given this prior work,

we do not explicitly address traffic analysis of sender-anonymous messages beyond considering the

anonymity set, as we discuss next.

Traffic analysis of non-sender-anonymous messages. Recall that access keys are distributed through

Signal’s original non-sender-anonymous channel. While this setup is still encrypted, the platform

nevertheless observes with whom the user exchanged non-sender-anonymous messages. Thus, when

65

a sender anonymously authenticates using ak, the set of users that could correspond to the sender (i.e.,

the anonymity set of the sender) is restricted and known to the platform. This means, for example,

if a recipient only has a single contact with which they have communicated, there is no sender

anonymity at all. Furthermore, if a user rotates their access key to revoke sending access, this resets

their anonymity set of senders, as their new access key must be redistributed.

Martiny et al. [MKA+21] assume in their threat model that these access keys have already been

exchanged between communicating parties. Their attack can therefore be improved by tracking the

sender anonymity set of a recipient learned by the platform. Notably, our solution for blocklisting

will prevent such improvements.

Griefing attack by evading identification. Sealed sender relies on the sender to self-identify to the

recipient: the platform can not check for malformed messages. Instead, the recipient must decrypt

and check validity of the sender identity key and certificate, dropping messages that do not verify.

This allows for a straightforward griefing attack in which an attacker can spam the recipient with

untraceable messages, causing the recipient’s device to suffer battery drain and to consume bandwidth,

a type of user-mounted DoS attack.

We demonstrate through a proof-of-concept implementation that this griefing attack is effective.

Our attack simply modifies pke in (pke ,ctid,ctss) to a random value pkf . To the platform this is

indistinguishable from a legitimate sealed sender message, but the recipient’s decryption will fail

when trying to decrypt ctid. The recipient cannot recover any information about the sender.

We performed some measurements to assess whether the griefing attack can be used, particularly,

to drain a target’s battery. In our experiments, we used as attacker our modified Signal Desktop

application on a MacBook Pro 2017 machine running macOS Mojave using a 2.5 GHz Intel Core i7.

We used as a stand-in for victim recipient an unmodified Signal Android application (version 4.54.3)

on a Google Pixel phone running Android version 9. We used the Android Battery Historian tool to

inspect the effect of our attack on battery drainage. It reports the battery level rounded to the nearest

percent. We measured the rate of change in battery level per hour when sending one malformed

sealed message every 1, 2, 5, or 10 seconds (see Figure 4.2). We find that sending just 1 message

every 10 seconds causes the battery to drain at an increased rate of 9× over baseline.

Ultimately, there are no satisfying mitigation options available to victims. If the victim of the

66

0 0.1 0.2 0.5 1
Rate (msgs/s)

5

15

25

Dr
ai

n
ra

te
 (%

/h
r)

Figure 4.2: Battery drain rate of griefing attack for various rates of sending, x ∈ {0,0.1,0.2,0.5,1} / second.
The box plot shows the variability of drain rates over trials, with the range, quartiles and median denoted by
the whiskers, box, and line, respectively (outliers marked separately).

attack has opted in to accepting sealed sender messages from non-contacts, the attack can be mounted

by anyone. Otherwise the attacker needs the recipient’s access key, meaning the attacker must be one

of the victim’s contacts (or has found some other way to obtain the access key). While this limits

who can mount the attack in the default case, it is still problematic: The victim can rotate their access

key ak and attempt to redistribute a new ak′ to their communicating partners. If the attacker is not

able to get access to the new access key, the attack will be stopped by the platform and no messages

will reach the victim’s client. But since the attack leaves no information about which of the victim’s

communicating partners is responsible, the victim can only make a guess as to whom they should

block.

Realistically to maintain usability of their mobile device, a user may limit Signal to only a few

highly trusted contacts, or will push the user off Signal to a less private messenger. We consider both

of these outcomes to be highly damaging to vulnerable users that would benefit from a metadata-

private messenger. Looking forward, we will want a mechanism that provides the user more granular

recourse against misbehaving senders.

4.2 Outsourced Blocklisting

We now turn to building a new sender-anonymous messaging protocol that avoids the current

weaknesses of sealed sender. Our approach is to enable what we call privacy-preserving outsourced

blocklisting (see Figure 4.3).

Goals. Such a system should enjoy the following features:

67

m1��m2

BLC = [Bob, Frank, Lucy]

Alice

Bob

Chloe

Platformm1

m2

m1

Functional view Platform view

m1��m2

BLC = [? , ? , ?]

?

?

Chloe

m1

m2

m1

Figure 4.3: Privacy-preserving, outsourced blocklisting for sender-anonymous messaging. The platform is
able to block messages from users on Chloe’s blocklist without learning their identity. The left view shows
the functionality of outsourced blocklisting, while the right view shows what is revealed to the platform. Not
shown, Chloe can also efficiently identify the sender of message m1 as Alice and update her blocklist BLC if
needed.

• Sender anonymity: Messages cryptographically hide the sender identity from the platform.

• Sender attribution: Recipients can cryptographically verify the sender of any ciphertexts deliv-

ered by the platform.

• Blocklisting: Recipients can register a blocklist with the platform and update it efficiently. The

platform can use the blocklist to drop sender-anonymous messages from senders that the recipient

has added to the blocklist.

• Blocklist anonymity: The blocklist should not reveal the identities of the senders blocked by the

recipient.

Together these properties prevent the type of griefing attacks that affect sealed sender: a client

receiving problematic messages can identify the sender and instruct the platform to drop them on the

client’s behalf.

We would also like the system to support:

• Non-interactive initialization: Users can begin sending sender-anonymous messages without

previous interaction with the intended recipient.

This property obviates the use of non-sender-anonymous channels to initiate sender-anonymous

communication. In particular, the platform should not be able to attribute messages to some smaller

subset of users, as messages can have originated from any registered user of the system.

Orca is designed to accompany a sender-anonymous E2EE messaging protocol to provide the

functionality of outsourced blocklisting while carrying over both the sender-anonymity and message

confidentiality properties of the underlying protocol. As such, we assume the underlying E2EE

protocol is sender-anonymous, and if it is not, can easily be made so using encapsulation techniques

68

similar to sealed sender (see Figure 4.1). Our protocol will provide a registration process in which

users interact with the platform to generate the required keys for the protocol; this will be done at

the same time users register for the underlying E2EE protocol. To send a message, the sender first

encrypts the message plaintext pt to the recipient as specified by the E2EE protocol. Then, Orca will

concern itself with authenticating the delivery of the produced E2EE ciphertext; the authenticity of

the underlying message plaintext needs to be provided by the E2EE protocol. We will refer to the

E2EE ciphertext as the “message” from Orca’s perspective.

Threat model. We assume an active, persistent adversary that controls the messaging platform and

an arbitrary number of users. We assume the clients of legitimate users are not compromised and that

they correctly abide by the protocol.

Our primary concern is the cryptographic anonymity of the messaging protocol. The adversary,

even with active deviations from the protocol, should not be able to learn sender identity information

from the contents of protocol messages.

Even in the case that anonymity is achieved at the message proctocol layer, identification

information can leak through the network layer, e.g., by associating IP addresses or by making

inferences based on timing. We consider preventing such leakage to be orthogonal to the goal of

providing a blocklisting solution for the message protocol layer: existing solutions for mitigating

network leakage will compose. Sender-anonymous channels resilient to linking attacks that exploit

IP addresses can be constructed using services such as Tor [DMS04]; linking attacks performed by

stronger global network adversaries with the ability to observe and inject traffic along any network

link can be mitigated using prior academic solutions for anonymous broadcasting [CBM15, WCFJ12,

PHE+17, KCDF17, LYK+19]. Lastly, as discussed in Section 4.1.2, given a sender-anonymous

channel, timing analysis of messages with designated recipients can be mitigated using existing

techniques [PHE+17, MKA+21].

It is trivial for an active adversary that controls the platform to deny service to arbitrary users by

not delivering messages. In future work, it may be valuable to provide a mechanism for honest users

to provably expose such misbehavior, but in this work we leave platform-mounted denial-of-service

(DoS) attacks out of scope. On the other hand, we do want to protect against user-mounted DoS

attacks, in which a malicious user can interact with an honest platform to deny service to other users,

69

as in the griefing attack.

Overview. We will now provide an overview of Orca’s design by stepping through a series of

strawman constructions.

Sender-specific one-time use access tokens. Instead of having all senders authenticate by reusing the

same shared access token, the recipient can deal unique access tokens to each sender. Reusing a

sender-specific token allows linking by the platform, so these tokens will necessarily be one-time use

only. We outline a version of this approach that is taken by the Pond messaging system [Lan16,LP16].

On registration, recipients register a key k to a pseudorandom function F , e.g. HMAC, with the

platform. Recipients distribute one-time use tokens of the form (x,y = F (k,x)) for random values x

to senders. The platform verifies these tokens using k and the recipient can identify senders since

they know to whom they dealt (x,y). A sender’s tokens are refreshed in the normal exchange of

messages. Now a recipient can block by reporting the unused tokens of a sender to the platform;

the platform tracks these tokens along with previously spent tokens for a recipient in a strikelist

and rejects incoming messages that authenticate with struck tokens. The platform’s strikelist grows

unbounded as more messages are sent, but this cost can be managed by scheduled key rotations.

This blocklisting approach improves significantly over sealed sender as it effectively removes the

griefing attack vector, however it does not address the concerns around leakage during initialization:

the recipient still initially distributes the access tokens over non-sender-anonymous channels to

senders, revealing to the platform a small set of possible senders for future messages. A different

approach is needed to provide stronger sender anonymity with non-interactive initialization.

Group signatures. A promising starting point for sender-anonymous blocklisting with non-interactive

initialization is group signatures, a well-studied cryptographic primitive [CvH91, BBS04, Cam98,

BMW03, BSZ05]. Group signature schemes allow users to sign messages anonymously on behalf

of a group whose membership is controlled by a group manager. Signatures appear anonymous to

everyone except to a special opening authority who has the ability to deanonymize the signer and

revoke their signing ability.

Our next strawman solution has the platform maintain a separate group signature scheme for

each registered user, where the user is the opening authority and the platform is the group manager. A

70

sender registers with the platform under the desired recipient’s group signature scheme. The sender

sends their message along with a signature on the message under the recipient’s group to the platform.

The platform then verifies the anonymized signature. For blocklisting, we use a group signature

scheme that supports verifier-local revocation [BS04]. This means that the recipient can revoke

senders by communicating only with the platform (i.e., verifier).

This strawman provides effective sender attribution and blocklisting. It also allows senders

to acquire group signature credentials without previous interaction with the recipient. However,

messages to a recipient can be attributed by the platform to the set of users that registered under the

recipient’s group signature scheme, so we do not achieve our stronger anonymity goal. Furthermore,

existing group signatures that meet our requirements use expensive bilinear pairing operations, adding

on to the efficiency concerns of managing a separate scheme for each registered user.

We resolve these issues by proposing a new type of group signature that introduces two novel

features. The first is support for multiple opening authorities. This will dispense with the per-recipient

group signature schemes and the need to register separately for each recipient that you wish to send

to. The second feature is keyed-verification, in which we observe that the platform is also the only

verifier. Removing public verifiability improves efficiency of client-side operations.

This new group signature, presented in Section 4.3, makes up the core of Orca. However even

with our optimizations, e.g., keyed-verification, the group signature approach incurs significant

computational cost, in particular for the platform, owing to the use of verifier-local revocation:

verifying a signature incurs work linear in the size of the recipient’s blocklist.

Hybrid: Group signature with one-time tokens. This leads us to our final construction which com-

bines the use of group signatures for non-interactive initialization with one-time use tokens for

efficient authentication of subsequent messages. Here, the group signature is used to allow the sender

to acquire its first batch of tokens from the platform. The main contribution of this approach is

a new protocol for allowing the platform to dispense tokens on behalf of the recipient. This is

challenging because the platform should not be able to link newly minted tokens to a sender, but

it must provide a way for the recipient to learn to whom new tokens were dealt (for future sender

attribution). We construct this protocol by adapting techniques from blinded issuance of anonymous

credentials [CMZ14]. After this (relatively) expensive initialization procedure, users exchange new

71

tokens in the normal flow of conversation and the system enjoys all the efficiency benefits of the

token-based protocol. We describe Orca’s one-time token extension in Section 4.4.

4.3 Blocklisting from Group Signature

Our main construction is based on a novel group signature scheme. In this section, we will introduce

our new group signature abstraction, describe how to use it to construct an outsourced blocklisting

protocol, and lastly provide an instantiation of such a group signature,

4.3.1 Group Signature Syntax and Security

Group signatures [CvH91] allow users to sign messages anonymously on behalf of a group. The

basic setting is as follows. The membership of a group is coordinated by a group manager, with

whom users register with in order to join the group. Additionally, anonymous group signatures can

be opened (traced) to identify the signing user in the group by a designated opening authority.

We make use of three extensions to the basic group signature setting.

(1) Verifier local revocation: A group signature supporting revocation allows the opening authority

to additionally revoke the signing ability of group members. Verifier local revocation means

that to revoke a member, the opening authority need only communicate a revocation message to

verifying parties (as opposed to both verifying parties and group members); revocation does not

affect the way group members sign messages.

(2) Multiple opening authorities: An opening authority is created through registration with the

group manager. Group members sign messages designated to one of many opening authorities,

and only the opening authority that a signature is designated to is able to open the signature to

the signer’s identity. Revocation is handled separately per opening authority, meaning a group

member may be able to sign messages designated for some opening authorities, but be revoked

from signing messages to others.

(3) Keyed verification: Verification of group signatures can only be completed by a secret key owned

by the group manager and shared to verifying parties. This is particularly useful in cases where

the group manager is the only party verifying signatures and allows for more efficient schemes

than those that achieve public verifiability.

72

Verifier local revocation has been previously studied [BS04], but the other two extensions are

novel to the best of our knowledge. The model and following security definitions for our new setting

are derived from [BSZ05, BS04].

Syntax

A multi-opener, keyed-verification group signature scheme GS is run between three types of partici-

pating parties: (1) users U that join the group and sign messages, (2) opening authorities OA that

can trace signatures to signers, and (3) a group manager GM to coordinate registration and perform

verification. It consists of the following algorithms:

• pp←$GS.Setup(λ): The setup algorithm defines the public parameters pp. We will assume pp

is available to all algorithms, and all parties have assurance it was created correctly.

• (gmpk,gmsk)←$GS.KeygenppGM(): The key generation algorithm is run by the group manager

to generate a public key gmpk and secret key gmsk.

• GS.JoinUpp
U ↔ GS.IssueUpp

GM: Group registration is an interactive protocol implemented by

GS.JoinU and GS.IssueU run between a user and the group manager, respectively. If execution

is successful, the user will receive a public, secret key pair (upk,usk) and the group manager

will receive upk, else both parties receive ⊥. If the protocol accepts, the group manager will

store upk in a global registration table and reject duplicate upk registrations.

• GS.JoinOApp
OA↔ GS.IssueOApp

GM: Opening authority registration is an interactive protocol run

between a prospective opening authority and the group manager. If execution is successful, the

opening authority will receive a public, secret key pair (oapk,oask) and the group manager will

receive and store oapk in the registration table, else both parties receive ⊥.

• σ←$GS.SignppU (usk,gmpk,oapk,m): The signing algorithm is run by a group member to

produce a group signature σ on a message m designated for opening authority oapk.

• upk← GS.OpenppOA(oask,m,σ): The opening algorithm is run by an opening authority to learn

the identity of the signing user upk, and returns ⊥ upon failure.

• τR←$GS.RevokeppOA(oask,upk): The revocation algorithm is run by an opening authority to

create a revocation token τR for a user upk. The opening authority sends the revocation token to

the group manager who includes it in a revocation list RL used for verification.

• b← GS.VerppGM(gmsk,oapk,RL,m,σ): The verification algorithm is run by the group manager

73

to determine if an input signature σ and m are valid under a designated opening authority oapk

and revocation list RL.

As mentioned, we assume some global registration table that contains all user public keys upk

and opening authority public keys oapk that succeed registration. In practice, such a table might be

implemented with a public key infrastructure (PKI) supporting key transparency audits [MBB+15]

allowing it be hosted by the untrusted platform. Additionally, for simplicity, we may drop the

executing party from the subscript and the public parameters from the superscript if their use is clear

from context.

Correctness and Security Notions

We extend the standard notions of correctness and security from [BSZ05, BS04]. Here, we describe

correctness and then the three security properties: anonymity, traceability, and non-frameability. The

properties are formalized via security games involving an adversary.

Correctness. The correctness property concerns signatures generated by honest group members.

An honestly generated signature should pass verification under all honestly generated revocation

lists that do not include a revocation token for the signing user created by the designated opening

authority. An honestly generated signature should also be opened to the correct signing user by the

designated opening authority.

It is defined by the game Corr shown in Figure 4.4 and explained below. We define the

advantage of adversary A as:

Advcorr
GS,A(λ) = Pr

[
CorrA

GS(λ) = 1
]
.

We say that a verifier-local revocable, keyed-verification, multi-opener group signature GS is correct if

Advcorr
GS,A(λ) = 0 for any adversary A and any λ ∈N. Note that the adversary is not computationally

restricted.

In the correctness game, the adversary can query AddU and AddOA oracles to register new

users and opening authorities, each running their respective join/issue interactive protocol with the

group manager; the adversary is given the public and secret key of the registered party. The adversary

can also query Revoke to add user i to opening authority j’s revocation list; the adversary is given

the revocation token. After interacting with these oracles, the adversary outputs a msg, user i, and

74

Game CorrAGS(λ)

pp←$GS.Setup(λ)

(gmpk,gmsk)←$GS.Keygen()

(i, j,m)←$AAddX,Revoke(gmsk)

If i ̸∈HU ∨ j ̸∈HOA then return 0

(upk,usk)←HU [i] ; (oapk,oask)←HOA[j]

σ←$GS.Sign(usk,gmpk,oapk,m)

b← GS.Ver(gmsk,oapk,RL[j],m,σ)

If b= 1∧ i ∈RLU [j] then return 1

If b= 0∧ i ̸∈RLU [j] then return 1

upk′←$GS.Open(oask,gmpk,m,σ)

If upk ̸= upk′ then return 1

Return 0

AddX(i)X∈{U,OA}

Require i ̸∈HX

st←⊥ ; stGM ←⊥
min←⊥ ; dec← cont

While dec = cont do
(min,dec)←$GS.JoinX(gmpk,min : st)

(min,dec)←$GS.IssueX(gmsk,min : stGM)

If dec = accept then
(pk,sk)← st

REGX [i]← pk ; HX [i]← (pk,sk)

Revoke(i, j)

Require i ∈HU ∧ j ∈HOA

(upk,usk)←HU [i] ; (oapk,oask)←HOA[j]

τR←$GS.Revoke(oask,upk)

RL[j]←[τR ; RLU [j]←[i
Return τR

Figure 4.4: Correctness game for keyed-verification multi-opener group signatures.

opening authority j. User i signs message m to opening authority j, and the adversary wins if one of

three conditions holds on the signature σ. If the signature verifies with j’s revocation list, but user i

was on the revocation list from Revoke, this represents a break of correctness. The second winning

condition is the opposite: if the signature does not verify, and user i is not part of the revocation list,

that is also incorrect behavior. The last winning condition is if the signature opens to some value

other than user i’s public key.

Anonymity. The anonymity property captures that an adversary without access to the designated

opening authority’s key should not be able to determine the signer of a signature among unrevoked

group members. The adversary has the power of an actively malicious group manager and may

adaptively compromise group members and opening authorities. More specifically, we target CCA-

selfless-anonymity [BBS04] meaning signatures are not anonymous to the signer (selfless) and

the adversary has access to an opening oracle throughout the security game (CCA). We consider

rogue key attacks, allowing the adversary to create public keys for corrupted parties, but require the

adversary to prove knowledge of secret keys. We model this, for simplicity, by asking the adversary

to produce the secret key for generated public keys following the knowledge of secret key model

75

of [Bol03], which can be instantiated with extractible proofs of knowledge. We also provide an

extension of our anonymity game to capture anonymity of revocation tokens (in addition to signatures)

that is, to our knowledge, the first definitional attempt at doing so.

Anonymity is defined by the game Anon shown in Figure 4.5. We define the advantage of

adversary A as:

Advanon
GS,A(λ) =

∣∣∣Pr[AnonA,1
GS (λ) = 1

]
−Pr

[
AnonA,0

GS (λ) = 1
]∣∣∣ .

We say that a verifier-local revocable, keyed-verification, multi-opener group signature GS is anony-

mous if Advanon
GS,A(·) is negligible for any polynomial-time adversary A.

In the anonymity game, the adversary plays the role of the platform in attempting to determine

the signer’s identity of a challenge signature. The adversary may register users and opening authorities

using oracles AddU and AddOA (denoted as AddX for X ∈ {U,OA} in the security game) and

may corrupt parties to learn their secret key through oracles SKU and SKOA (denoted SKX). The

adversary can generate signatures for uncorrupted users using Sign and generate revocation tokens

from honest opening authorities for arbitrary signatures using OpenRevoke. After interacting with

these oracles, the adversary may make a single challenge query to ChSign in which they specify two

uncorrupted users i0 and i1 and an opening authority j and receives a signature from user ib based on

challenge bit b. To disallow trivial wins, neither user’s revocation token for j can have been queried

via a previous signature to OpenRevoke prior to the challenge query, and are restricted from being

queried after the challenge query. The challenge users and opening authority are also restricted from

being queried to SKX following the challenge query. The adversary wins if it correctly guesses the

challenge bit b.

We extend the game in RevAnon to capture revocation token anonymity (includes highlighted

code in Figure 4.5). Here an additional ChRevoke oracle is given to be run on the challenge

signature to receive the revocation token for the user ib. To prevent trivial wins where the adversary

holds other signatures from the challenge signers, the ChRevoke oracle rejects queries when either

of the two challenge signing users have been queried to Sign.

Traceability ensures that every signature that passes verification can be opened by the designated

opening authority to a registered user. Traceability necessarily considers an adversary that does not

76

Game AnonA,b
GS (λ) ; RevAnonA,b

GS (λ)

pp←$GS.Setup(λ)

(gmpk,gmsk)←$A(: stA)

Require GS.validGM(λ,gmpk,gmsk)

b′←$AWRegOA,Sign,ChSign,AddX,SKU,OpenRevoke, ChRevoke (: stA)

Return b′

WRegOA(i,pk,sk)

Require GS.validOA(λ,pk,sk)

If i ∈HOA then (pk,sk)←HOA

REGOA[i]← (pk,sk)

Sign(i, j,m)

Require i ∈HU ∧ j ∈REGOA

(upk,usk)←HU [i] ; (oapk,oask)←REGOA[j]

σ←$GS.Sign(usk,gmpk,oapk,m)

Σ[j][σ]← i

Return σ

ChSign(i0, i1, j,m)

Require i0, i1 ̸∈KU ∧ j ̸∈KOA

Require i0, i1 ∈HU ∧ j ∈HOA

Require i0, i1 ̸∈RL[j]

(upk0,usk0)←HU [i0] ; (upk1,usk1)←HU [i1]

(oapk,oask)←HOA[j]

σ←$GS.Sign(uskb,gmpk,oapk,m)

RQ[j]←[[i0, i1]
Σ̃[σ]← (i0, i1, j)

Return σ

AddX(i,min)X∈{U,OA}

Require i ̸∈HX

(min,dec)←$GS.JoinX(gmpk,min : stX [i])

If dec = accept then
(pk,sk)← stX [i] ; HX [i]← (pk,sk)

Return (min,dec)

SKX(i)X∈{U,OA}

Require i ̸∈RQ[∗]∧ j ̸∈RQ

KX ←[i
Return HX [i]

OpenRevoke(m,σ,j)

Require j ∈HOA

Require σ ̸∈ Σ̃

Require σ ̸∈ Σ[j]∨Σ[j][σ] ̸∈RQ[j]

(oapk,oask)←HOA[j]

upk← GS.Open(oask,gmpk,m,σ)

τR←$GS.Revoke(oask,upk)

If σ ∈ Σ[j] do RL[j]←[Σ[j][σ]
Return τR

ChRevoke(σ)

Require σ ∈ Σ̃ ; (i0, i1, j)← Σ̃[σ]

Require i0, i1 ̸∈ Σ[∗][∗]
(upk,usk)←HU [ib] ; (oapk,oask)←HOA[j]

τR←$GS.Revoke(oask,upk)

Return τR

Figure 4.5: Anonymity game for keyed-verification multi-opener group signatures. An extension to the
anonymity game is provided to capture anonymity of revocation tokens which includes the highlighted code.

control the group manager since it is trivial for the group manager to craft signatures for unregistered

public keys. However, traceability is accompanied by non-frameability which ensures that it is not

possible to forge a signature that opens to an honest user; non-frameability considers a stronger

adversary that controls the group manager as in anonymity.

Traceability is defined by the game Trace shown in Figure 4.6. We define the advantage of

adversary A as:

Advtrace
GS,A(λ) = Pr

[
TraceAGS(λ) = 1

]
We say that a verifier-local revocable, keyed-verification, multi-opener group signature GS is traceable

if Advtrace
GS,A(·) is negligible for any polynomial-time adversary A.

77

Game TraceAGS(λ)

pp←$GS.Setup(λ)

(gmpk,gmsk)←$GS.Keygen()

(j,m,σ,L)←$AVerify,AddX(gmpk)

Require j ∈REGOA ; (oapk,oask)←REGOA[j]

bver← GS.Ver(gmsk,oapk,L,m,σ)

upk← GS.Open(oask,gmpk,m,σ)

bopn1← upk ==⊥∨upk ̸∈REGU

Return bver ∧ bopn1

KoskX(i,sk)X∈{U,OA}

PX [i]← sk

AddX(i,min)X∈{U,OA}

Require i ̸∈REGX

(min,dec)←$GS.IssueX(gmsk,min : stX,i)

If dec = accept then
pk← stX,i ; sk← PX [i]

Require GS.validX(λ,pk,sk)

REGX [i]← (pk,sk)

Return (min,dec)

Verify(j,m,σ,L)

Require j ∈REGOA

(oapk,oask)←REGOA[j]

b← GS.Ver(gmsk,oapk,L,m,σ)

Return b

Figure 4.6: Traceability game for keyed-verification multi-opener group signatures.

In the traceability game, the adversary plays the role of a set of malicious users and opening

authorities with the goal of creating a message, signature pair that verifies under the honest platform,

but fails to open at the recipient. The adversary may register as users and opening authorities using

AddX. The adversary may verify arbitrary signatures under arbitrary revocation lists using Verify.

Note that a verify oracle is necessary for the keyed-verification setting. After interacting with these

oracles, the adversary outputs a message, signature pair along with a revocation list. The adversary

wins if the signature verifies, and the open algorithm fails by either returning ⊥ or returning an

unregistered public key upk.

Non-frameability is defined by the game NFrame shown in Figure 4.7. We define the advantage

of adversary A as:

Advnf
GS,A(λ) = Pr

[
NFrameAGS(λ) = 1

]
We say that a verifier-local revocable, keyed-verification, multi-opener group signature GS is non-

frameable if Advnf
GS,A(·) is negligible for any polynomial-time adversary A.

The non-frameability game is similar to the traceability game in that the adversary’s goal is

to output a signature with unwanted opening behavior. However, in the non-frameability game, we

consider a stronger adversary that actively controls the platform, similar to the anonymity game. In the

non-frameability game, the adversary wins if the signature opens to an honest user not controlled by

78

Game NFrameAGS(λ)

pp←$GS.Setup(λ)

(gmpk,gmsk)←$A(: stA)

Require validGSGM(λ,gmpk,gmsk)

(j,m,σ)←$AWRegOA,AddX,Sign,OpenRevoke,SKX(: stA)

Require j ∈HOA ; (oapk,oask)←HOA[j]

bver← GS.Ver(gmsk,oapk,RL[j],m,σ)

upk← GS.Open(oask,gmpk,m,σ)

bopn2← upk ∈HU ∧upk ̸∈KU

Return (upk,m) ̸∈ Q∧ bver ∧ bopn2

WRegOA(i,pk,sk)

Require GS.validOA(λ,pk,sk)

If i ∈HOA then (pk,sk)←HOA

REGOA[i]← (pk,sk)

Sign(i, j,m)

Require i ∈HU ∧ j ∈REGOA

(upk,usk)←HU [i] ; (oapk,oask)←REGOA[j]

σ←$GS.Sign(usk,gmpk,oapk,m)

Q← [(upk,m)

Return σ

AddX(i,min)X∈{U,OA}

Require i ̸∈HX

(min,dec)←$GS.JoinX(gmpk,min : stX [i])

If dec = accept then
(pk,sk)← stX [i] ; HX [i]← (pk,sk)

Return (min,dec)

SKX(i)

KX ← [i
Return HX [i]

OpenRevoke(m,σ,j)

Require j ∈HOA

(oapk,oask)←HOA[j]

upk← GS.Open(oask,gmpk,m,σ)

τR←$GS.Revoke(oask,upk)

Return τR

Figure 4.7: Non-frameability game for keyed-verification multi-opener group signatures.

the adversary, i.e., creates a successful forged signature. The adversary may register honest users and

opening authorities using AddX and may corrupt parties to learn their secret key through SKX. The

adversary can generate signatures for uncorrupted users using Sign and generate revocation tokens

on arbitrary signatures using OpenRevoke. After interacting with these oracles, the adversary

outputs a message, signature pair and revocation list. The adversary wins if the message, signature

pair was not previously output from Sign, the signature verifies, and the open algorithm returns the

public key of an uncorrupted user. Since the non-frameabilty game captures an adversary with similar

power to that of the anonymity game, we make many of the same game design decisions.

4.3.2 Construction of Group Signature

Our group signature follows closely the “certified signature” recipe that many group signatures

take [Gro07]. In this recipe, the group manager registers users by certifying their public key Y = gy;

the user’s group key is made up of their secret identity key y along with the group manager’s certificate

79

t. To sign a message under the group, the user encrypts their public key to the opening authority

creating an identity ciphertext where Z is the opening authority’s encryption key.

ctid← (gαct
1 ,Y Zαct) αct←$Zp

They then prove in zero knowledge that they have a certificate from the group manager on the

same public key that is enclosed in the ciphertext and that they know the secret key associated to it.

The signature is verified by verifying the zero knowledge proof and can be opened by the opening

authority simply by decrypting the identity ciphertext.

This recipe naturally extends to support a scheme with multiple opening authorities. The identity

ciphertext is encrypted using the public key of the designated opening authority.

Supporting verifier-local revocation. An opening authority registers with two keys: (1) an en-

cryption key (z,Z = gz1), and (2) a revocation key (w,W = gw1), where oapk = (W,Z). We have

described how a user with identity key (y,Y = gy1) encrypts their public key Y to the opening author-

ity. To revoke a user’s signing ability, the opening authority constructs a user-specific revocation token

as the Diffie-Hellman value between the user’s public key and their own revocation key, τR = Y w.

Intuitively, these revocation tokens are anonymous since a Diffie-Hellman value looks random to a

verifier that does not know the secret keys y or w.

To allow a verifier in possession of a user’s revocation token to identify signatures from a

user, we need something more. In addition to the identity ciphertext, the user also constructs a

revocation ciphertext enclosing their revocation token, τR =W y. This “ciphertext” is constructed to

be undecryptable, but includes a backdoor for testing whether a plaintext pt is enclosed (following

the approach of Boneh and Shacham [BS04]).

ctR← (MαT
1 , τRN

αT
1) αT←$Zp M1,N1←$G1

The backdoor of ctR consists of the isomorphic G2 elements M2,N2. The verifier can check whether

τ̂R is enclosed in ctR via the following test using the pairing function e:

e(T2/τ̂R,M2)
?
= e(T1,N2) (T1,T2)← ctR

The verifier performs this test for each revocation token in an opening authority’s revocation list and

outputs 1 if no revocation token matches and the signature’s proof verifies. The signature’s proof

80

now additionally proves the well-formedness of ctR with respect to user public key Y .

Improving efficiency with keyed-verification. A central part of the group signature is that the user

must prove they have a certificate on their public key from the group manager. Creating this proof,

even for certificate signatures designed for this purpose [BBS04, CL04], is relatively expensive, with

known constructions requiring multiple pairings to be evaluated. In our setting, the platform plays

the role of both the group manager and the sole verifier; all messages pass through the platform. This

setting allows us to bring in techniques from keyed-verification anonymous credentials [CMZ14].

Specifically, during user registration, instead of receiving a signature from the group manager, users

receive a MAC t on their public key from an algebraic MAC scheme; our construction uses MACGGM

from [CMZ14, DKPW12]. Proving knowledge of a valid MAC is more efficient and, in particular,

does not require pairing evaluations. The resulting proof can only be verified using the secret MAC

key (held by the group manager), hence our introduction of the keyed-verification setting for group

signatures (i.e., “group MACs”). This optimization limits the use of pairings in our group signature

only to the revocation token tests made by the group manager during verification.

Summary. In total, our group signature is composed of three components, (1) the identity ciphertext

ctid enclosing the signer’s public key to the opening authority, (2) the revocation ciphertext ctR

enclosing the revocation token, and (3) a zero knowledge proof π that (1) and (2) were constructed

properly with knowledge of a key pair (y,Y) and a MAC t on Y . The full details of the construction

are given in Figure 4.8. Our security proofs are independent of the choice of zero knowledge proof

system with which to instantiate the scheme, relying only on the simulation-extractability and zero-

knowledge properties described above. In our implementation, we evaluate the classic proof system

based on use of Sigma protocols, the building blocks of which are outlined by Camenisch [Cam98].

Our proofs of knowledge are made non-interactive using the Fiat-Shamir heuristic in which the Sigma

protocol commitments and proof statement are hashed to get the challenge for the Sigma protocol.

The signature of knowledge algorithms are instantiated with the Fiat-Shamir heuristic by additionally

passing m into the hash function along with the commitments and statement when generating a

challenge. It has been shown that the simulation-extractibility property holds in the algebraic group

model [FKL18] for the knowledge of discrete logarithm relation [FPS20, ABM15]. We believe the

81

techniques used [FPS20] can be applied to show simulation-extractability of the discrete logarithm

relations used in this work.

As stated, every time a user sends a message, they create a group signature and the platform

verifies the group signature. Even with our optimizations, this involves the platform running a

verification algorithm that is linear in the size of the recipient’s revocation list. We improve in the

next section, extending Orca with one-time use sender tokens to make the need for a group signature

a rare event.

4.3.3 Security Analysis

We prove security of our scheme with respect to our formal definitions of anonymity, traceability,

and non-frameability. We forgo a formal proof of correctness for our scheme, as it is relatively

straightforward to confirm through inspection. First, we provide the following theorems and defer

the full proofs of security to the full version [TLMR21]:

Theorem 9. Let GS be the keyed-verification, multi-opener group signature scheme defined in

Figure 4.8 over the bilinear group generated by BGGen. Let MACGGM be the keyed-verification

anonymous credentials scheme from [CMZ14] on G1. Let ElG be the ElGamal encryption scheme on

G1. Then for any adversary A against the anonymity of GS, we give adversaries A1 to A6 such that

Advanon
GS,A(λ)≤ 2q2uqoa

(
Advsound

Π,A1,XΠ
(λ)+Advanon

MACGGM,A2,SMAC
(λ)+Advsimext

Σ,A3,XΣ,SR2
(λ)

+Adv
indcpa
ElG,A4

(λ)+2 ·Advddh
BGGen,A5

(λ)+Advdlin
BGGen,A6

(λ)
)

where A makes at most qu and qoa queries to the add user and add opening authority oracles,

respectively.

Proof sketch: We bound the advantage of A by bounding the advantage of each of a series of

game hops. We define Gb =AnonA,b
GS (λ) and define games Gb

A, Gb
B, Gb

C, Gb
D, Gb

E, Gb
F0, Gb

F1, GG

to gradually transform the view of the adversary until in GG it is no longer dependent on bit b. The

inequality above follows from simple calculations based on the following claims which we will

justify:

(1) Advanon
GS,A(λ) =

∣∣Pr[G0 = 1]−Pr[G1 = 1]
∣∣≤ q2uqoa ·

∣∣Pr[G0
A = 1]−Pr[G1

A = 1]
∣∣

82

GS.Setup(λ)

(p,G1,G2,GT ,g1,g2,e)← BGGen(λ)

α←$Zp ; h1← gα1
REGU ,REGOA← [·]
pp← (p,G1,G2,GT ,e,g1,h1,g2)

ppM← (p,G1,g1,h1)

Return pp

1

2

3

4

5

6

7

GS.JoinUpp
U (gmpk,min : st)

If min ==⊥ do
y←$Zp ; Y ← gy1
mout← Y ; st← (Y,y)

Return (mout,cont,st)

(t,π,Yr)←min

(u0,u1)← t ; (y,Y)← st ; (X1,Cx̃0
)← gmpk

b← Π.Ver(π,(g1,h1,u0,u1,X1,Cx̃0
,Y,Yr))

usk← (t,y) ; upk← Y

st← (upk,usk)

If b== 1 then return (⊥,accept,st)
Return (⊥,reject,st)

8

9

10

11

12

13

14

15

16

17

18

19

GS.IssueUpp
GM(gmsk,min : st)

Y ←min

st← Y

t←MACGGM.GroupElemEvppM(gmsk,Y)

(x0,x1, x̃0)← gmsk

r←$Zp

u0← gr1 ; u1← (gx0
1 Y x1)r

Return (u0,u1)

Yr← Y r ; X1← hx1
1 ; Cx̃0

← gx0
1 hx̃0

1

π←$Π.Prove(

(x0,x1, x̃0, r),(g1,h1,u0,u1,X1,Cx̃0
,Y,Yr))

mout← (t,π,Yr)

Return (mout,accept,st)

20

21

22

23

24

25

26

27

28

29

30

31

32

GS.JoinOApp
OA(gmpk,min : st)

If min ==⊥ do
w←$Zp ; W ← gw1
z←$Zp ; Z← gz1
mout← (W,Z) ; oapk← (W,Z) ; oask← (w,z)

st← (oapk,oask)

Return (mout,cont,st)

Return (⊥,accept,st)

33

34

35

36

37

38

39

40

GS.IssueOApp
GM(gmsk,min : st)

(W,Z)←min

st← (W,Z)

Return (⊤,accept,st)

41

42

43

44

GS.KeygenppGM()

(gmpk,gmsk)←$MACGGM.KeygenppM()

x0←$Zp ; x1←$Zp ; x̃0←$Zp

X1← hx1
1 ; Cx̃0

← gx0
1 hx̃0

1

pk← (X1,Cx̃0
) ; sk← (x0,x1, x̃0)

Return (pk,sk)

Return (gmpk,gmsk)

45

46

47

48

49

50

51

GS.SignppU (usk,gmpk,oapk,m)

(t,y)← usk ; (u0,u1)← t

(X1,Cx̃0
)← gmpk ; (W,Z)← oapk

αct,αu,αy,αT ,β←$Z4
p

rm←$Zp ; rn←$Zp

M1← grm1 ; M2← grm2 ; N1← grn1 ; N2← grn2
u′0← uβ0 ; u′1← uβ1
τR←W y

ct1← gαct
1 ; ct2← gy1Z

αct

T1←MαT
1 ; T2← τRNαT

1

Cy ← u′y0 h
αy

1 ; Cu← u′1g
αu
1 ; V ← g−αu

1 X
αy

1

π←$Σ.Prove((y,αy,αu,αct,αT , rm, rn),

(g1,h1,u
′
0,X1,Cy,V,W,Z,ct1,ct2,M1,M2,N1,N2,T1,T2),m)

σ← (u′0,Cy,Cu,V,ct1,ct2,M1,M2,N1,N2,T1,T2,π)

Return σ

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

GS.OpenppOA(oask,gmpk,m,σ)

(w,z)← oask ; W ← gw1 ; Z← gz1 ; (X1,Cx̃0
)← gmpk

(u0,Cy,Cu,V,ct1,ct2,M1,M2,N1,N2,T1,T2,π)← σ

Require Σ.Ver(

(g1,h1,u0,X1,Cy,V,W,Z,ct1,ct2,M1,M2,N1,N2,T1,T2),m,π)

upk← ct2/ct
z
1

Return upk

67

68

69

70

71

72

73

GS.RevokeppOA(oask,upk)

(w,z)← oask

τR← upkw

Return τR

74

75

76

77

GS.VerppGM(gmsk,oapk,RL,m,σ)

(x0,x1, x̃0)← gmsk ; (W,Z)← oapk

(u0,Cy,Cu,V,ct1,ct2,M1,M2,N1,N2,T1,T2,π)← σ

For τR ∈RL do
If e(T2/τR,M2) = e(T1,N2) then return 0

V ′← ux0
0 Cx1

y /Cu

X1← hx1
1 ; Cx̃0

← gx0
1 hx̃0

1

b← Σ.Ver(

(g1,h1,u0,X1,Cy,V
′,W,Z,ct1,ct2,M1,M2,N1,N2,T1,T2),m,π)

Return V == V ′∧ b

78

79

80

81

82

83

84

85

86

87

R1 =
{(

(x0,x1, x̃0, r),(g1,h1,u0,u1,X1,Cx̃0
,Y,Yr)

)
: u0 = gr ∧Yr = Y r ∧u1 = ux0

0 Y x1
r ∧Cx̃0

= gx0
1 hx̃0

1 ∧X1 = hx1
1

}
R2 =

{(
(y,αy,αu,αct,αT , rm, rn),(g1,h1,u0,X1,Cy,V,W,Z,ct1,ct2,M1,M2,N1,N2,T1,T2)

)
:

Cy = uy0h
αy

1 ∧V = g−αu
1 X

αy

1 ∧ ct1 = gαct
1 ∧ ct2 = gy1Z

αct

∧M1 = grm1 ∧M2 = grm2 ∧N1 = grn1 ∧N2 = grn2 ∧T1 =MαT
1 ∧T2 =W yNαT

1

}
Figure 4.8: Keyed-verification, multi-opener group signature with verifier-local revocation GS[BGGen,Π,Σ]
parameterized by a bilinear group, a proof system for R1 and signature of knowledge for R2. It makes up the
core primitive of Orca.

83

(2) |Pr[Gb
A = 1]−Pr[Gb

B = 1]|=Advsound
Π,A1,XΠ

(λ)

(3) |Pr[Gb
B = 1]−Pr[Gb

C = 1]|=Advanon
MACGGM,A2,SMAC

(λ)

(4) |Pr[Gb
C = 1]−Pr[Gb

D = 1]|=Advsimext
Σ,A3,XΣ,SR2

(λ)

(5) |Pr[Gb
D = 1]−Pr[Gb

E = 1]|=Adv
indcpa
ElG,A4

(λ)

(6) |Pr[Gb
E = 1]−Pr[Gb

F1 = 1]|= 2 ·Advddh
BGGen,A5

(λ)

(7) |Pr[Gb
F1 = 1]−Pr[GG = 1]|=Advdlin

BGGen,A7
(λ)

Recall the group signature is composed of three components: (i) the identity ciphertext ctid

enclosing the signer’s public key to the opening authority, (ii) the revocation ciphertext ctR enclosing

the revocation token, and (iii) a zero knowledge proof π that (i) and (ii) were constructed properly

with knowledge of a key pair (y,Y) and a MAC t on Y . To remove the dependence of signing on

challenge bit b, our proof steps through each of these components in sequence. Claims 2 and 3 remove

the use of signing key yb in creating (iii) the zero knowledge proof π of a valid MAC. Claims 4 and 5

remove the use of signing key yb in encrypting (i) the identity ciphertext. And lastly, claims 6 and 7

remove the use of signing key yb in constructing (ii) the revocation ciphertext.

Theorem 10. Let GS be the keyed-verification, multi-opener group signature scheme defined in

Figure 4.8 over the bilinear group generated by BGGen. Let MACGGM be the keyed-verification

anonymous credentials scheme from [CMZ14] on G1. Then for any adversary A against the trace-

ability of GS, we give adversary B such that

Advtrace
GS,A(λ)≤Advunf

MACGGM,B(λ)

where A makes at most qu and qver queries to the add user, and verify oracles, respectively, and B

makes at most qu and qver queries to its issue and show verify oracles, respectively.

Proof sketch: We bound the advantage of adversary A by constructing an adversary B that uses

A to win the KVAC unforgeability game [CMZ14, Definition 6] whenever A wins the traceability

game. Adversary B simulates the traceability game for A. The issuer parameters from the KVAC

unforgeability game are set as gmpk, and the Issue and ShowVerify oracles are used to simulate

the actions of the group manager in AddU and Verify.

To simulate issuing a signing key in AddU, B makes a call to the Issue oracle to generate a

84

MAC t and proof π of wellformedness (lines 23-30 of Figure 4.8). To make a call to Issue, B must

send the secret signing key usk. This is fine since B only needs to properly simulate AddU if a

wellformed secret key has been added via KoskX, otherwise B will return ⊥.

To simulate Verify, B runs its ShowVerify oracle on σ with the following added MAC

relation ϕ. The ShowVerify oracle will calculate keyed-verifier values and run the verification

procedure for R2 (lines 83-86 in Figure 4.8). The remainder of Verify, i.e. checking against the

revocation list, can be run directly by B.

ϕ(y)= ct1= gαct
1 ∧ct2= gy1Z

αct∧M1= grm1 ∧M2= grm2 ∧N1= grn1 ∧N2= grn2 ∧ T1=MαT
1 ∧T2=W yNαT

1 .

If A wins the game, then bver = 1 meaning verification passed. This tells us two things. First,

open did not return ⊥, since the only way for open to return ⊥ is if the signature proof verification

fails; this cannot be the case since it is also checked by the verification algorithm. This means that

open returned a upk ̸∈REGU . Second, the signature σ verified under relation ϕ(y), where it was

claimed that ct1 = gαct
1 ∧ ct2 = Y Zαct for some Y = gy1 . However, the call to the open algorithm

returned a upk = Y = ct2/ct
z
1 ̸∈REGU for all y that credentials were issued for. The signature is

then an example of a credential show for which the verification passes but ϕ(y) = 0 allowing B to

win the KVAC unforgeability game.

Theorem 11. Let GS be the keyed-verification, multi-opener group signature scheme defined in

Figure 4.8 over the bilinear group generated by BGGen. Let MACGGM be the keyed-verification

anonymous credentials scheme from [CMZ14] on G1. Then for any adversary A against the non-

frameability of GS, we give adversaries A1 to A4 such that

Advnf
GS,A(λ)≤ qu

(
Advsound

Π,A1,XΠ
(λ)+Advanon

MACGGM,A2,SMAC
(λ)+Advsimext

Σ,A3,XΣ,SR2
(λ)+Advdl

BGGen,A4
(λ)
)

where A makes at most qu queries to the add user oracle.

Proof sketch: We bound the advantage of A by bounding the advantage of each of a series

of game hops. Similarly to as in the anonymity proof, we define G=NFrame
(
GS,Aλ) and define

games GA, GB, GC, and GD that slowly transform the view of the adversary so that signing queries

for a guessed user are no longer dependent on their secret key. Then we will show in the final game

85

GD, if A wins, we can win the discrete logarithm game. The inequality above follows from simple

calculations based on the following claims which we will justify:

(1) Advnf
GS,A(λ) = Pr[G = 1]≤ qu ·Pr[GA = 1]

(2) |Pr[GA = 1]−Pr[GB = 1]|=Advsound
Π,A1,XΠ

(λ)

(3) |Pr[GB = 1]−Pr[GC = 1]|=Advanon
MACGGM,A2,SMAC

(λ)

(4) |Pr[GC = 1]−Pr[GD = 1]|=Advsimext
Σ,A3,XΣ,SR2

(λ)

(5) Pr[GD = 1] =Advdl
G1,p,A4

(λ)

Claim 1: Without loss of generality, assume calls to AddX are made with incrementing indices,

e.g., i= 1,2, . . . ,q. GA is the same as G except it guesses the signing party i on which A’s winning

signature will open to and aborts if it is incorrect. IfA does not win, or if it wins by opening to a upk

that does not belong to user i, then GA sets a badA flag and aborts. This also means GA aborts if

party i is queried to SKU sinceA cannot win on a corrupted user. By an identical-until-bad argument

and the fundamental lemma of game playing [BR06], we have that

Pr[G = 1∧¬badA] = Pr[GA = 1∧¬badA] .

And since GA aborts and outputs 0 when badA is set, we have

Pr[G = 1∧¬badA] = Pr[GA = 1] .

Then, we have

Pr[GA = 1] = Pr[G = 1∧¬badA]

= Pr[¬badA] ·Pr[G = 1] (1)

where (1) holds because the condition to set badA is independent of the rest of the game G.

Lastly since the party is guessed at random, the probability that the guess is correct and badA is

not set is at least

Pr[¬badA]≥
1

qu
.

86

Claims 2-4: The arguments and game hops for claims 2-4 follow analogously to the same claims in

the anonymity proof.

Claim 5: Observe that in GD, the secret key y of signing user i is not used. Yet to win GD, the

adversary A must produce a verifying signature that opens to Y . Since the extractor for the signature

proof did not fail, we have that it will correctly extract y where Y = gy. We build an adversary A4

for the discrete logarithm game that wins whenever A wins by setting the signing user’s public key

Y to the discrete logarithm challenge element and returning the extracted value y.

4.3.4 Outsourced Blocklisting from Group Signatures

Given a keyed-verification, multi-opener group signature with verifier-local revocation, we build

our core protocol, detailed in Figure 4.9. The platform plays the role of the group manager. Users

register with the platform as both a user of the group and as an opening authority, receiving keys

(uski,oaski). For user i to send a message to user j, assume for now that user i has user j’s public

keys (upkj ,oapkj). We will describe how user i obtains these keys shortly.

User i signs their message with uski under the group signature scheme designating oapkj as the

opening authority. The platform verifies the anonymous group signature against user j’s revocation

list, and if it verifies, delivers the message and signature to user j, who can then identify the sender,

upki, by opening the signature. Users can blocklist a sender upki to the platform by generating a

revocation token under their opening authority key oaskj and sending it to the platform. Anonymity

of the group signature and revocation tokens ensure that the platform does not learn sender identity

information from messages or from the blocklist; and traceability and non-frameability ensure

recipients will be able to properly attribute received messages to a sender.

To achieve our stronger sender anonymity goal, user i must be able to read the public key

information of user j needed to start a conversation without revealing their own identity to the

platform. Since public key information is not sensitive, the platform can provide unrestricted access

to PKI lookups that do not require user authentication. Note that the platform can observe the number

of lookups to a recipient’s public key, but learns no information on which users are making those

lookups.

87

Protocol: Orca Outsourced Blocklisting Protocol
Setup:

(1) Public parameters for the group signature scheme are generated, pp←$GS.Setup(λ).

(2) The platform initializes its state as the group manager of the group signature scheme.

(a) (gmpk,gmsk)←$GS.KeygenppGM()

(b) TU ← [·]: Table tracking user public keys.

(c) TR← [·]: Table tracking user revocation tokens.

Registration:

(1) User registers with platform to acquire group signature signing key with which to send messages,
JoinUGSppU ↔ GS.IssueUpp

GM. User stores usk and platform stores upk.

(2) User registers as opening authority and generates keys with which to receive messages,
GS.JoinOApp

OA↔ GS.IssueOApp
GM. User stores oask and platform stores oapk.

(3) Platform stores public keys in TU [upk]← oapk.

(4) Platform initializes empty revocation token list for user, TR[oapk]← [·].

Sending a message:

(1) [Optional] Sender anonymously requests recipient public key (oapk) and/or rate-limited pre-
keys from platform.

(2) Sender signs message specifying the recipient as the opening authority (with recipient’s oapk),
σ←$GS.SignppU (usk,gmpk,oapk,m). Sender sends message, signature, and recipient to
platform, (m,σ,oapk).

(3) Platform checks validity of signature against recipient’s revocation list,
b← GS.VerppGM(gmsk,oapk,TR[oapk],m,σ). If b = 1, then platform delivers (m,σ) to
recipient.

Blocklisting a user:

(1) Recipient generates and sends anonymous revocation token to platform,

(a) upk← GS.OpenppOA(oask,m,σ)

(b) τR←$GS.RevokeppOA(oask,upk)

(2) Platform adds revocation token to recipient’s blocklist, TR[oapk]← TR[oapk]∪{τR}.
(3) [Optional] Recipient stores identities of blocklisted senders and/or reports sender identity to

platform.

Figure 4.9: Core protocol based on group signature.

4.4 Extending Blocklisting with One-time Use Tokens

In this section, we describe how to reduce Orca’s reliance on its core group signature protocol.

Instead of creating and verifying a group signature for every message sent, the group signature will

only be used periodically to mint new batches of one-time use sender tokens from the platform.

Messages can be sent, with very little cost, by including a valid token for a recipient. Furthermore,

once communication with a recipient has been established, a recipient can replenish a sender’s tokens

88

directly in a return message, avoiding the need to mint more token batches from the platform. The

protocol is detailed in Figure 4.10.

Blinded MACs as one-time use tokens. We want that a sender can anonymously mint a batch of

tokens for a recipient from the platform. The platform should not be able to link the tokens (when

they are spent) to the time of minting. To realize this, we again turn to algebraic MACs used by

keyed-verification anonymous credentials [CMZ14]; we use MACGGM. Each user generates a MAC

secret key sk← (x0,x1) ∈ Z2
p and sends it to the platform. A valid MAC on input ν ∈ Zp is of the

form,

t← (u0,u1 = ux0+x1ν
0) u0←$G1 .

To blindly evaluate a MAC on input ν, a user generates a random ElGamal key pair (γ,D = gγ1) and

encrypts gν1 to D,

ct = (ct1 = gr1,ct2 = gν1D
r) r←$Zp .

The user blinds a batch of inputs [ν]i in this manner, creates a group signature σ over [ct]i designating

the recipient as the opening authority, and then sends (σ, [ct]i,D) to the platform. The platform

verifies the group signature under the recipient’s revocation list, and if verification succeeds, proceeds

with the blind evaluation using the recipient’s MAC secret key. By the homomorphic properties of

ElGamal, the platform can maul ct to form ct′ as an encryption of a valid MAC on ν without ever

learning anything about ν,

ct′ = (ctx1·b
1 gr

′
1 ,ct

x1·b
2 ux0

0 Dr′) u0← gb1 b,r′←$Zp .

The full details of the blind MAC evaluation is given in Figure 4.11. The user decrypts ct′ to learn

u1 and stores token τ ← (ν,t= (u0,u1)) as the input, tag pair.

To send a message, the user sends the message to the platform along with an unused token τ for

the recipient. The platform checks that the token (ν,t)← τ is unused, i.e., ν is not in the strikelist

of used tokens for a recipient, and that the token is valid, i.e., the MAC t is valid for ν under the

recipient’s MAC key. If those checks pass, the platform delivers the message along with the token τ

to the recipient and adds ν to the recipient’s strikelist.

However, the recipient has no way identifying the sender from the token τ . The generation of τ

89

was (necessarily) blinded to prevent linking by the platform, but that also prevents linking by the

recipient.

Allowing a recipient to link tokens to senders. Senders must communicate to the recipient the

unblinded inputs ν for which they are minting tokens. They do this by additionally encrypting the

input ν to the recipient under the recipient’s public key Z,

ĉt = (ĉt1 = gr̂1, ĉt2 = gν1Z
r̂) r̂←$Zp ,

and proving in zero knowledge that the input ν enclosed in the blinded ciphertext ct is the same as

that enclosed in the ciphertext ĉt to the recipient (details highlighted in Figure 4.11). The sender signs

the batch of recipient ciphertexts [ĉt]i under the group signature with the recipient as the designated

opening authority. As before, if the signature σ verifies under the recipient’s revocation list, the

platform proceeds with blind evaluation, but also sends (σ, [ĉt]i) to the recipient.

The recipient opens σ to the sender’s identity upk, then decrypts and stores the token identifiers

[gν1]i. Later when a recipient receives a message and token (ν,t)← τ from the platform, they can

link the token to the sender by looking up gν1 . To block a sender, the recipient generates and sends

the revocation token for the sender’s upk to the platform so the sender cannot mint new tokens, as

well as sends the sender’s remaining unused tokens [gν1]i to add to the strikelist.

Replenishing tokens directly from the recipient. The motivation for one-time use tokens was to

avoid the cost of the more expensive group signature for every message. However, in some sense,

the gain from not running the group signature for every message is offset by the upfront cost of

generating a proof to mint each token. While there are optimizations that can be made when batching

proofs in this manner [HG13], this is still an unsatisfying result.

The real efficiency gain from one-time use tokens is when senders can replenish their tokens

directly from the recipient, without going through the blind minting process with the platform. Once

two users have established sender-anonymous communication, they can use their own secret MAC

keys to generate and exchange tokens directly at very little cost.

Summary. In this protocol, the core group signature is used only to initiate conversations and mint

the first batch of tokens. Once conversation has been established, messages can be exchanged and

90

Protocol: Orca with One-time Use Tokens

Setup:

(1) Public parameters for the group signature scheme, alge-
braic MAC scheme, and public key encryption scheme
are generated, pp←$GS.Setup(λ), ppM←$MAC.Setup(λ),
ppPKE←$PKE.Setup(λ).

(2) The platform initializes its state as the group manager of the group
signature scheme.

(a) (gmpk,gmsk)←$GS.KeygenppGM()

(b) TU ← [·]: Table storing user public keys.

(c) TR← [·]: Table storing user revocation tokens.

(d) Tk ← [·]: Table storing user token MAC key and encryption key.

(e) Tτ ← [·]: Table storing strikelist of previously-used tokens for
user.

Registration:

(1) User generates keys for protocol and initializes recipient state:

(a) User registers with platform to acquire group signature
signing key with which to send messages, GS.JoinUpp

U ↔
GS.IssueUpp

GM. User stores usk and platform stores upk.

(b) User registers as opening authority and generates keys with
which to block senders, GS.JoinOApp

OA↔ GS.IssueOApp
GM.

(c) User generates algebraic MAC key used for creating sender
tokens, (tsk,tpk)←$MAC.KeygenppM(), and sends both tsk

and tpk to platform.

(d) User generates keys for public key encryption scheme,
(ek,dk)←$PKE.Keygen(), stores dk and sends ek to platform.

(e) User initializes two tables, Tx and T−1
x , to identify (and block-

list) senders and their associated sender tokens.

(2) Platform stores keys and initializes table entries for user:
TU [upk]← (oapk) ; Tk [oapk]← (tsk,tpk,ek)

TR[oapk]← [·] ; Tτ [oapk]← [·]

Sending a message:

(1) Sender selects unused sender token for recipient and sends message,
token, and recipient, (m, τ,oapk), to platform.

(2) Platform checks if token (x,t)← τ is valid under recipient’s MAC
key (tsk,tpk,ek)← Tk [oapk] and if token was not already used
(i.e., is not on strikelist).
b1←MAC.VerppM(tsk,x, t)

b2← (x ̸∈ Tτ [oapk])

If b1 = 0 or b2 = 0, platform aborts.

(3) Platform adds token to strikelist, Tτ [oapk]← Tτ [oapk]∪{x}.
(4) Platform forwards message and token value, (m,x), to recipient.

(5) Recipient removes token from list of valid tokens for sender,
Tx[T

−1
x [x]]← Tx[T

−1
x [x]]\{x}; T−1

x [x]←⊥.

Acquiring sender tokens (from platform):

(1) [Optional] Sender anonymously requests public key information,
(oapk,tpk,ek), for desired recipient from platform.

(2) Sender authenticates to platform as a non-blocklisted sender for the recipient
using a group signature.

(a) Sender signs set of recipient ciphertexts [ĉt]i (constructed in (3))
with recipient as opening authority, and sends (σ,oapk) to platform,
σ←$GS.SignppU (usk,gmpk,oapk, [ĉt]i).

(b) Platform checks validity of signature against recipient’s revocation list,
b ← GS.VerppGM(gmsk,oapk,TR[oapk], [ĉt]i,σ). If b = 0, then plat-
form aborts.

(3) Sender engages in token generation protocol with platform.

(a) Sender samples m inputs, [x]mi ←$MAC.In(λ)m.

(b) Sender encrypts inputs to recipient, ĉti←$PKE.Enc(ek,xi).

(c) Sender and platform engage in MAC blind evaluation for each to-
ken, MAC.BlindInpppM(tpk,xi)↔MAC.BlindEvppM(tsk), for recip-
ient keys (tsk,tpk,ek)← Tk [oapk]. Sender also sends proof that the
input used in the MAC protocol is properly well-encrypted in the cipher-
text to the recipient:
πi←$Π{xi :MAC.BlindInpppM(tpk,xi)

∧ cti = PKE.EncppPKE(ek,xi)}
If πi does not verify, platform aborts the blind MAC protocol.

(d) If blind MAC protocol succeeds, sender receives MAC ti as output and
stores token, τi← (xi, ti).

(4) Platform sends (σ, [ĉt]mi) to recipient.

(5) Recipient stores tokens to later identify sender.

(a) Recipient traces sender, upk← GS.OpenppOA(oask, [ĉt]i,σ).

(b) Recipient decrypts token ciphertexts and stores tokens.
xi← PKE.DecppPKE(dk, ĉti)

Tx[upk]← Tx[upk]∪ [x1, . . . ,xm] ; T−1
x [xi]← upk

Acquiring sender tokens (from recipient):

(1) Recipient samples m inputs, (x1, . . . ,xm)←$MAC.In(λ)m, and MACs
them, ti←MAC.EvppM(tsk,xi).

(2) Recipient sends tokens τi← (xi, ti) to sender associated with upk out-of-
band or via secure channel.

(3) Recipient stores tokens to later identify sender.
Tx[upk]← Tx[upk]∪{x1, . . . ,xm} ; T−1

x [xi]← upk

Blocklisting a user:

(1) Recipient looks up sender identity associated with token, upk← T−1
x [x],

and generates revocation token, τR←$GS.RevokeppOA(oask,upk). Recip-
ient sends revocation token along with list of remaining sender tokens for
sender to platform, (x1, . . . ,xm)← Tx[upk].

(2) Platform updates blocklist state by adding revocation token to blocklist and
remaining tokens to strikelist.
TR[oapk]← TR[oapk]∪{τR}
Tτ [oapk]← Tτ [oapk]∪{x1, . . . ,xm}

Figure 4.10: Hybrid protocol based on group signature and tokens.

91

MACGGM.BlindInpppM(pk,x,oapk,min : st)

(X1,Cx̃0
)← pk ; (W,Z)← oapk

If min ==⊥ do
(γ,r)←$Z2

p ; D← gγ1
ct1← gr1 ; ct2← gx1D

r

r̂←$Zp ; ĉt1← gr̂1 ; ĉt2← gx1Z
r̂

π← Π3.Prove((x,r, r̂),(g1,D,Z,ct1,ct2, ĉt1, ĉt2))

mout← (D,ct1,ct2,ĉt1, ĉt2,π)

st← (γ,ct1,ct2)

Return (mout,cont,st)

(ct′1,ct
′
2,u0,Xb,π)←min

(γ,ct1,ct2)← st

b← Π4.Ver((g1,h1,X1,Xb,Cx̃0
,gγ1 ,u0,ct1,ct2,ct

′
1,ct

′
2),π)

If b== 0 then return (⊥,reject,st)
u1← ct′2/ct

′γ
1 ; t← (u0,u1) ; st← t

Return (⊥,accept,st)

BlindEvMACGGM
ppM(sk,oapk,min : st)

(x0,x1, x̃0)← sk ; X1← hx1
1 ; Cx̃0

← gx0
1 hx̃0

1 ; (W,Z)← oapk

(D,ct1,ct2,ĉt1, ĉt2,π)←min

b← Π3.Ver((g1,D,Z,ct1,ct2, ĉt1, ĉt2),π)

If b== 0 then return (⊥,reject,st)
b←$Zp ; r′←$Zp ; b1← x1 · b
u0← gb1 ; Xb←Xb

1

ct′1← ctb11 gr
′

1 ; ct′2← ctb12 ux0
0 Dr′

π←$Π4.Prove((x0,x1, x̃0, r
′, b,b1),

(g1,h1,X1,Xb,Cx̃0
,D,u0,ct1,ct2,ct

′
1,ct

′
2))

mout← (ct′1,ct
′
2,u0,Xb,π)

st← (ĉt1, ĉt2)

Return (mout,accept,st)

R3 =
{(

(x,r, r̂),(g1,D,Z,ct1,ct2, ĉt1, ĉt2)
)
: ct1 = gr1 ∧ ct2 = gx1D

r ∧ ĉt1 = gr̂1 ∧ ĉt2 = gx1Z
r̂}

R4 =
{(

(x0,x1, x̃0, r
′, b,b1),(g1,h1,X1,Xb,Cx̃0

,D,u0,ct1,ct2,ct
′
1,ct

′
2)
)
:

Cx̃0
= gx0

1 hx̃0
1 ∧X1 = hx1

1 ∧Xb =Xb
1 ∧Xb = hb11 ∧u0 = gb1∧ ct′1 = ctb11 gr

′

1 ∧ ct′2 = ctb12 ux0
0 Dr′}

Figure 4.11: Modified blind evaluation of algebraic MACs for token generation used in the extension of Orca
with one-time tokens using proof systems Π3 and Π4 for relations R3 and R4, respectively.

tokens can be replenished at almost no cost, beyond storage. With regards to storage, users must

maintain lists of unused tokens in order to send messages and identify senders of received messages.

The platform also needs to maintain an ever-growing strikelist for each user; in practice, users will

need to periodically rotate their keys to refresh the platform strikelist, but can ensure that they have

distributed tokens for the new key prior to doing so.

Using tokens does leak some information about user communication patterns in a nuanced way.

An example might be that if senders need to often mint tokens from the platform for a particular user,

the platform can infer that user is not active in responding and replenishing sender tokens.

A second nuance is that in both our scheme and the token strawman [Lan16, LP16] presented in

Section 4.1, the message ciphertext of a sender is not bound to the token. The platform can forward

the sender’s token to the recipient, but swap out the ciphertext, so the recipient will incorrectly

attribute it to the sender. The impact of such an attack is not large if the underlying E2EE protocol

provides message authentication.

Despite these nuances, we feel Orca with one-time use tokens represents an attractive design

92

Operation Platform User (Desktop client) User (Mobile client)

Sender Recipient Sender Recipient

Sealed sender – 0.50 (0.02) 0.50 (0.02) 6.6 (0.2) 6.6 (0.2)

Orca mint tokens with group signature 11.2 (0.2) 10.8 (0.1) 9.7 (0.2) 131.7 (0.8) 117 (2)

+ cost per token minted 7.60 (0.09) 8.50 (0.08) 0.30 (0.01) 105.2 (0.9) 3.3 (0.1)

+ cost per blocked user 1.70 (0.04) – – – –

send message with token* 0.30 (0.01) 0.80 (0.02) – 10.0 (0.2) –

*Steady-state cost of sending a message with a token that includes cost of replenishing one token

Figure 4.12: Processing time (ms) microbenchmarks of user and platform operations for Orca compared to
sealed sender. Mean time is given with standard deviations shown in parentheses. Dashes indicate an operation
that has negligible cost (e.g., a table lookup).

choice.

4.5 Evaluation

This section aims to evaluate the feasibility of deploying Orca at scale. Specifically, we answer the

following questions:

• Client costs: What are the processing and storage costs that Orca incurs on user clients?

• Platform costs: What are the processing and storage costs incurred on the platform? What

throughput (user activity) can be reasonably supported given these costs?

• Bandwidth costs: How large are Orca protocol messages? What additional networking costs

does Orca introduce?

To answer these questions, we provide a prototype library in Rust of our group signature and

token-based scheme. Our implementation is over the BLS12-381 pairing-friendly elliptic curve and

uses the zexe/algebra Rust pairing library [BCG+20a]. We instantiate the proofs of knowledge

using standard Sigma protocols of discrete logarithm relations [Cam98] made non-interactive using

the Fiat-Shamir transform [FS86]. Our implementation consists of less than 1400 lines of code and is

available open source at https://github.com/nirvantyagi/orca.

The experiments, including the microbenchmarks given in Figure 4.12, were performed using a

c5.12xlarge Amazon EC2 virtual machine with 24 cores and 96 GB of memory running Ubuntu

Server 20.04 LTS as the platform and desktop client (single-core) and on a Google Pixel device

running Android 9 as the mobile client. The platform is implemented using an in-memory Redis

database for storing revocation blocklists and token strikelists.

93

https://github.com/nirvantyagi/orca

0 8 16 240

50

100

ra
te

 (r
eq

ue
st

s /
 s) mint requests

0 8 16 24

10000

20000

30000
send requests

0.0 0.2 0.4 0.6 0.8 1.0
hardware parallelism (# of cores)

0.0

0.5

1.0

Figure 4.13: Platform request throughput for different levels of hardware parallelism over a one million user
deployment with blocklists of size 100 and strikelists of size 1400. Each mint request corresponds to a request
to mint a batch of 10 tokens.

When evaluating Orca, recall that users can replenish their token supply directly from the

recipient provided there is back and forth communication. Thus, we make the distinction between

“initialization costs” of minting an initial token batch from the platform and the “steady-state costs”

that occur when tokens are replenished directly from the communicating partner. We expect the

majority of user communication to be in steady-state where costs are low.

Client costs. Clients must store, for each of their communicating partners, two lists of unused tokens,

one for sending messages and one for identifying received messages. These tokens are not large

(240B) and the lists can remain small as they can be replenished on next communication. Say a user

has 200 communication partners and stores 20 tokens per list. This setup would incur ∼ 1MB for the

client.

The bulk of the processing costs incurred by Orca are concentrated at initialization when a client

mints an initial batch of tokens to start a conversation. On a mobile client, minting an initial batch of

tokens takes∼ 150 ms for the group signature and an additional∼ 100 ms for each token in the batch

(see Figure 4.12). This means it takes around 1 second for a sender to mint 10 tokens. While these

costs are significant, we stress that a user only needs to mint enough tokens to initiate a conversation

and await a response. If a response from a recipient is delayed, more tokens can be minted as needed.

Once a conversation with back-and-forth communication is established, the amortized steady-state

cost of sending a message is in creating a new token to replenish the recipient, which is done at very

little cost (∼ 10 ms) — approximately the same as sealed sender.

Platform costs. The platform stores per-recipient revocation blocklists and token strikelists. The

revocation lists are on the order of 100B / revoked user; e.g., a recipient that has blocked 100 users

94

would require a revocation list of size 10KB to be stored. We do not anticipate revocation lists to

grow too large, since the platform has other mechanisms to ban users globally. In any case, a platform

can impose limits on the size of revocation lists if necessary.

The per-recipient strikelists would grow in size with every message a user sends (32B / spent

token). One can use Bloom filters or other data structures to compress the size of the strikelist as well

as enforce periodic key rotations to reset its size. If each user sends ∼ 100 messages per day and

token keys are rotated every two weeks, the platform can store a strikelist of ∼ 5KB per user with a

false positive rate of 10−6. Note the false positive rate can be traded off with storage size; messages

that get rejected due to false positives will result in an error returned to the anonymous sender, who

may resend with a different token.

The processing costs of the platform are similarly dominated by the token mint requests for

initializing conversation as opposed to send requests during steady-state conversation. A request to

mint a batch of 10 tokens given a recipient blocklist size of 100 takes ∼ 200 ms to complete whereas

a send request is just a simple algebraic MAC verification and strikelist lookup taking < 1 ms (see

Figure 4.12).

Figure 4.13 demonstrates these workloads are easily parallelizable to achieve high levels of

throughput. In this experiment, we run the platform with one million users, each with a blocklist of

size 100 and a strikelist of size 1400 (100 messages/day/two weeks), and measure the rate at which

the platform can process requests for different levels of hardware parallelism. We do not implement

the Bloom filter optimization, so the Redis database stores ∼ 50KB per user (50GB total), which can

still easily fit in memory. The computationally expensive mint requests parallelize with essentially no

loss, reaching a rate of 80 requests (for 10 token batches) per second on 24 cores. The inexpensive

send requests also parallelize but top out at around 30000 requests per second on 12 cores, which

is bottlenecked by the operation throughput of a single Redis database and can be unblocked via a

different database setup if needed (e.g. through sharding). The achieved bottlenecked throughput

already demonstrates feasibility.

Bandwidth costs. Minting a token requires sending the group signature (1.6KB) and exchanging

proofs for each token to be minted (0.7KB / token). These costs extend to the recipient who receives

the signature and also a ciphertext for each token minted (0.2KB / token). Apart from these initial-

95

ization costs, the steady-state bandwidth costs of sending a message, once again, compare quite

favorably with sealed sender. In the steady state, the amortized bandwidth overhead of sending a

message would be two tokens (240B / token) — the token being spent and the token being created to

replenish the recipient. Thus we can achieve amortized per-message overheads of only 30B compared

to sealed sender (450B / message).

96

CHAPTER 5

VERIFIABLE PUBLIC KEY INFRASTRUCTURE

A number of systems have demonstrated the promise of transparency as a means to enhance

security, most prominently the Certificate Transparency protocol first launched in 2013 [LLK13,

Lau14]. The goal of transparency systems is to ensure that an authority’s behavior can be monitored

by users. Typically, misbehavior by the authority is not prevented but is detectable. The implicit

assumption is that large, public-facing authorities are potentially malicious (or compromised) but

are cautious: they are unwilling or at least extremely hesitant to carry out any attack that will leave

public evidence.

Transparency has been proposed in a number of other security contexts, including user-public

key mappings in encrypted communication systems [Rya14, MBB+15], usage of cryptographic

keys [YRC15], and distribution of software binaries [FDP+14, NKJ+17, AM18]. Verifiable reg-

istries [CDGM19, MKL+20] are an abstraction capable of providing transparency for the key-value

mappings required for all of these applications. Without such a transparency solution, the only defense

against malicious behavior by the authority (or provider) is out-of-band cross-checking of the author-

ity’s behavior (e.g. checking the fingerprints of downloaded public keys), an error-prone process which

the vast majority of users neither understand nor attempt [DSB+16, TBB+17, VWO+17, ASB+17].

Client monitoring and auditing. Verifiable registries provide lookup proofs (or binding proofs) that

prove the results of a lookup are consistent with the committed state of the registry at a particular

epoch. These lookup proofs can be monitored by users to detect any unexpected changes. Typically

there is no well-defined notion of correctness for a specific registry mapping as the authority is trusted

to update mappings when needed (e.g. account recovery for a user who has lost their private key).

Thus, monitoring is inherently a process specific to each mapping and/or user.

By contrast, auditing is the process of ensuring that the entire registry is well-formed and

maintains promised invariants across epochs. Unlike monitoring, auditing can be fully automated,

with any violation by the provider producing unambiguous cryptographic proof of misbehavior. Early

constructions propose clients directly perform audits in every epoch [LLK13, Rya14, MBB+15]. As

this approach incurs large overhead which is linear in the number of epochs, later proposals instead

suggest outsourcing auditing of global registry invariants (such as update counts) to a third party.

97

This enables clients to monitor their own key-value mapping at a lower frequency, with significant

cost savings [MBB+15, CDGM19, MKL+20, TBP+19, HHK+21].

However, this assumes suitable trusted parties exist which can regularly perform expensive

global audits. One could rely on the validation process underlying existing blockchain infrastructure

(in particular, by implementing auditing in a smart contract [Bon16]), but this may result in large

transaction fees. In this paper, we focus on solutions that rely on general-purpose, application

agnostic, trusted infrastructure. In particular, we can instantiate our solutions assuming the existence

of a trusted bulletin board, which can be shared with a number of different applications, and which

will provide a consistent (or eventually consistent) mapping between an epoch number i and a

commitment di to the state of the registry at epoch i. Apart from this, our solutions will be client

auditable, in that the client themselves verify global registry invariant proofs.

The challenges of IVC-based client auditability. A natural starting point to build client-auditable

verifiable registries is to use incrementally verifiable computation (IVC) [Val08] via recursive

proofs [BCCT13, BCTV14], following e.g. [CCDW20]. IVC enables the server to supply a com-

mitment di to the state of the registry at epoch i, along with a succinct proof πi that di represents

a state which evolved from a genesis state d0 through a sequence of transitions which preserve the

registry’s invariants. Clients can efficiently verify these invariant proofs on their own, without relying

on dedicated third-party invariant auditors.

However, IVC proofs are, by themselves, not sufficient.Two users may come online at different

epochs i and j and receive invariant proofs πi and πj , along with commitments di and dj to different

states of the registry. An IVC proof attests to invariant preservation for updates across some sequence

of intermediate states leading to the states represented by di and dj , respectively, but without additional

verification, there is no guarantee that the intermediate states attested to in πi and πj are consistent

with each other. To ensure that this is the case, a bulletin board could store the commitments d1,d2, . . .,

along with a hash chain h0,h1,h2, . . ., where hi =H(hi−1,di) for some hash function H . Third-

party auditors are responsible for verifying hash chain consistency, and the IVC proof πi would attest

that hi commits to the unique hash sequence of valid registry states appearing on the bulletin board.

In practice, hash chain verification is only slightly more expensive than maintaining a bulletin

board. A more important obstacle with IVC solutions is that generating invariant proofs is computa-

98

tionally expensive. Merkle trees are the predominant data structure for implementing an authenticated

dictionary (AD) in existing verifiable registries [MBB+15, CDGM19, MKL+20]. Proving the in-

variant for a sequence of updates typically corresponds to verifying consistency of a sequence of

Merkle paths. To achieve succinctness through IVC, the verification of Merkle paths is done within

a succinct proof (in particular, a SNARK [Gro10, GGPR13]). However encoding the Merkle path

verification into a circuit representation suitable for SNARKs results in a large circuit and concretely

expensive proving times, ultimately translating to a verifiable registry with low update throughput

(< 5 key updates/second). In contrast, the Certificate Transparency ecosystem requires throughput of

approximately 60 key updates per second.

Our contributions. We aim to provide new verifiable registries which overcome the update through-

put bottlenecks in IVC based solutions. Our new solutions will rely on the use of an RSA-based

authenticated dictionary. Our main insight is a new cryptographic approach to produce succinct

invariant proofs for large sequences of updates to an authenticated dictionary based on the KVaC

key-value commitment construction from [AR20], opening up its use in the verifiable registry setting.

We then use our new insights to provide two systems, which we refer to as VeRSA-IVC and

VeRSA-Amtz. In VeRSA-IVC, we show how KVaC and our new succinct proof can be combined

with IVC to allow the server to produce succinct invariant proofs for client auditability at much higher

throughput (∼ 10-100× greater) than applying IVC to Merkle tree-based registries: the invariant

proofs for the RSA dictionary encode as a constant-size circuit regardless of the number of updates,

as opposed to a circuit linear in the number of updates for Merkle tree dictionaries (i.e., a Merkle

path for each update), resulting in faster SNARK proving times.

Our second system, VeRSA-Amtz, provides instead a new amortized proving approach that

dispenses with the need for IVC/SNARKs entirely, resulting in the first construction for efficient

client auditability without IVC or generic SNARKs. We discuss in our related work section why prior

solutions fall short of achieving this. Succinct invariant proofs for RSA authenticated dictionaries

can be precomputed for carefully chosen sequences of updates over the lifetime of the registry in

such a way that expensive computations for long sequences do not occur often, and any sequence of

updates queried by a client can be served via a small number of precomputed invariant proofs for

contiguous sequences. This alternate non-IVC approach enables even higher throughput in some

99

deployment contexts.

A novel challenge with VeRSA-Amtz is ensuring view consistency, as recursive SNARKs

inherently gave us an easy solution via the use of hash chains. To this end, we introduce a new model

of client-based auditing based on checkpointing. When a client comes online, they select a short

(sublinear) sequence of checkpoint states between the current state and the state from when they were

last online. The client can obtain a consistent view of the checkpoint digests thanks to the bulletin

board, and then requests and verifies succinct proofs that the registry invariant is preserved between

this sequence of checkpoints. Any two clients that individually perform these audits (over different

checkpoint sequences) are guaranteed to have a consistent view up to their latest shared checkpoint;

checkpoints are chosen so that two clients are guaranteed to have a shared checkpoint that is not too

far behind their latest time online.

Our new auditing model relaxes consistency guarantees from previous approaches by allowing

clients to temporarily accept an inconsistent state: the inconsistency is detected when the shared

checkpoint catches up. But on the other hand, it enables clients to maintain eventually consistent

views without expensive linear work and without relying on recursive SNARKs.

While our new proof techniques for RSA authenticated dictionaries allow for constructing client-

auditable verifiable registries at high update throughput, computing lookup proofs for individual

key-value mappings is more costly, naively requiring work linear in the size of the registry. We

provide some deployment optimizations that help alleviate these costs with batching and caching, but

ultimately this limitation means our RSA-based verifiable registries are better suited to transparency

applications that need only maintain mappings on the order of millions, rather than Merkle tree

approaches which can easily provide lookup proofs for billions of mappings. Nevertheless, examples

of such settings where our constructions are immediately applicable include binary transparency (as

of Jan 2022, Google Play Store included 3.3 million apps and Apple App Store included 2.1 million

apps whereas Ubuntu’s main repository included 106 thousand packages) or smaller messaging

services such as Signal (40 million users). We demonstrate how our systems scale with increased

resources, but new techniques or improved scaling through specialized hardware [SHT21, ZWZ+21]

will likely be needed to make client-auditable verifiable registries practical for larger applications

like Certificate Transparency (340 million domains) or WhatsApp (2 billion users).

We will present our results as modularly as possible, following the roadmap illustrated in

100

Authenticated dictionaries (AD) supporting update proofs
Merkle tree AD RSA accumulator-based AD

AD to AHD transforms
IVC / SNARK recursion Amortized update proofs

Auditing mechanism
Bulletin board +

hashchain verification
Bulletin board +

client checkpointing

Authenticated history dictionaries
MT-AHD-IVC RSA-AHD-IVC RSA-AHD-Amtz

Verifiable registries with efficient client audits
MT-VR-IVC VeRSA-IVC VeRSA-Amtz

Figure 5.1: Overview of approaches to building verifiable registries efficiently auditable by clients. The
highlighted boxes correspond to our new techniques and constructions, resulting in our two proposed verifiable
registries, VeRSA-IVC and VeRSA-Amtz. The MT-VR-IVC verifiable registry can be considered as a baseline
solution proposed in previous work [CCDW20]. We denote that the IVC-based registries can be instantiated
via hashchain verification or via our new client checkpoint auditing mechanism.

Figure 5.1. In particular, we will start with the abstraction of an authenticated dictionary (AD)

with an efficient invariant update proof, for which we provide an RSA instantiation by combining

KVaC with our new update proofs. Then, we will show how to generically enhance such an AD

into an authenticated history dictionary (AHD) which additionally allows for invariant proofs over

the history of the dictionary, either via IVC or via our new amortization technique. Finally, we will

combine the resulting AHDs with different trusted auditing mechanism (a plain bulletin board or one

additionally verifying hash chains) to obtain our final systems.

Related work.

Registries from Merkle trees. Most previous proposals for verifiable registries (under various names)

are constructed via Merkle trees and require auditors to do work linear in the total number of updates

to the registry per epoch (at least one Merkle path verification per update) [BCK+14,KHP+13,Lau14,

Rya14, CDGM19, MBB+15, MKL+20]. An exception is Merkle2 [HHK+21] which reduces the

per-epoch work of auditors to be logarithmic in the number of key updates; auditors verify a single

Merkle extension proof. Merkle2 fundamentally relies on a stronger assumption called signature

chains in which key updates must be signed by an authorization key not controlled by the server.

101

This security policy does not allow users to recover if the authorization key is lost or compromised

and hence may not be suitable for some deployments. In fact, in typical end-user applications it

is a requirement that the server can unilaterally change a user’s public key – a property needed

for users to recover access if they lose their current device (and private keys) [MBB+15]. We note

that in applications where this restricted key update policy is applicable, Merkle2 can be adapted

using our amortized proving transform along with checkpoint auditing to construct an extremely

efficient registry supporting efficient client audits (given a bulletin board); the Merkle extension

proofs provide succinct invariant proofs for AD updates.

Privacy of registry contents has also been considered in prior work. Techniques to keep

lookup keys private using verifiable random functions and lookup values private using commit-

ments [MBB+15, EMBB17] can be adapted directly to all of our constructions. While we do not

consider other privacy notions such as hiding total directory size and update patterns [CDGM19],

RSA accumulators may be better suited to this task than Merkle trees [BCD+17]; we leave further

investigation to future work.

Registries from algebraic accumulators. There are a few proposals using non-Merkle-based ADs.

[TBP+19] and Aardvark [LGG+22] use bilinear pairing-based accumulators: [TBP+19] admits

succinct invariant proofs (logarithmic in the number of updates) which makes it a candidate for

our amortized proving transform, however it is concretely expensive, while Aardvark, like Merkle-

based approaches, provides linear invariant proofs (Aardvark improves parallelism of updates). RSA

accumulators have also been proposed to construct registries with constant-sized verification work

per epoch [BBF19, TXN20]. [BBF19] is not concretely efficient, requiring dictionary values to be

committed bit-by-bit. [TXN20] propose a construction similar to [AR20] (both building on the line of

work of [CF13,LM19]) but with two downsides: (1) Updating the digest requires computing an update

hint which is similar in complexity to lookup proofs, and (2) the proposed invariant proof verifies that

a dictionary contains a superset of keys of another dictionary, but does not verify properties about the

mapped values of keys over time (a property necessary for our applications). In contrast, we build on

the RSA AD of [AR20] which does not require update hints, and we propose invariant proofs for the

versioned and append-only invariants allowing verifiable updates of a key’s mapped value.

Regarding proving updates of values, [OWWB20] and [CFH+22] provide techniques for proving

102

batch updates to an RSA accumulator with respect to a committed batch. [CFH+22] improves

over [OWWB20] by moving expensive linear-in-batch-size computation “out of” the generic SNARK.

In our treatment of the verifiable registry setting, it is not necessary to prove that a specific set of keys

were updated at each epoch (with respect to a committed batch of keys), rather only that all keys

preserve the update invariant. Were this property desired, it may be possible to adapt these techniques

to the authenticated dictionary primitive.

Applying SNARKs to registries. Verifiable computation [BFR+13,LNS20,SAGL18] using SNARKs

has also been proposed to lower per-epoch auditing costs by either (1) producing a succinct proof

attesting to the updates for each epoch (so-called ZK rollups) [But, WGH+] or (2) producing a

recursive proof attesting to updates across all epochs committed in a hash chain [CCDW20,TKPS22].

These approaches require per-epoch auditors to perform only a SNARK verification or a simple hash

verification, respectively. (Verdict [TKPS22] requires an inexpensive constraint accumulation check

in addition to hash verification.) Swapping in our RSA AD (and invariant proof) over a Merkle-based

AD would result in a smaller SNARK circuit encoding and more efficient proving for all of these

approaches.

Finally, we note that while our focus has been on client-auditability, the succinct proofs provided

by the above SNARK-based approaches or our new RSA AD approach may also be beneficial in

making third-party auditing much more efficient. For example, per-epoch auditing may be inexpensive

enough to run as a smart contract on a public blockchain. We leave a full evaluation of this setup to

future work.

5.1 Auditing Public Key Infrastructure in Messaging

A verifiable registry [CDGM19, MKL+20] maintains a collection D of key-value pairs (k,v) admin-

istered by a centralized1 server. We assume that D contains at most one pair (k,v) for each k. The

server periodically signs and publishes, at each epoch, a commitment (or digest) di to the registry

state Di on a public bulletin board (discussed shortly). Moving from epoch i to epoch i+1, means

that one or more key-value pairs have been updated, i.e., (k,v) has been replaced by (k,v ′) or that

an entry for a new k is added to D. There is an implicit notion that the updates and additions of these

1It would be possible to use a semi-centralized model in which a set of semi-trusted servers collaboratively maintain
the registry using techniques from distributed consensus and threshold cryptography.

103

entries are the outcome of users requests—we do not specify these mechanisms further as they are

application-specific. Also, we do not bound the number of updates of Di+1 \Di. Depending on the

application context, a server may try to batch many updates into a single epoch, perhaps increasing

epoch latency but achieving better throughput. Clients will then able to issue lookup queries to the

registry and perform monitoring of entries to detect unexpected changes. We describe these below,

after clarifying a few more high-level aspects of the model.

Threat model. Our primary goal is to guarantee a consistent view of the key-value mappings to all

clients, and to allow for efficient monitoring of these mappings. The server is not trusted and may

arbitrarily deviate from the protocol. Our goal is not to prevent attacks, in principle, but to ensure

that they are eventually detected by some client accessing the system. This is particularly suitable

for a malicious-but-cautious adversary [CDR14]2. We do not attempt to guarantee availability,

as a malicious server can simply refuse to respond to any queries. We also do not provide any

privacy guarantees, though existing techniques for enhancing privacy can be implemented at the

application-layer specification of (k,v) [MBB+15, EMBB17].

Bulletin board. As stated above, our solutions rely on a public bulletin board to prevent split-view

attacks, in which a malicious server convinces user Alice to accept digest di and user Bob to accept

digest d′
i ̸= di for the same epoch i. Both digests might be valid updates from a common ancestor dj ,

but map a key to two distinct values. We assume that all digests d0,d1, . . . (i.e., one unique digest per

epoch) are published by the server on the bulletin board, from which clients will read to maintain a

consistent view, and that there exists an efficient mechanism for a client to read di for any i. Reliance

on an out-of-band mechanism is necessary, in line with prior work on transparency systems [LLK13,

MBB+15, CDGM19, MKL+20, LKMS04]. Bulletin boards, in particular, are a common assumption

in cryptographic protocols [Ben87,CBM15,CGJ+17] which admits several possible implementations

— e.g. a public blockchain [TD17] or a gossip protocol [STV+16, MKL+20]. The implementation

of the bulletin board will require, either directly or indirectly, some trusted auditors ensuring that

every epoch i is mapped to a unique di. In this work, all other auditing can be performed by clients

themselves.
2A malicious-but-cautious adversary is willing to deviate from the protocol only in ways that will go undetected by

user tests, e.g., if detection would lead to severe financial and/or reputational harm.

104

Basic lookups and monitoring. Clients can interact with the server to query a key3 k at epoch i

and retrieve the associated value v , along with a proof π of validity with respect to di and some

additional metadata (such as a version number). Clients perform lookups at the current epoch i to

learn the authoritative value for a given key. We envision particular applications where key-value

entries are owned by some clients, e.g., if the registry implements a public key directory, a client will

own the entry mapping their username to public key. We then assume clients continually look up

their own keys to ensure that the mapped value is correct, a process called monitoring.

Associating certain invariant metadata (such as a version number) with each mapping enables

efficient monitoring across digests even after the client has spent a long period offline, but requires that

every digest preserves these invariants with respect to the prior digest. Past work has considered two

such invariants. The versioned invariant [MBB+15,Bon16] associates with each key a version number

that must be incremented whenever that key’s value is updated. The append-only invariant [TBP+19,

MKL+20] associates with each key an append-only list of the entire history of values for that key

over the lifetime of the dictionary. Either invariant makes it easy to detect if a mapping has been

modified; for example, in the versioned setting, if a client queries its own key at digest di and the

associated metadata indicates the version number has not changed since the last digest dj which

the client queried, this guarantees the mapping has not changed during this period.In this work, we

primarily focus on the simpler versioned invariant, observing that in most of our applications, it is

sufficient to provide the most up-to-date value mapping.

Where monitoring can go wrong. It is instructive to consider concrete attacks a malicious server

can mount to understand where monitoring can fail. The canonical attack we consider is sometimes

called a ghost value attack (or ghost key attack) [MBB+15]. Consider a key owner that monitors

their key at epochs i and j, and a second client that performs a lookup on the key at epoch ℓ where

i < ℓ < j. Suppose the key owner’s expected mapped value for the key across epoch i to j is v . A

ghost value attack occurs if the server can get the lookup client to accept a “ghost value” v ′ ̸= v for

the key at epoch ℓ and then switch the value back to v at epoch j so that the owner’s monitoring does

not detect misbehavior. This attack is typically addressed, as mentioned above, through the use of

invariant proofs that help with monitoring, e.g., detecting a change in version number. As long as (1)

3We use key to refer to the lookup key in a directory, e.g. a username. The value associated with that lookup key may
itself be a cryptographic key in applications such as key transparency.

105

the view of epoch to digest mapping is consistent across clients and (2) the invariant is preserved

between each digest, ghost value attacks will be detected. Thus, a ghost value attack can succeed if

either of these assumptions fail – we next consider two attacks against these assumptions.

In a split-view attack [LKMS04], a server can publish different digests for an epoch to clients

that are partitioned in different “worlds”. In this attack, even if the invariant is preserved across

the published digests in the key owner’s world, it says nothing about the published digests in the

lookup client’s world, and monitoring will fail. We address the split-view attack by assuming a public

bulletin board maintained by trusted auditors (see above) ensuring all clients have an eventually

consistent view of the epoch-to-digest mapping — this appears to be a minimal assumption needed

for a transparency system.

However, even with a consistent epoch-to-digest mapping, the question remains of who will

verify invariant preservation between published digests. The server may mount an oscillation at-

tack [MKL+20], in which it serves clients interleaving sequences of digests where each sequence

preserves the invariant, but the two sequences interleaved do not preserve the invariant. For example,

say the key owner is only served digests for even epochs, while the lookup client is served digests

for odd epochs, and clients only verify the invariant holds for digests they are served. Monitoring

will fail unless at some point an invariant proof is checked between an odd and even epoch digest.

(Oscillation is of particular concern with asynchronous clients that come online at different times.)

Prior work has addressed this by verifying invariant preservation between every consecutive pair of

published digests using one of the following two approaches. The first approach simply assumes a set

of trusted auditors that perform this task — we specify the use of outsourced trusted auditors because,

typically, the invariant verification work (linear in the number of epochs) is considered too costly

for the client to perform. The second approach, proposed in concurrent work [CCDW20, TKPS22],

uses IVC with recursive SNARKs to allow for more efficient client verification. Specifically, registry

digests are tied into a hash chain where hi =H(hi−1,di−1), and the pair (hi,di) is stored for epoch

i on the bulletin board. A succinct proof is created that attests to (1) invariant preservation between

di−1 and di, (2) inclusion in the hash chain hi =H(hi−1,di−1), and (3) recursive verification of

the same proof for (hi−1,di−1). By collision-resistance of the hash function, such a proof indirectly

attests to the existence of a unique sequence of digests that each consecutively preserve the invariant.

Even so, there is no guarantee that the sequence of digests attested to in the proof match the sequence

106

of digests published on the bulletin board. To prevent oscillation attacks, a client must additionally

verify the hash chain posted on the bulletin board: if the hash chain is valid, then it must be that the

sequence of published digests preserve the invariant. Verification of the hash chain is still linear in

the number of epochs, but it is concretely inexpensive, and it is plausible a client may perform this

task or that it may be outsourced to the trusted auditors maintaining the public bulletin board (e.g.,

via a smart contract).

Here, we put forward a novel approach to client-efficient auditing of invariant proofs to prevent

oscillation attacks, which we overview next. Our approach assumes only a bulletin board (without

relying on a hash chain), and will enable SNARK-free solutions such as VeRSA-Amtz.

Client checkpoint auditing. We introduce a new checkpointing technique, which we describe in

detail in Section 5.4. Consider a client that was last online at epoch i and comes back online at epoch

j. Instead of requiring the client to verify the invariant for all consecutive epochs in the range from i

to j, the client will audit the invariant for a logarithmic number of checkpoint digests corresponding

to certain canonical epochs between i and j. Crucially, these checkpoints are chosen so that any two

overlapping ranges will share at least one checkpoint. This implicitly guarantees that, for any two

clients, the invariant is preserved through the sequence of digests in their interleaved view up to their

latest common checkpoint, and any oscillation that may have occurred since then will eventually

be detected on future audits. We note that clients may temporarily accept two digests which do not

preserve the invariant with respect to each other. Crucially, however, such an oscillation attack is

guaranteed to eventually be detected at the next shared checkpoint.

5.2 Versioned Invariant Proofs for RSA Authenticated Dictionaries

We begin by constructing the first RSA-based authenticated dictionary that efficiently supports suc-

cinct versioned invariant proofs. Our starting point is the KVaC authenticated dictionary construction

of Agrawal and Raghuraman [AR20]. We extend the original construction in two ways in order to

make it suitable for use with verifiable registries. First, we show how to support efficient updates

for a batch of key-value mappings ([kj ,vj]j), instead of only a sole key-value update. Second, as

our most significant contribution, we construct a succinct proof that a batch of updates applied to

the dictionary preserve the versioned invariant. Building this proof, enables KVaC to achieve the

107

strong key binding security property needed for verifiable registries, in which key binding holds for

adversarially chosen digests. Prior to this work, the construction was only secure with respect to

weak key binding, i.e., digests that were produced honestly, limiting its applicability significantly.

In KVaC, key-value pairs are committed to with the following digest, where u represents a

version number for the key, H is a collision-resistant hash function mapping keys to primes, and g is

a member of an RSA quotient group:

d←
(
g(

∏
iH(ki)

ui)·(
∑

i vi/H(ki)), g
∏

iH(ki)
ui
)

To update a key’s value from v to v+ δ, the new digest d′ = (d
H(k)
1 dδ

2, d
H(k)
2) is computed, where

the previous digest d = (d1,d2).

Batching updates. When updating the values associated with many keys, we observe that instead of

applying each update in sequence, all updates [k, δ]i can be applied at once by the following:

Z←
∏

iH(ki) ∆← (
∏

iH(ki)) · (
∑

i δi/H(ki)) .

Then the batched update follows the same form as before, d′ = (dZ
1 d

∆
2 ,dZ

2). We will take advantage

of this form to construct succinct proofs for the versioned invariant.

Proving the versioned invariant. Informally, the versioned invariant enforces over an update that

the only way to change a key’s value is by increasing its version number. More formally, we define

the invariant as follows with two constraints: (1) a key’s version number does not decrease in an

updated digest, and (2) two different values for a key cannot be shown for the same version number,

Φvsn(k,(v,u),(v
′,u′)) = u < u′ ∨ (u= u′ ∧ v = v′) . (5.1)

One approach to prove this invariant (and bootstrap strong key binding from weak key binding) is to

prove that d′ is the result of correctly applying the batch update procedure to d, i.e., that the update

equations above hold, however it turns out that proving a weaker statement suffices. The prover

constructs a proof of knowledge for the following relation between d = (X1,X2) and updated digest

d′ = (Y1,Y2):

RKVaC =
{
((X1,X2,Y1,Y2); (α,β)) : Y1 =Xα

1 X
β
2 ∧Y2 =Xα

2

}
.

We show that it is computationally infeasible to produce a valid proof for this relation if the versioned

108

invariant is violated. This is a somewhat surprising result, as we do not enforce any extra structure

on α and β, such as matching the structure of (Z,∆) (which would result in a much more costly

proof). Rather, simply proving knowledge of any α and β ensures that either the underlying pair of

dictionary states do not violate the versioned invariant or that the prover has solved a computational

problem related to factoring, breaking the Strong-RSA assumption.

We use the generalized knowledge of integer discrete log proof system from [BBF19] as the

non-interactive proof of knowledge for RKVaC. Importantly, this proof system, which leverages the

algebraic structure of the RSA group, has a constant-time verification algorithm and constant-sized

proof. This is a significant improvement over other Merkle-based [MBB+15, MKL+20] and bilinear

pairing-based [TBP+19, LGG+22] constructions of authenticated dictionaries with versioned proofs.

Computing lookup proofs. Unfortunately, computing membership and non-membership proofs for

keys from scratch is expensive – on the order of the combined number of keys with non-null values

and number of past updates to the dictionary. Given a (non-)membership proof for a previous epoch,

the proof can be updated to be valid for the current epoch in time linear in the number of key updates

that have since occurred. However, even these updates can be expensive for the provider if many

epochs have passed since a key’s last query date. In our evaluation (Section 5.5), we show that for

dictionaries with millions of keys, lookup proof computation costs are manageable; we discuss batch

computation techniques that help alleviate these costs in the full version [TFZ+21].

Extending to the append-only invariant. While in this work, we focus on the versioned invariant,

some applications may require the stronger append-only invariant that tracks the entire history of

mapped values of a key. In the full version [TFZ+21], we propose an extension of KVaC for which

we construct succinct append-only invariant proofs.

5.2.1 RSA Authenticated Dictionary

We make use of the key-value commitment KVaC from [AR20]; the construction pseudocode is given

in Figure 5.2. The hash function H maps keys to primes of size 2λ that are larger than the group order

upper bound b. The space of values that can be committed to is the set of positive integers bounded

above by b. [AR20] prove KVaC secure with respect to a weak key binding property in which the

109

KVaC.Setup(λ)

(a,b,G)←$GGen(λ)

g←$G
Return (a,b,G,g)

KVaC.Init()

Return (1,g)

KVaC.Comm([(k,v,u)]i)

[z]i← [H(k)]i

C1 ←

g
∑

j

(
vjz

uj−1

j

∏
i̸=j z

ui
i

)
C2← g

∏
i z

ui
i

Return (C1,C2)

KVaC.ProveMem([(k,v,u)]i,m)

[z]i← [H(k)]i

π1← g
∑

j ̸=m

(
vjz

uj−1

j

∏
i̸=j,m z

ui
i

)
π2← g

∏
i̸=m z

ui
i

(a,b)← EEA(
∏

i̸=m zui
i ,zm)

π← ((π1,π2),(g
b,a),um)

Return π

KVaC.VerifyMem(C,(k,v),π)

z← H(k)

((π1,π2),(B,a),u)← π

(C1,C2)← C

Return

∧


(π1)
zu

(π2)
v·zu−1

= C1

(π2)
zu

= C2

(π2)
aBz = g



KVaC.Upd(C,(k,δ))

z← H(k)

(C1,C2)← C

C′← (Cz
1C

δ
2 ,C

z
2)

Return C′

KVaC.UpdateMemProof((k,π),(kδ, δ))

z← H(k)

((π1,π2),(B,a),u)← π

If k = kδ then
π′← ((π1,π2),(B,a),u+1)

Else
zδ ← H(kδ)

(s, t)← EEA(z,zδ)

q← ⌊atz ⌋ ; r← at mod z

a′← r ; B′← πas+qzδ
2 B

π′← ((πzδ
1 πδ

2,π
zδ
2),(B′,a′),u)

Return π′

KVaC.ProveNonMem([(k,v,u)]i,k
′)

[z]i← [H(k)]i ; z′← H(k′)

(a,b)← EEA(
∏

i z
ui
i ,z′)

Return (a,gb)

KVaC.VerNonMem(C,k′,π)

(a,B)← π

z′← H(k′) ; (C1,C2)← C

Return Ca
2B

z′
= g

KVaC.UpdNonMemProof((k′,π),(kδ, δ))

(a,B)← π

z′← H(k′) ; zδ ← H(kδ)

(s, t)← EEA(z′,zδ)

q← ⌊atz ⌋ ; r← at mod z

a′← r ; B′← πas+qzδ
2 B

Return (a′,B′)

Figure 5.2: KVaC construction from [AR20]. The AD Lkup (resp. VerLkup) algorithm combines the prove
(resp. verify) membership and non-membership algorithms.

KVaC.BatchUpdate(C, [(k,δ)]i))

[z]i← [H(k)]i

(C1,C2)← C

Z←
∏

i zi

∆←
∑

j

(
δj

∏
i ̸=j zi

)
C′← (CZ

1 C∆
2 ,CZ

2)

Return C′

KVaC.UpdateMemProof((k,π),(Z,∆))

z← H(k)

((π1,π2),(B,a),u)← π

(s, t)← EEA(z,Z)

q← ⌊atz ⌋ ; r← at mod z

a′← r ; B′← πas+qZ
2 B

π′← ((πZ
1 π∆

2 ,πZ
2),(B′,a′),u)

Return π′

KVaC.ProveUpdate(C,C′,(Z,∆))

(C1,C2)← C ; (C′
1,C

′
2)← C′

π← BBF.Prove((Z,∆),(C1,C2,C
′
1,C

′
2))

Return π

KVaC.VerUpdate(C,C′,π)

(C1,C2)← C ; (C′
1,C

′
2)← C′

Return BBF.Ver((C1,C2,C
′
1,C

′
2),π)

RKVaC =
{
((X1,X2,Y1,Y2); (α,β)) : Y1 =Xα

1 X
β
2 ∧Y2 =Xα

2

}
BBF.Prove((α,β),(X1,X2,Y1,Y2))

sa← gα ; sb← gβ

ℓ← HPrimes(X1 ∥X2 ∥Y1 ∥Y2 ∥sa ∥sb)
qa← ⌊α/ℓ⌋ ; ra← α mod ℓ

qb← ⌊β/ℓ⌋ ; rb← β mod ℓ

Wa← gqa ; Wb← gqb

W1←Xqa
1 Xqb

2 ; W2←Xqa
2

π← (Wa,Wb,W1,W2, ra, rb, ℓ)

Return π

BBF.Ver((X1,X2,Y1,Y2),π)

π← (Wa,Wb,W1,W2, ra, rb, ℓ)

sa←W ℓ
ag

ra ; sb←W ℓ
b g

rb

Return
∧


ℓ= HPrimes(X1 ∥X2 ∥Y1 ∥Y2 ∥sa ∥sb)

Y1 =W ℓ
1X

ra
1 Xrb

2

Y2 =W ℓ
2X

ra
2



Figure 5.3: Extension for KVaC to batch many key updates together (left). Extension to prove that key updates
satisfy a versioned invariant (center) using the generalized proof of linear homomorphism from [BBF19],
shown for the particular update homomorphism relevant to KVaC (right).

110

commitment must have been produced correctly, rather than adversarially. This is not sufficient for

the verifiable registry setting; in the next section we show how to augment KVaC with update proofs

to protect against adversarially generated commitments.

5.2.2 Versioned Invariant Update Proofs and Strong Key Binding

Figure 5.3 shows our protocol for proving updates preserve a versioned invariant. We use the

generalized proof of linear homomorphism [BBF19] to prove that the commitment is updated only by

a particular homomorphism that we show guarantees a versioned invariant. The proof of knowledge

from [BBF19] is sound in the hidden order generic group model. We also show (in Figure 5.3) how to

batch many key-value updates together such that the batched update follows the same homomorphic

form as a single update. Individual membership proofs can be updated with respect to batched

changes.

Next, we prove when KVaC construction from Figure 5.2 is combined with the update proofs

from Figure 5.3, the construction achieves strong key binding and the versioned invariant is preserved.

More specifically, to achieve strong key binding, we require that a digest from KVaC is accompanied

with an update proof proving a valid update from the initial digest output from Init.

First, we will prove some useful lemmas.

Lemma 1. [Shamir’s trick] For any integer modulo N , given integers u,v ∈ Z×
N and x,y ∈ Z, such

that ux = vy modN and gcd(x,y) = 1, it is efficient to compute w ∈ Z×
N where wa = v modN .

Proof. Since gcd(x,y) = 1, we can compute the Bézout coefficients (a,b)← EEA(x,y) where

ax+ by = 1. Let w = ubva mod n, then

wx = ubxvax = (ux)bvax = (vy)bvax = v (mod N) .

Lemma 2. [Non-trivial root of unity] For RSA quotient group G with elements of unknown order

bounded above by b, given integers u,v ∈G and prime z > b, if uz = vz , then u= v.

Proof. Let α= u/v ∈G. Then αz = 1. Since z is prime, if α ̸= 1, then z must be the order of α in

G. However, z > b, an upper bound on the order of elements in G, which is not possible, so α= 1

and u= v.

111

Lemma 3. [Coprime] For RSA quotient group G, given integers u,w ∈G, random integer v ∈G,

integers a,b,c ∈ Z, and prime z, then if uz
c
= va and ubwz = v, then zc |a and if let d= a/zc ∈ Z,

then u= vd and gcd(z,d) = 1.

Proof. First, we prove that d exists, i.e., that zc |a. Consider (uz
c−1

)z = va. If z ̸ |a, then gcd(z,a) = 1

and by Lemma 1, we can compute xz = v which wins the strong RSA security game. Therefore

z |a and uz
c−1

= ga/z by Lemma 2. We can repeat this argument for (uz
c−i

)z = va/z
i−1

for i ∈ [2, c],

ultimately arriving at zc |a and u= va/z
c
= vd.

Next, we show that z ̸ |d. Consider ubwz = v rewritten as vbd−1 = w−z . If z |d, then gcd(bd−

1,−z) = 1, and by Lemma 1, we can compute xz = v which again wins the strong RSA security

game. Therefore, z ̸ |d meaning gcd(z,d) = 1.

Theorem 12. For any adversary A against the versioned invariant soundness of KVaC augmented

with proof of update from initialization, we give adversaries B and C such that

Advinv
KVaC,Φvsn,A(λ)≤Adv

strong-rsa
GGen,B (λ)+Advsound

BBF,C,X(λ) ,

where GGen is the group generation algorithm for the RSA quotient group used in KVaC and X is

the knowledge extractor for BBF [BBF19].

Proof. First, we extract the update structure of the digests returned by adversary A. Using the

extractor X for BBF, we extract the values (αA,βA) from the update proof of d1 = CA from the

initial digest (1,g). This gives us:

CA =
(
gβA ,gαA

)
.

Next, we extract the update structure of each of the updates from d1 to dm from the update proofs

[πΦ,j]
m−1
j . Denote these extracted values as [(αj ,βj)]

m−1
j . We observe that using these values, we

can write dm = CB where we can define αB and βB as follows, as a single update from CA:

CB =
(
CαB
A,1C

βB
A,2,C

αB
A,2

)
, αB =

m−1∏
j

αj , βA =

m−1∑
j

βj
∏
i ̸=j

αi


If the extractor fails, we build adversary C against the soundness of BBF.

The proof proceeds by considering each of the two winning conditions and showing that, in each

case, a winning adversary can break strong RSA.

(1) uA > uB

112

(2) vA ̸= vB ∧ uA = uB

Case 1: uA > uB

From the verification equations of πA, we have that:

πzuA
A,2 = CA,2 = gαA , πaA

A,2B
z
A = g .

Thus, by Lemma 3, we know that πA,2 = gαA/zuA . Similarly, from the verification equations of πB ,

we have that:

πzuB
B,2 = CB,2 = gαAαB , πaB

B,2B
z
B = g .

Again, by Lemma 3, we have that πB,2 = gαAαB/zuB and gcd(αAαB/z
uB ,z) = 1. Since uA > uB ,

we can construct group element u as follows:

u=παB ·zuA−uB−1

A,2 and then, uz =(παB ·zuA−uB−1

A,2)z =((gαA/zuA)αB ·zuA−uB−1
)z = gαAαB/zuB .

Since gcd(αAαB/z
uB ,z) = 1, we can compute w from Lemma 1, where wz = g which wins the

strong RSA security game.

Case 2: vA ̸= vB ∧ uA = uB

Let u= uA = uB . By the verification equation of πB , we have:

CB,1 = πzu

B,1π
vBzu−1

B,2

We also have, from the update proof and verification equations of πA, that:

CB,1 = CαB
A,1C

βB
A,2

=
(
παBzu

A,1 παBvAzu−1

A,2

)(
πβBzu

A,2

)

We also can derive the following relation:

πzu

A,2 = CA,2 (by verification of πA)

παBzu

A,2 = CαB
A,2 = CB,2

113

πzu

B,2 = CB,2 (by verification of πB)

παB
A,2 = πB,2 (by repeated application of Lemma 2)

Putting this together we have as follows:

παBzu

A,1 παBvAzu−1

A,2 πβBzu

A,2 = πzu

B,1π
vBzu−1

B,2 (by equality to CB,1)

παBzu

A,1 πβBzu

A,2

πzu
B,1

=
πvBzu−1

B,2

παBvAzu−1

A,2

παBzu

A,1 BβBzu

A

πzu
B,1

= π
(vB−vA)zu−1

B,2 (by relation between πB,2 and πA,2)

((
παB
A,1π

βB
A,2

πB,1

)z)zu−1

=
(
πvB−vA
B,2

)zu−1

(
παB
A,1π

βB
A,2

πB,1

)z

= πvB−vA
B,2 (by repeated application of Lemma 2)

Thus, we have found a zth root of a non-trivial element. By Lemma 3, we have that πB,2 = gαAαB/zu

where gcd(αAαB/z
u,z) = 1. This gives us(

παB
A,1π

βB
A,2

πB,1

)z

= g
(vB−vA)αAαB

zu .

Since z is prime and the domain of values is chosen to be smaller than all z, we also have that

gcd(vA− vB,z) = 1, and therefore by Lemma 1, we can compute w where wz = g winning the

strong RSA security game.

Theorem 13. For any adversary A against the strong key binding of KVaC augmented with proof of

update from initialization, we give adversaries B and C such that

Advbind
KVaC,A(λ)≤Adv

strong-rsa
GGen,B (λ)+Advsound

BBF,C,X(λ) ,

where GGen is the group generation algorithm for the RSA quotient group used in KVaC and X is

the knowledge extractor for BBF [BBF19].

114

Proof. The proof follows similarly to that of Theorem 12. Using extractor X for BBF, we extract

values (α,β) from the update proof of d from the initial digest (1,g), giving us: d = C = (gβ,gα).

We then proceed by considering the following two winning conditions; in each case, a winning

adversary can break strong RSA.

(1) uA ̸= uB

(2) vA ̸= vB ∧ uA = uB

Case 1: uA ̸= uB

The first case follows similarly to (Case 1) of Theorem 12. From the verification equations of πA, we

have that:

πzuA
A,2 = C2 = gα, πaA

A,2B
z
A = g .

Thus, by Lemma 3, we know that zuA |α. Similarly, from the verification equations of πB , we have

that:

πzuB
B,2 = C2 = gα, πaB

B,2B
z
B = g .

Again, by Lemma 3, we have that gcd(α/zuB ,z) = 1. However, this is a contradiction. Wlog say

uA > uB , then since zuA |α, it cannot be that gcd(α/zuB ,z) = 1.

Case 2: vA ̸= vB ∧ uA = uB

The second case follows exactly from (Case 2) of Theorem 12 where αA = α, βA = β, αB = 1, and

βB = 0.

5.3 Authenticated History Dictionaries

In this section we will define an authenticated history dictionary (AHD), the novel cryptographic

primitive behind our verifiable registry system, and present several constructions of this primitive

from authenticated dictionaries.

5.3.1 Syntax and Security Notions

An AHD commits not only to its current state, but also to all previous states in its history. It is also

able to efficiently provide update invariant proofs between any sequence of previous states. As for

115

authenticated dictionaries, we define an invariant Φ as a boolean function on input k,vi,vj that

outputs 1 if the invariant is preserved; we require the invariant to be preserved for all keys. Again, in

this work, we will be interested in the versioned invariant Φvsn (Equation 5.1). An AHD is defined by

the following set of algorithms:

• pp←$Setup(λ): The setup algorithm takes a security parameter and returns public parameters.

• (d0,st0)← Init(): The initialization algorithm returns an initial digest to the empty dictionary.

• (di+1,sti+1)← Upd([kj ,vj]j : sti): The update algorithm updates the dictionary values for

input keys {kj} to the values {vj} and outputs a new digest di+1 representing the new dictionary

history for epoch i+1.

• (v ,πlkup)← Lkup(k : sti): The lookup algorithm returns the value v associated with k along

with a membership proof πlkup. If the k is not present in the dictionary, v is set to ⊥ and a

non-membership proof is provided.

• 0/1← VerLkup(di,k,v ,πlkup): The lookup verification algorithm verifies the key-value map-

ping in di.

• πhist ← ProveHist([cj]
m
j : sti): The prove history algorithm takes as input an ordered list of

checkpoint epochs, c1 < .. . < cm < i, and provides a proof that the digest at each checkpoint is

included in the committed history.

• 0/1← VerHist(di, [(cj ,dcj)]
m
j ,πhist): The history verification algorithm verifies the ordered list

of checkpoint digests are included in the history of digest di.

• πΦ ← ProveInv([cj]
m
j : sti): The prove invariant algorithm takes as input an ordered list of

checkpoint epochs, c1 < .. . < cm ≤ i, and provides a proof that the invariant Φ is preserved

between the dictionary states of each pair of digests in sequence: (dcj ,dcj+1).

• 0/1← VerInv(di, [(cj ,dcj)]
m
j ,πΦ): The invariant verification algorithm verifies the invariant is

preserved between the sequence of ordered checkpoint digests.

An important feature of the AHD syntax and semantics is allowing querying of history and

invariant properties for previous states. While critical to support client auditing as clients often come

online after long periods of disconnection, this functionality is what creates the main challenge in

coming up with efficient constructions.

In terms of correctness, informally, the dictionary should correctly update its key-value mappings

116

Game BindA
AHD(λ)

pp←$AHD.Setup(λ)

(k,d,(vA,πA),(vB ,πB))←$A(pp)
Return

∧


AHD.VerLkup(dA,k,vA,πA)

AHD.VerLkup(dB ,k,vB ,πB)

vA ̸= vB



Game HistBindA
AHD(λ)

pp←$AHD.Setup(λ) ; win← 0

(d,st)←$A1(pp)

D←D∪ [d]
AProveHist

2 (st)

Return win

Oracle ProveHist(d′, [(cj ,dj)]
m
j ,π)

Require d′ ∈ D
If AHD.VerHist(d′, [(cj ,dj)]mj ,π) then

For all j ∈ [1,m] :

If cj ∈ V and V [cj] ̸= dj then win← 1

V [cj]← dj

D←D∪ [dj]

Game InvSoundA
AHD,Φ(λ)

pp←$AHD.Setup(λ) k,d,
[
[(ci,j ,di,j)]

mi
j

]n
i
,
[
πΦ,i,πhist,i

]n
i

(iA, jA,vA,πA),(iB , jB ,vB ,πB)

←$A(pp)

dn+1,1← d

Return

∧



AHD.VerLkup(diA,jA ,k,vA,πA)

AHD.VerLkup(diB ,jB ,k,vB ,πB)[
AHD.VerInv(di+1,1, [(ci,j ,di,j)]

mi
j ,πΦ,i)

]n
i[

AHD.VerHist(di+1,1, [(ci,j ,di,j)]
mi
j ,πhist,i)

]n
i

Φ(k,vA,vB) ̸= 1

iA < iB ∨ (iA = iB ∧ jA ≤ jB)



Figure 5.4: Security games for strong key binding (left), history binding (middle), and invariant preservation
(right) for authenticated history dictionaries.

and lookups should return the latest value added. Previous digests should be correctly committed to in

the appropriate epoch position in history. And lastly, the proofs produced by the proving algorithms

should pass their accompanying verification algorithms.

In terms of security, we define three properties. The first two properties are analogous to the

security properties of ADs. First, an AHD must satisfy key binding, which is defined equivalently to

as in ADs: it should not be possible to provide valid lookup proofs to two different values for a key

in a digest. Second, invariant soundness requires that it should not be possible to produce a valid

invariant proof for a sequence of checkpoints such that the invariant is not preserved between any

two checkpoint digests. The last property is history binding, which requires that it should not be

possible to provide two valid history proofs for a digest including a different checkpoint digest at the

same checkpoint epoch.

We formally define these properties as pseudocode security games provided in Figure 5.4. The

key binding game is equivalent to that of authenticated dictionaries. The history binding game tasks

an adversary with producing two history proofs (or sequences of history proofs) that verify with

two different digests for the same epoch. The invariant soundness game tasks an adversary with

producing lookup proofs for a key with two values that do not satisfy the invariant, while also proving

the invariant holds between the two epochs for which the lookup proofs were provided. We define an

117

adversary’s advantage against these games, respectively, as:

Advbind
AHD,A(λ) = Pr[BindAHD

A (λ) = 1] , Advhbind
AHD,A(λ) = Pr[HistBindAHD

A (λ) = 1] ,

Advinv
AHD,Φ,A(λ) = Pr[InvSoundAHD,Φ

A (λ) = 1] .

5.3.2 AHD Constructions

Towards a Generic Construction

We begin by discussing useful building blocks and strawman solutions for constructing an AHD from

an underlying AD.

Composing an AD with a history commitment. A core additional functionality AHDs provide

over ADs is the ability to track and commit to the history of previous states. As such, a natural

starting point to build an AHD is to combine an AD with an append-only vector commitment (VC),

committing the digest of the AD at time step i to the ith position of the vector commitment; we will

refer to the vector commitment as a history commitment.

More specifically, consider an AHD made of an authenticated dictionary D and a vec-

tor commitment L: the digest of the AHD is a pair of digests (or hash of pair), one from

an authenticated dictionary and the other of the history commitment: (dAD,dVC). To perform

a set of key-value updates [ki,vi]i, first, a new AD digest is computed by updating the AD,

(d′
AD,D

′)← AD.Upd(D, [ki,vi]i). Then, the vector commitment is updated to append the old digest,

(d′
VC,L

′)← VC.Upd(L, [(dAD,dVC)]). The new AHD digest is set as (d′
AD,d

′
V C).

This construction also supports succinct proofs to AHD.ProveHist queries for arbitrary check-

points. A prefix proof using VC.ProveUpd is computed for each checkpoint with respect to the

current state. For the Merkle tree instantiation of VC, these proofs both can be computed and verified

in time and are of size O(logN) where N is length of the vector. This basic combination of AD and

history commitment form the basis of our proposed constructions. The pseudocode details are given

in Figure 5.5; and we provide proof sketches for history binding and key binding below.

Challenge of succinct invariant proofs. Unfortunately, it is not straightforward how to provide

succinct invariant proofs for arbitrary checkpoints in response to AHD.ProveInv. Recall, an AD can

118

be augmented to provide invariant proofs for updates. An invariant proof πi can be computed during

each epoch update for dAD,i−1 to dAD,i. For a queried pair of checkpoints (cj , cj+1), the sequence

of epoch invariant proofs [πi]
cj+1

i=cj
together attest to invariant preservation for dAD,cj to dAD,cj+1

.

However, this would not be succinct, ultimately leading to a proof of size linear in the range of epochs

the checkpoints are over.

Alternatively, it is also not efficient to compute a fresh invariant proof for pairs of checkpoints

(cj , cj+1) on the fly in response to a ProveInv query. Each invariant proof is computed in time linear

in the number of key-value updates made to the dictionary.

Instead, we will need different approaches. We present two generic constructions for AHDs

from ADs. First, we present a construction for succinct invariant proofs based on IVC. It is our

most general solution and is compatible with any AD that supports the invariant proof. Second,

we present a construction based on amortized proving of invariant preservation over power-of-two

ranges of epochs: an invariant proof for any pair of checkpoints can be provided as a logN sequence

of precomputed proofs. This approach dispenses with the heavyweight machinery of IVC, but

requires that the underlying AD supports a succint invariant proof. This is the case for our new RSA

construction (Section 5.2), however does not hold for Merkle tree ADs.

AHDs from SNARK Recursion

Our first construction is from IVC; for concreteness, we present the construction using recursive

proofs [BCCT13, BCTV14], the prevailing approach to IVC. IVC allows constructing a succinct

proof of an output (digest) that attests to its correct computation over a series of steps (invariant

preserved over epochs). IVC has previously been proposed for producing succinct proofs for verifiers

of invariant-based ledger systems [CCDW20], a more general case of verifiable registries.

The starting point of our construction AHDIVC is an AD with history commitment (described in

the previous Section 5.3.2). On each epoch update, in addition to updating the digests as before, a

recursive SNARK proof is computed attesting to invariant preservation. Namely, at epoch i, the proofs

πΦ from AD.Upd showing the updated key-values satisfy the invariant and πhist from VC.ProveUpd

showing the new AD digest was appended to history commitment are computed. Then using a

SNARK, πSNARK,i proves that (1) πΦ verifies with respect to dAD,i−1 and dAD,i, (2) πhist verifies

with respect to dVC,i−1 and dVC,i, and (3) that recursively verifies a SNARK πSNARK,i−1 for di−1.

119

Informally, this SNARK proves “the invariant is preserved across the sequence of digests committed

to in the history commitment”. The complexity of the recursive relation is proportional to the

combined complexity of the SNARK verification algorithm, vector commitment update verification,

and importantly, the AD invariant verification algorithm, which differs significantly between a Merkle

tree-based AD and our new RSA AD.

Completing the picture, the proof of invariant preservation over a sequence of checkpoints [cj]j

consists of two parts: (1) the most recent SNARK proved for the current epoch i, πSNARK,i, and (2) a

lookup proof in the history commitment for each of the checkpoints, proving the value at index cj

is dAD,cj . Intuitively, the SNARK proves that the invariant is preserved across digests in the history

commitment, and the lookup proofs reveal the checkpoint digests are indeed included in the history.

A protocol description for the AHDIVC construction is given in Figure 5.5.

AHDs from Amortized Proving

Recall the two strawman proving approaches for providing an invariant proof for checkpoints

(cj , cj+1) from Section 5.3.2. The first was to provide a sequence of “epoch invariant proofs”, one for

each epoch between cj and cj+1: these can be efficiently precomputed, but do not result in a succinct

proof. The second was to directly prove an invariant proof for the key-value updates in the range

from cj to cj+1: this cannot be precomputed efficiently as there are quadratically many possible

checkpoint ranges that could be queried, however would result in a succinct proof if the invariant

proving algorithm of the underlying AD is succinct (as it is for our RSA AD from Section 5.2).

In this section, we propose a construction AHDAmtz that serves as a middle ground between

these two approaches. Instead of attempting to precompute proofs for all possible start and end

epoch ranges, only proofs for compact subranges will be precomputed. Recall a compact range for a

range (cj , cj+1) produces a succinct sequence of subranges [(Lℓ,Rℓ)]
m
ℓ that "span" (cj , cj+1); that is,

L1 = cj , Rm = cj+1, and Ri = Li+1 for all 1≤ i < m< log(cj+1− cj). Importantly, each compact

subrange is guaranteed to be of the form: (Li = ai · 2bi ,Ri = Li+2bi) for non-negative integers

(ai, bi).

Precomputing invariant proofs for just these compact subranges is amortized efficient. The

structure of compact subranges – that they start on multiples of powers-of-two and are of length

power-of-two – mean that there are only linear (in the number of epochs) such subranges. At epoch N ,

120

Protocol: AHDIVC[AD,VC,SNARK]

Setup: The public parameters of the scheme consist of the public parameters of its underlying components: pp ←
(ppAD,ppVC,(pk,vk)SNARK).
Init: The dictionary is initialized with an empty authenticated dictionary and empty vector commitment, returning an initial
digest d0 = (dAD,0,dVC,0). It stores the following as its current state sti:

– stAD,i: state of the AD representing current state of key-value mapping.

– stVC,i: state of the VC representing list of previous epoch digests.

–πSNARK,i: SNARK proof attesting to invariant preservation for latest epoch.

Upd(
[
kj ,vj

]
j
: sti):

(1) The AD is updated with the new key-value mappings: (dAD,i+1,πΦ,stAD,i+1)← AD.Upd(
[
kj ,vj

]
j
: stAD,i).

(2) The previous digest is appended to the history commitment:
(dVC,i+1,stVC,i+1)← Upd([di] : stVC,i), and πhist← ProveUpd(i : stVC,i+1), πlkup← Lkup(i : stVC,i+1).

(3) A new SNARK πSNARK,i+1 is computed attesting to invariant preservation for new digest di+1 = (dAD,i+1,dV C,i+1),
proving the following relation:

RSNARK =



(
(di+1),(di,πΦ,πhist,πSNARK,i)

)
:

AD.VerUpd(dAD,i,dAD,i+1,πΦ)

VC.VerUpd(dVC,i,dVC,i+1, i,πhist)

VC.VerLkup(dVC,i+1, i,di,πlkup)

SNARK.Ver(vkSNARK,di,πSNARK,i)


.

ProveInv([cj]
m
j : sti):

(1) For each checkpoint, a lookup proof in the history commitment for the checkpoint index is computed:[
πlkup,j ← VC.Lkup(cj : stVC,i)

]m
j

.

(2) Proof πΦ← (πSNARK,i,
[
πlkup,j

]m
j
) is returned.

VerInv(di, [(cj ,dcj)]
m
j ,πΦ = (πSNARK,

[
πlkup,j

]m
j
)):

(1) The SNARK proof is verified: SNARK.Ver(vkSNARK,di,πSNARK).

(2) The history commitment lookup proof for each checkpoint digest is verified:
[VC.VerLkup(dVC,i, cj ,dAD,cj ,πlkup,j)]

m
j .

Lkup(k : sti) and VerLkup(di,k,v ,πlkup): Lookup and lookup verification use the lookup algorithms of the underlying
AD over stAD,i and dAD,i:

(v ,πlkup)← AD.Lkup(k : stAD,i), AD.VerLkup(dAD,i,k,v ,πlkup)

ProveHist([cj]
m
j : sti): For each checkpoint, an lookup proof for the history commitment is provided: πhist =

[(πlkup,j ,πhist,j)]
m
j

πlkup,j ← VC.Lkup(cj : stVC,i), πhist,j ← VC.ProveUpd(cj : stVC,i) .

VerHist(di, [(cj ,dcj)]
m
j ,πhist =

[
(πlkup,j ,πhist,j)

]m
j
):[

VC.VerLkup(dVC,i, cj ,dcj ,πlkup,j), VC.VerUpd(dVC,i,dcj , cj ,πhist,j)
]m
j

Figure 5.5: Generic construction of an AHD from an AD using incrementally-verifiable computation through
recursive SNARKS. The history of the AHD is committed to using an append-only vector commitment referred
to as a history commitment.

121

Protocol: AHDAmtz[AD,VC]

Setup: The public parameters of the scheme consist of the public parameters of its underlying components: pp ←
(ppAD,ppVC).

Init: The dictionary is initialized with an empty authenticated dictionary and empty vector commitment, returning an initial
digest d0 = (dAD,0,dVC,0). It stores the following as its current state sti:

–LAD = [stAD,ℓ,dAD,ℓ]
i
ℓ: state of the AD at each epoch.

– stVC,i: state of the VC representing list of previous epoch digests.

–Lk = [[kℓ,j ,vℓ,j]
mℓ
j]iℓ: list of key-value updates applied at each epoch.

–TΦ: table of precomputed invariant proofs for all compact subranges.

Upd(
[
kj ,vj

]
j
: sti):

(1) The AD is updated with the new key-value mappings:
(dAD,i+1,πΦ,stAD,i+1)← AD.Upd(

[
kj ,vj

]
j
: stAD,i).

(2) The new AD digest is appended to the history commitment:
(dVC,i+1,stVC,i+1)← Upd([dAD,i+1] : stVC,i).

(3) Compute and store an invariant proof for the key updates applied during every compact subrange of epochs that i+1

closes, i.e., [Lj]
m
j such that there exists (aj , bj) where Lj = aj ·2bj and Lj +2bj = i+1:

TΦ[Lj , i+1]← AD.ProveUpd(
[
[kℓ,k,vℓ,k]k

]i+1

ℓ=Lj
,stAD,Lj

) .

(4) The new digest di+1 = (dAD,i+1,dV C,i+1) is returned.

ProveInv([cj]
m
j : sti): For each checkpoint pair (cj , cj+1) for 1≤ j < m compute πΦ,j then return πΦ←

[
πΦ,j

]m
j

:

(1) Compute the nj compact subranges that span (cj , cj+1]:[
(Lj,ℓ,Rj,ℓ)

]nj

ℓ
← CompactR((cj , cj+1)) .

(2) Construct an invariant proof for (cj , cj+1) with the precomputed invariant proofs of each compact subrange: πΦ,j =[
TΦ[Lj,ℓ,Rj,ℓ],dLj,ℓ

]nj

ℓ
.

VerInv(di, [(cj ,dcj)]
m
j ,πΦ =

[[
(πΦ,j,ℓ),dAD,j,ℓ)

]nj

ℓ

]m
j
): For each checkpoint pair (cj , cj+1) for 1≤ j < m:

(1) Verify compact range endpoints: dcj = dΦ,j,1 and dcj+1 = dΦ,j,nj
.

(2) Verify each compact subrange invariant proof:[
AD.VerUpd(dΦ,j,ℓ,dΦ,j,ℓ+1,πΦ,j,ℓ)

]nj−1

ℓ
.

Figure 5.6: Generic construction of an AHD from an AD using amortized proving of invariant preservation
over compact subranges. The underlying AD must support succinct invariant proofs (e.g., as in the new RSA
AD construction).

there are ≤N compact subranges,
∑lgN

i=1 N/2i, and the sum of their lengths is ≤N lgN . Invariant

proofs for ranges of length n are computed in work linear in n. Thus, by a classic amortization

argument, for an AHD at epoch N , the total work to compute invariant proofs for all N compact

subranges can be amortized efficiently to a cost of O(lgN) for each new published epoch [Ove83].

Given precomputed invariant proofs for compact subranges, a succinct invariant proof can be

constructed for any pair of checkpoints (cj , cj+1) simply by providing the precomputed invariant

122

proofs for each compact subrange in compact range of (cj , cj+1]. If the invariant is preserved between

each subrange, then it is preserved across the queried checkpoint range. If the AD invariant proofs

for the compact subranges are succinct, then the resulting checkpoint invariant proof is also succinct.

A protocol description for the AHDAmtz construction is given in Figure 5.6. We provide only the

update and invariant proving logic, as the remaining functionality follows from the same history

commitment and AD combination as given in Figure 5.5.

5.3.3 Security Analysis

In this section we provide theorem statements and proof sketches for the AHD security of the

two generic transforms, AHDIVC (Figure 5.5) and AHDAmtz (Figure 5.6). Our AHD transforms are

generic with respect to an AD, a VC, and a succinct non-interactive proof system that supports circuit

relations. For the AD, we will require binding and invariant soundness, and for the VC we will require

binding; defined in Figure 2.5. For the non-interactive proof system, we will require soundness.

Key binding and history binding. We first consider key binding and history binding, for which both

AHDIVC and AHDAmtz use the same mechanisms. Key binding is acheived by relying directly on an

underlying AD and history binding relies on an append-only VC. We provide the following theorems:

Theorem 14. For any adversary A against the key binding of AHDIVC[AD,VC,SNARK], we give

adversary B such that

Advbind
AHDIVC[AD,VC,SNARK],A(λ)≤Advbind

AD,B(λ) .

Theorem 15. For any adversary A against the key binding of AHDAmtz[AD,VC], we give adversary

B such that

Advbind
AHDAmtz[AD,VC],A(λ)≤Advbind

AD,B(λ) .

Proof sketch: The lookup proofs in AHDIVC and AHDAmtz operate directly over the the AD compo-

nent of the digest, dAD. Thus, a win in the AHD key binding game translates directly to a win in the

AD key binding game by constructing a wrapper adversary B that forwards the same values output

from A replacing d = (dAD,dVC) with dAD.

123

Theorem 16. For any adversaryA against the history binding of AHDIVC[AD,VC,SNARK], we give

adversary B such that

Advhbind
AHDIVC[AD,VC,SNARK],A(λ)≤Advbind

VC,B(λ) .

Theorem 17. For any adversary A against the history binding of AHDAmtz[AD,VC], we give adver-

sary B such that

Advhbind
AHDAmtz[AD,VC],A(λ)≤Advbind

VC,B(λ) .

Proof sketch: We construct B = (B1,B2) against the index binding of VC as a relatively simple

wrapper around A= (A1,A2). First stage adversary B1 runs AHD setup and replaces the parameters

for VC with its own public parameters, then runsA1. B1 parses the digest d= (dAD,dVC) and outputs

dVC.

Second stage adversary B2 runs A2 and simulates ProveHist. Whenever A2 queries a valid

history proof, B2 stores the VC lookup proof for each index cj and passes along the VC update proof

to its own Prefix oracle. IfA2 makes a query that sets the win flag, B2 must have two valid lookups

for the same cj index for different values, which it will return to win the index binding game. Thus,

B wins whenever A wins.

Invariant soundness. The mechanisms by which invariant soundness is achieved differ between

AHDIVC and AHDAmtz. We consider each separately.

Theorem 18. For any adversaryA against the invariant soundness of AHDIVC[AD,VC,SNARK], we

give adversaries B, C, and D such that

Advinv
AHDIVC[AD,VC,SNARK],Φvsn,A(λ)≤Advinv

AD,Φvsn,B(λ)+Advbind
VC,C(λ)+Advsound

SNARK,D,X(λ) ,

where X is the knowledge extractor for SNARK.

Proof sketch: In building B and C against the invariant soundness and index binding of AD and

VC, respectively, we will first need to extract the valid lookup and update proofs attested to in the

recursive SNARK for the checkpoint epochs [cj]mj . To show that valid proofs for AD and VC can

be extracted, we build D against the soundness of SNARK that wins if this is not the case. When A

outputs valid SNARK πΦ, D extracts the full history of AD.VerUpd, VC.VerUpd, and VC.VerLkup

proofs to the initial digest. It does this recursively by additionally extracting the SNARK proof for

124

the prior epoch, and then repeating extraction on the prior epoch SNARK proof. If any extraction

fails to produce valid proofs,D wins the soundness game. Naively, from the way we present AHDIVC,

this extraction will be linear in the number of epochs. We did this for simplicity of presentation, to

create a tighter reduction, one would use tree-based techniques to execute recursion with logarithmic

depth [BCCT13]. Then D would perform logarithmic extraction for each checkpoint given by A.

Now given these extracted proofs, we show that a winning adversary A corresponds to either

a break in invariant soundness of AD or a break in index binding of VC. First we show that the A

provided digests [dcj]
m
j will be equal to the extracted digests (for which we have valid extracted

proofs). If A wins, the provided digests verify under VerHist, meaning that there exists a valid

VC.VerLkup proof for the digest at index cj . On the other hand, we have a sequence of extracted

VC.VerUpd proofs with an extracted lookup proof for an extracted digest each index. If the extracted

digest for an index does not match that of a provided digest, we construct C that wins the index

binding game by querying the sequence of update proofs to Prefix and then outputting the two

lookup proofs for the index cj where the extracted digest differs from the provided digest.

Finally, now given that the provided digests match the extracted digests, we build B against

invariant soundness. By A’s winning condition, we have that the invariant is not preserved for key

k between ciA and ciB . However, we have an extracted sequence of valid invariant proofs for AD

between ciA and ciB . B outputs the sequence of extracted invariant proofs along with the lookup

proofs provided by A to win the invariant soundness game for AD.

Theorem 19. For any adversary A against the invariant soundness of AHDAmtz[AD,VC], we give

adversary B such that

Advinv
AHDAmtz[AD,VC],Φvsn,A(λ)≤Advinv

AD,Φvsn,B(λ) .

Proof sketch: In AHDAmtz, the invariant proof already consists of a sequence of invariant proofs for

AD between each of the checkpoints. B simply returns the sequence of invariant proofs between ciA

and ciB along with the lookup proofs to win the invariant soundness game for AD.

5.4 Client Checkpoint Auditing

We show here how to use an AHD for the versioned invariant as described above along with a public

bulletin board to build a verifiable registry. We consider a single server that maintains a dictionary

125

of key-value mappings within an AHD. The server collects client requests for new mappings or

updates to mappings, and incorporates the updates on a regular schedule by updating the AHD and

publishing, on a public bulletin board, a (signed) digest di+1, where (di+1,st)← Upd([kj ,vj]j : st).

As discussed in Section 4.2, we assume that all clients have a consistent view of this bulletin board

and can efficiently lookup digests by epoch.

Client lookups, monitoring, and key updates. Clients can monitor values for keys that they own

ensuring no unexpected changes have been made, or clients can lookup the value of other keys in the

registry. In our construction, both actions consist of the client simply making a lookup request to

the server for the desired key k. The server responds with the value v and version number u along

with a proof π of the lookup for the current epoch i: (v ,u,π)← Lkup(k : st). The client reads the

digest di from the bulletin board4 and verifies the proof: VerLkup(di,k,v ,u,π). If monitoring, the

client additionally checks the returned value and version match the client’s stored value and version.

Updates to keys proceed similarly. When a client requests a key update from v to v ′ at epoch i, the

server provides the client with a lookup proof for (v ,u) in di and a lookup proof for the updated

(v ′,u′) incorporated in new di+1. The client, again, reads the digests from the bulletin board, verifies

the proofs, and checks the version u against the stored version for the key. Finally, the client checks

u′ = u+1 storing the new version number and value for future monitoring.

Assuming the versioned invariant is preserved between all epoch digests published to the bulletin

board, these checks are sufficient for convincing a client that (1) any lookups to owned keys made

by other clients returned correct values, and (2) any lookups made by the client to other keys either

returned correct values or that server misbehavior will be detected the next time the key’s owner

performs monitoring.

Of course, the client cannot efficiently verify the versioned invariant for the full bulletin board.

We solve this by requiring the client to perform a process we call checkpoint auditing, in which

the client verifies the invariant is preserved across specific canonical checkpoint epochs. On each

operation (lookup, monitoring, or update), the client performs checkpoint auditing for the epoch

range (ℓ, i) where ℓ is the epoch of their last operation (ℓ= 0 for the client’s first operation) and i is

4We abstract away the fact that, depending on the implementation of the bulletin board, it may be convenient for the
client to obtain the commitment di from the server, and then check consistency with the bulletin board later on. Figure 5.7
provides an optional protocol to lazily confirm consistency of server-provided digests with the bulletin board.

126

Protocol: Client Checkpoint Auditing
Init: The client pulls the public parameters ppAHD from the registry server and verifies against the bulletin board. The
client initializes its state as follows:

– (ℓ,dℓ): latest epoch and digest audited with registry.

– (ℓ′,d′ℓ: (optional) latest epoch and digest audited with public bulletin board.

–T [k] = (v ,u): table of owned keys and expected values to monitor.

Audit: Verify consistent view and invariant preservation

(1) Client computes current epoch i (deterministically computed from clock).

(2) Client computes checkpoint epochs [cj]mj for range (ℓ, i):

[(cj ,Rj)]
m
j ← CompactR((ℓ, i)) .

(3) Client reads digests [dcj]
m
j for checkpoint epochs (2 options).

(a) Client reads directly from public bulletin board.

(b) (Optional) Client reads digests from server, and lazily confirms with public bulletin board.

– Server provides checkpoint digests and history proof, which client verifies: πhist← AHD.ProveHist(([cj]
m
j :

sti)).

– At some later epoch t > i, client reads digest dt from the public bulletin board, and requests and verifies a history
proof for checkpoints [ℓ′, t] from the server.

– Client updates state (ℓ′,d′ℓ)← (t,dt).

(4) Client requests and verifies invariant proof for checkpoints from server:

πΦ← AHD.ProveInv([cj]
m
j : sti), VerInv(di, [(cj ,dcj)]

m
j ,πΦ) .

(5) Client updates state (i,di)← (ℓ,dℓ).

Lookup: Authenticated lookup of key k

(1) Client performs audit to current epoch i.

(2) Client requests and verifies lookup proof for audited epoch i from server:

(v ,πlkup)← Lkup(k : sti), VerLkup(di,k,v ,πlkup) .

Monitor: Monitor owned keys in T for unexpected changes

(1) Client performs audit to current epoch i.

(2) For each [(kj ,vj ,uj)]j ∈ T :

(a) Client performs lookup of kj receiving value (v̂ , û).

(b) Client verifies (vj ,uj) = (v̂ , û).

Update: Update value for key k from v to v ′.

(1) Server confirms update was included in epoch i+1.

(2) Client audits to epoch i and again from i to i+1.

(3) Client performs lookup of k for epoch i receiving (v̂ , û) and verifying (v ,u) = (v̂ , û).

(4) Client performs lookup of k for epoch i+1 receiving (v̂ ′, û′) and verifying (v ′,u+1) = (v̂ ′, û′).

(5) Client updates T [k] = (v ′,u+1).

Figure 5.7: Description of the continuous client auditing protocol that enables eventual inconsistency detection
between clients. The registry server maintains an AHD under the versioned invariant.

127

x

ℓ1 r1

Case 2

x

ℓ2 r2

Case 1

x

ℓ2 r2

Figure 5.8: Cases for proof of shared checkpoint epoch. Case 1 (left) has ℓ2 as leftmost leaf of x’s subtree.
Case 2 (right) does not.

the epoch of their current operation.

Checkpoint auditing. We make use of the notion of compact ranges from amortized proving in a

different context. Clients select checkpoints [cj]mj for range (ℓ, i) as the endpoints in the compact

range representation: [(cj ,Rj)]
m
j ← CompactR((ℓ, i)) – this results in a number of checkpoints that

is logarithmic in the length of the range. The server proves the invariant is preserved between adjacent

checkpoints, πΦ← ProveInv([cj]
m
j : st), which the client can verify after reading the checkpoint

digests from the bulletin board. This is however not enough to prevent oscillation attacks (see

Section 4.2). Imagine two clients auditing ranges that always result in disjoint sets of checkpoints:

there will be no guarantee the invariant is preserved between digests seen by one client to digests

seen by the other.

Our insight, inspired by the deterministic skiplist approach of [MB02], is summarized by the

following result; a detailed pseudocode diagram of the checkpointing auditing protocol is given in

Figure 5.7. The implication of this result is that two clients that individually perform checkpoint

auditing will be guaranteed a shared checkpoint, and further, any deviation by the server from the

invariant in the client views up until that checkpoint would have been detected.

Theorem 20. For any two ranges (ℓ1, r1) and (ℓ2, r2) that are overlapping, i.e., ℓ1 ≤ ℓ2 < r1 ≤ r2,

the compact range of (ℓ1, r1) shares a subrange boundary with the compact range of (ℓ2, r2). That

is, for [(ℓ1,i, r1,i)]mi ← CompactR((ℓ1, r1)) and [(ℓ2,i, r2,i)]
n
i ← CompactR((ℓ2, r2)), there exists i, j

128

such that ℓ1,i = ℓ2,j .

Proof. First consider the binary tree imposed over all epochs. In this binary tree, define node x as the

root of the smallest subtree that contains ℓ2 and r1. We will show that their exists a shared boundary

in the compact range representation induced by (ℓ1, r1) and (ℓ2, r2) somewhere within this subtree

rooted at x.

Consider the following two exhaustive cases (depicted in Figure 5.8):

Case 1: ℓ2 is the leftmost leaf of x’s subtree.

In this case, we will show that ℓ2 itself is a shared boundary between the two compact range

representations.

If r2 is not in x’s subtree, then x’s subtree (or a supertree of x’s subtree if x is a left child) is

included in the compact range of (ℓ2, r2). Otherwise, if r2 is in x’s subtree, r2 would necessarily be

in x’s right subtree (since r2 ≥ r1) and thus x’s left subtree is included in the compact range. For the

other range, since r1 is included in x’s right subtree and ℓ1 < ℓ2 is not in x’s left subtree, then x’s

left subtree is included in the compact range of (ℓ1, r1).

Case 2: ℓ2 is not the leftmost leaf of x’s subtree.

Call y the leftmost leaf of x’s right subtree. We argue that y is a shared boundary between the two

compact range representations.

First, we argue that if the right endpoint of a range is in a subtree T and the left endpoint is not,

then the leftmost leaf of T is a boundary in the range’s compact range representation. Consider two

cases. First, if the right endpoint is in T ’s right subtree, then T ’s left subtree is a compact subrange

included in the representation and therefore, the leftmost leaf of T is a boundary. Second, if the right

endpoint is in T ’s left subtree, then we use a recursive argument to claim that the leftmost leaf of T ’s

left subtree (i.e., the leftmost leaf of T) is a boundary. The base case of this argument is that the right

endpoint is itself the leftmost leaf of T , in which case, it is a boundary.

Now with this argument, first consider r1 which is in x’s right subtree (ℓ1 is not), then y is

a boundary of (ℓ1, r1). Next consider, (ℓ2, r2). If r2 is in x’s right subtree (ℓ2 is not), then y is a

boundary by the same argument as above. Else, r2 is not in x’s subtree, so since ℓ2 is not the leftmost

leaf of x’s subtree, then x’s right subtree is included as a subrange in the compact range of (ℓ2, r2)

129

A1

B2

A3 A4

B5

A6

A3 A3 B5 B5 A6 A6 A6

Alice’s view

Bob’s view

committed view epochs

Figure 5.9: Eventual inconsistency detection for Alice’s and Bob’s view using shared checkpoints. Large ticks
with circle labels indicate points in time where Alice or Bob perform auditing. They verify that the invariant is
preserved between consecutive checkpoints selected in the range from their last audit; the checkpoints are
indicated by small circles. Checkpoints are chosen to guarantee that any two of Alice and Bob’s overlapping
audit ranges will share at least one checkpoint, highlighted in green. Thus, the interleaved epochs at which
Alice and Bob audit are implicitly guaranteed to preserve the invariant, up until their most recent shared
checkpoint. The time at which an epoch is committed to their shared view is indicated on the bottom timeline.
The shared checkpoint lags behind the most recent lookups made by Alice and Bob, but will eventually catch
up on future lookups.

and y is a boundary.

Consistency guarantees. The shared checkpoint progresses based on how frequently clients perform

audits. More precisely, if a client is served a lookup proof that violates the invariant, it is guaranteed

that one of the two clients will detect the inconsistency once each client comes online once more

in sequence, i.e., if client A is served a bad lookup value, it will be detected after client B audits

next and client A audits again after that. We formalize this guarantee in an eventual detection by

checkpoint auditing security property which we prove secure for any AHD under the versioned or

append-only invariant. We can illustrate the high level argument for eventual detection through a

simple example illustrated in Figure 5.9.

Consider two clients, client A and client B, where client A periodically monitors a key that they

own and client B performs lookups and periodic audits. Following Figure 5.9, consider the following

sequence of events:

(1) Client A monitors at A1.

(2) Client B looks up A’s key at B2.

(3) Client A monitors at A3 and A4.

(4) Client B audits at B5.

We address detection of a ghost key attack where the server serves client B a different value at B2

than what client A expects. Checkpoint auditing guarantees that either client A or B will detect an

130

inconsistency by the next time each have audited in sequence, which, in this case, is when client B

audits at B5. We can see this by considering three ranges that were audited: (1) client B audits range

(0,B2) on lookup, (2) client A audits range (A1,A3) on monitoring, and (3) client B audits range

(B2,B5). Of these three ranges, we have that (0,B2) and (A1,A3) are overlapping and that (A1,A3)

and (B2,B5) are overlapping. Then by Theorem 20, we have the existence of checkpoints C1 and

C2 such that invariant proofs for the following paths were checked during each audit respectively: (1)

0→C1→B2, (2) A1→C1→C2→A3, and (3) B2→C2→B5. Put together, we have invariant

proofs for the following path, implying that the invariant is preserved from A1→B2→A3:

A1→ C1→B2→ C2→A3 .

Now consider for the versioned invariant, client A monitors for expected value and version (v ,u) at

A1 and A3. Since the invariant is preserved from A1→B2, it must be that the value (v ′,u′) served to

client B cannot be different (v ′ ̸= v) unless the version number has increased u′ > u. Similarly, from

B2→A3, since the invariant is preserved, if v ′ ̸= v , it must be that u > u′. This is a contradiction,

so this inconsistency will either be caught by failure to verify client A’s lookup of (v ,u) during

monitoring or by failure to verify an invariant proof for one of the three audits. It is clear that this

argument can be extended to any pair of clients.

Lastly, we note the interplay between checkpoint auditing and AHDAmtz. Since the format of

checkpoints that are passed to ProveInv are already compact subranges, the invariant proof for each

pair of checkpoints consists of a single precomputed proof, instead of a logarithmic sequence of

proofs. This results in proof sizes for checkpoint auditing to be of size O(logN) as opposed to

O(log2N) for range length N .

More formally, we provide a formal definition for checkpoint auditing with respect to an authen-

ticated history dictionary and an immediately consistent bulletin board. This definition is inspired by

the “oscillation” security definition of [MKL+20] in which an adversary wins if a client does not

detect a ghost key attack. Our security game is slightly more complex as client checkpoint auditing

requires pairwise clients to perform audits, in contrast to [MKL+20] where a single client may audit

and rely on additional assurances from trusted third-party auditors.

The security game for detection of invariant breaks in checkpoint auditing is defined by the

pseudocode game CkptDetect given in Figure 5.10. It models two clients: client 1 monitors an

131

Game CkptDetectAAHD,Φ(λ)

pp←$AHD.Setup(λ)

(d0,st)← AHD.Init()

ℓ← 0 ; ℓ0← 0 ; ℓ1← 0

v ←⊥ ; V ← [·]
aud0← [·] ; aud1← [·]
k←$A1(pp)

(i1, i2, i3,v
′,πlkup)←$APubDigest,Audit0,Monitor1,UpdVal1

2

Return
∧



i1 ≤ i2 ≤ i3

i1 ∈ aud0

i2 ∈ aud1

i3 ∈ aud0

AHD.VerLkup(di1 ,k,v
′,πlkup)

v ′ ̸=V [i1]


Oracle PubDigest(d)

V [ℓ]← v

ℓ← ℓ+1

dℓ← d

Oracle Audit0(πΦ,πhist)

Require ℓ > ℓ0[
(cj ,Rj)

]m
j
← CompactR(ℓ0, ℓ)

Require AHD.VerInv(dℓ, [(cj ,dcj)]
m
j ,πΦ)

Require
AHD.VerHist(dℓ, [(cj ,dcj)]

m
j ,πhist)

ℓ0← ℓ ; aud0← aud0 ∥ [ℓ]

OracleMonitor1(πΦ,πhist,πlkup)

Require ℓ > ℓ1[
(cj ,Rj)

]m
j
← CompactR(ℓ1, ℓ)

Require AHD.VerInv(dℓ, [(cj ,dcj)]
m
j ,πΦ)

Require
AHD.VerHist(dℓ, [(cj ,dcj)]

m
j ,πhist)

Require AHD.VerLkup(dℓ,k,v ,πlkup)

ℓ1← ℓ ; aud1← aud1 ∥ [ℓ]

Oracle UpdVal1(πΦ,πhist,πlkup,v
′)

Require ℓ= ℓ1+1

Require AHD.VerInv(dℓ, [(ℓ1,dℓ1)],πΦ)

Require AHD.VerHist(dℓ, [(ℓ1,dℓ1)],πhist)

Require AHD.VerLkup(dℓ,k,v
′,πlkup)

v ← v ′

ℓ1← ℓ ; aud1← aud1 ∥ [ℓ]

Figure 5.10: Security game for invariant break detection with checkpoint auditing.

adversary-chosen key over time, and client 0 performs lookups to the key. The goal of the adversary

is to serve a lookup value that is accepted by client 0, but is not consistent with the “true” value

maintained by client 1. More specifically, the adversary may induce periodic audits by client 0 and

periodic monitoring audits or value updates of the key by client 1. The exposed oracles represent

the verification procedure that clients would take during auditing and, as such, take as input proofs

that would be served by the server (fully controlled by the adversary). As specified in Figure 5.7,

clients audit logarithmic number checkpoints selected by the compact range, and on a value update, a

monitoring client audits up to epoch prior to the change in value. The adversary also has full control

over the digest, but may only publish a single digest for each epoch, representing an immediately

consistent bulletin board. At the end of the game, the adversary outputs a value v ′ and lookup proof

along with three epoch numbers i1, i2, i3. The adversary wins if the following conditions are satisfied:

(1) v ′ verifies under the lookup proof at epoch i1 for client 0. Thus, we additionally require that

client 0 audited epoch i1.

132

(2) v ′ does not match the expected value of the key at digest i1 as monitored by client 1 and tracked

by the game.

(3) The appropriate eventual detection auditing conditions have been met. There exists an epoch

i2 ≥ i1 that was monitored by client 1, and there exists an epoch i3 ≥ i2 that was audited by

client 0.

We define an adversary A’s advantage against the checkpoint auditing game as:

Adv
ckpt
AHD,Φ,A(λ) = Pr[CkptDetectAHD,Φ

A (λ) = 1] .

We provide the following theorem for the checkpointing security of any AHD:

Theorem 21. For any adversary A against the checkpoint auditing eventual detection of AHD, we

give adversary B such that

Adv
ckpt
AHD,Φvsn,A(λ)≤Advinv

AHD,Φvsn,B(λ) .

Proof sketch: Say the expected value of k at i1 according to client 1 is v (i.e., V [i1] = v), and further

say that it was updated to be equal to v ′ at epoch i0 ≤ i1. Redefine i2 to be the smallest epoch in

aud1 such that i2 ≥ i1. This ensures that V [i2] = v , and it is guaranteed that such an i2 redefinition

exists by how V is populated in CkptDetect. For a winning adversary, we have that the following

sequences of invariant proofs were verified by either client 0 or client 1 because i1, i2, i3 are in the

sets of successful audits:

(1) 0→ c1→ i1: We know that client 0 verified some path of valid invariant proofs from epoch

0 through a shared checkpoint c1 (we will show why such a shared checkpoint exists shortly)

through epoch i1.

(2) i0→ c1→ c2→ i2: We know that client 1 verified some path of valid invariant proofs from i0

to i2, and since (i0, i2) is overlapping with (0, i1), by Theorem 20, we have the existence of

shared checkpoint c1, where i0 ≤ c1 ≤ i1. Again, we will show shortly the existence of a second

shared checkpoint c2.

(3) i1→ c2→ i3: We know that client 0 verified some path of valid invariant proofs from i1 to i3,

and since (i1, i3) is overlapping with (i0, i2), by Theorem 20, we have the existence of shared

checkpoint c2, where i1 ≤ c2 ≤ i2.

Taking the above, we have that between client 0 and client 1, a path of valid invariant proofs were

133

verified for:

i0→ c1→ i1→ c2→ i2 .

By our redefinition of i2, we have that client 1 verified lookup proofs for v at i0 and i2. By the

adversary’s winning condition, we have that client 0 verified a lookup proof for v ′ at i1. However,

by the versioned invariant, it is not possible for the value to change to v ′ and then change back to v .

Say v = (v,u) where u denotes the version number. By the versioned invariant, v ′ = (v′,u′), where

u′ > u. Any future value v ′′ = (v′′,u′′) that preserves the versioned invariant cannot have u′′ < u′,

so a valid lookup of v = (v,u) at epoch i2 is a break in invariant. We build B to output the set of

invariant and history proofs from epoch i1 to epoch i2 and provide the lookup proof at i1 for v ′

output by A at game end and the lookup proof at i2 provided by A to Monitor1 at i2 for v .

5.5 Evaluation

5.5.1 Implementation

We implement our proposed constructions in Rust. Our implementation consists of a number of

modular parts (following Figure 5.1). We define a generic authenticated dictionary interface that

supports versioned invariant update proofs for consecutive epochs, and an accompanying interface

for generating SNARK constraints for verification of the update proof. We then implement our

two generic transforms, IVC (Figure 5.5) and amortized proving (Figure 5.6), to take an object

implementing the authenticated dictionary interface and produce an object implementing a defined

authenticated history dictionary interface. Lastly, given an object implementing the AHD interface,

we instantiate a verifiable registry service exposing a RESTful API for key lookups, key updates,

and client checkpoint auditing (Figure 5.7). The service is backed by an in-memory Redis datastore.

In total, our implementation consists of ≈ 12000 lines of code and is available open source at

https://github.com/nirvantyagi/versa.

The constraints and generic IVC transform are implemented within the arkworks ecosystem for

SNARKs [BCG+20b] and make use of the SNARK implementations from arkworks. We instantiate

and evaluate the recursion constructions on [Gro16] over the MNT4-753 and MNT6-753 pairing-

friendly cycle of curves to target 128 bits of security. This choice of SNARK requires a trusted

134

https://github.com/nirvantyagi/versa

setup and results in a state-of-the-art constant proof size; however, other general-purpose recursive

SNARKs [Set20, CHM+20, BCMS20, BDFG21] can be swapped in with different trade-offs in setup

assumptions, proving costs, and proof size. Ultimately, looking forward to evaluation, we will be

interested in the difference between SNARK proving costs for verifying the Merkle tree AD update

proof versus the RSA AD update proof. We expect the proving cost ratio to be comparable across

SNARKS as it is dependent on the ratio of circuit constraints.

VeRSA constructions. We build our two VeRSA variants using the described modular implemen-

tation. First we implement the KVaC RSA AD [AR20] along with our proposed update proof

(Section 5.2) following the proof of homomorphism over hidden order groups [BBF19]. We instan-

tiate the construction with an RSA group of 2048 bits. We further implement SNARK constraints

for verification of the update proof; the constraints make use of optimizations for multiprecision

arithmetic [KPS18] and hashing to primes [OWWB20]. VeRSA-IVC is the registry resulting from the

modular IVC transform and VeRSA-Amtz is the registry from the amortized proving transform. Our

RSA constructions require a hidden-order RSA group from a trusted setup; while not ideal, academic

work [CHI+21, BGG18, BGM17] has suggested that large-scale multi-party setup ceremonies can be

conducted in practice. Class groups [BW88] provide an alternate tack to constructing a hidden-order

group without trusted setup, but would significantly hinder performance.

Baselines. To evaluate our VeRSA constructions, we compare to verifiable registries based on Merkle

tree ADs. We implement a Merkle tree AD supporting versioned invariant proofs. The first baseline,

which we denote as MT-VR, is the verifiable registry not designed for efficient client auditability

in which update proofs for each consecutive epoch must be checked, either by the client or a

trusted auditor party. The performance characteristics of MT-VR represent a set of previous work,

most closely being CONIKS [MBB+15], but also sharing structure with SEEMless [CDGM19]

and Mog [MKL+20]. The second baseline we consider is the verifiable registry resulting from

applying the IVC transform to the Merkle tree AD, which we denote MT-VR-IVC. While we use

this construction as a baseline, as it has been proposed abstractly in concurrent work [CCDW20], we

note, to the best of our knowledge, ours is the first implementation of this approach. We set the height

of the Merkle tree to 32, which with our open addressing optimization can support 230 keys, and

instantiate the hash function with the Poseidon algebraic hash function [GKK+19] for MT-VR-IVC

135

and with SHA3 for MT-VR.

Experimental setup. We wish to answer the following questions about VeRSA-IVC and

VeRSA-Amtz in comparison to the Merkle tree baselines:

• Client auditing costs: What are the bandwidth and computation costs for a client to audit a range

of epochs?

• Server update costs: What are the computation costs for the server to incorporate key updates

and publish a new epoch digest? At what latency can new digests be published; supporting what

key update throughput?

• Lookup costs: What are the bandwidth and computation costs for key lookups?

We benchmark our constructions using an Amazon EC2 r5.16xlarge instance with 32 CPU

cores and 512 GB memory. Client computation is evaluated single-threaded, and network costs of

gathering client input are not evaluated; our experiments simulate client input, generating random

requests of the appropriate size.

VeRSA-Amtz grows in update cost over the history of the registry due to increasing amortized

costs of proving. We present the amortized costs of proving for epoch 2k by averaging the proving

costs incurred between the 2k−1 updates from epoch 2k−1+1 to 2k. While these proving costs occur

in spikes over the range, VeRSA-Amtz is not delayed by the need to complete an expensive proof

for a large range; the invariant proofs can be computed in the background and audits can still be

fulfilled (see further discussion on parallelism in Section 5.5.3). Therefore, we believe reporting the

amortized costs in this manner leads to a fair evaluation.

5.5.2 Client Auditing Costs

We contrast the auditing costs in terms of proof size and verification time for different lengths of

audit ranges; the results are shown in Figure 5.11. MT-VR-IVC, VeRSA-IVC, and VeRSA-Amtz

have client auditing costs that scale logarithmically in the length of the audit range. Note, the IVC

constructions’ proof size and verification costs would become truly constant were they instantiated

in the auditing model where a third-party verifies the hashchain. In any case, the costs among the

client-auditable constructions, VeRSA and MT-VR-IVC, are comparable. The proof sizes, even for

136

25 29 213 217

audited range (# of epochs)

102

105

108

pr
oo

f s
ize

 (K
B)

25 29 213 217

audited range (# of epochs)

10−1

101

103

ve
rif

y
tim

e
(s

)

MT-VR MT-VR-IVC VeRSA-IVC VeRSA-Amtz

Figure 5.11: Client auditing costs. The size (left) and verification time (right) of invariant proofs for varying
epoch range lengths.

large epoch ranges, remain under 20 KB, and proofs are verified in under 100 ms.

The naive comparison for client auditing costs is the baseline MT-VR in which clients (or trusted

auditors) must perform linear work auditing every consecutive epoch. Against MT-VR, for an epoch

range of length 32, client bandwidth costs are 103× lower and verification time is 10× lower. For

epoch ranges of length 1000, the improvement grows to 105× lower for bandwidth costs and 103×

lower for verification time. In context, with an epoch publishing time of 5 minutes, auditing at

epoch ranges of length 32 and 1000 correspond to a client auditing every 3 hours or twice a week,

respectively.

5.5.3 Server Epoch Update Costs

Building efficiently auditable proofs for clients adds significant computational costs to the server.

We investigate what levels of key update throughput are achievable and at what latency. To anchor

our evaluation, we set a target of ≈ 60 key updates per second based on current statistics from the

certificate transparency ecosystem.

Figure 5.12 shows the latency to prove an epoch update depending on how many key updates

are made in the epoch. The throughput is computed as the number of key updates divided by latency.

At a high level, we find that VeRSA-IVC and VeRSA-Amtz can both achieve throughput levels > 60

key updates per second, while MT-VR-IVC achieves only≈ 1 key update per second under the tested

computation resources; we discuss how throughput can be increased through increased parallelism

later.

However, for VeRSA-IVC to achieve a throughput of 60 key updates per second, epochs are

137

0 20000 40000 60000 80000 100000 120000
of key updates per epoch

0

500

1000

1500

2000

ep
oc

h
la

te
nc

y
(s

)
MT-VR MT-VR-IVC VeRSA-IVC VeRSA-Amtz

Figure 5.12: Server epoch update costs plotting the epoch update latency varying the number of key updates
batched in the epoch. The key update throughput is computed as the number of key updates per epoch divided by
the epoch latency. MT-VR-IVC measurements are truncated due to running out-of-memory on the benchmark
machine.

published at a latency of≈ 30 minutes. This is because of the large constant cost of verifying the RSA

AD update proof within a circuit. This cost is incurred per epoch update no matter how many key

updates are included, but the incremental cost of including more key updates is minimal as they do not

increase the dominating cost of proving the SNARK. Thus, the throughput of VeRSA-IVC increases

when more key updates are batched together. At its limit, we can extrapolate from our experiments

that the throughput will cap out at ≈ 400 key updates per second due to costs of performing RSA

exponentiation and computing the algebraic invariant proof (outside of the SNARK).

On the other hand, the throughput of VeRSA-Amtz is not affected by the number of key updates

in an epoch; the latency is directly proportional to the number of key updates. VeRSA-Amtz achieves

a throughput of ≈ 90 key updates per second while supporting publishing digests at low latencies. So

while VeRSA-IVC can achieve higher throughput than VeRSA-Amtz, it would require a significantly

higher latency that may not be suitable for some deployments — extrapolated results indicate

VeRSA-IVC to surpass VeRSA-Amtz in throughput at a latency of 50 minutes. In contrast to MT-VR,

which achieves a throughput of 40,000 key updates per second but does not produce efficiently

auditable proofs, our VeRSA systems incur a ≈ 480× proving overhead.

Lastly, in terms of persistent storage, VeRSA-Amtz incurs 1123 B per epoch, and VeRSA-IVC

and MT-VR-IVC incur (on average) just 64 B per epoch for the history tree vector commitment.

Improving throughput via parallelism. The dominant cost for the IVC constructions (VeRSA-IVC

and MT-VR-IVC) is the SNARK proving time, and it has been shown that SNARK proving work is

highly parallelizable [WZC+18]. Thus, we would expect the throughput of the IVC constructions

to increase more-or-less directly with increased computation resources. Figure 5.13 (left) shows

138

0 2000 4000 6000
of key updates per epoch

0

25

50

75

co
ns

tra
in

ts
 (×

10
6)

21 23 25

of cores

103

104

ep
oc

h
la

te
nc

y
(s

) MT-VR-IVC
VeRSA-IVC

Figure 5.13: (Left) The number of constraints in the SNARK circuit for varying number of key updates. (Right)
The epoch latency (dominated by the SNARK proving time) for different levels of hardware parallelism.

the number of constraints to be proved in the SNARK circuit for different numbers of key updates

batched per epoch. The RSA circuit is of constant size, just under 20M constraints. The MT circuit

grows linearly with the number of key updates,≈ 20,000 constraints per key update. We demonstrate

the parallelism of the workload by measuring epoch update latency using different numbers of

physical cores, shown in Figure 5.13 (right). For the circuit sizes evaluated, doubling the number

of processors halves the epoch latency up until between 16 and 32 processors where the marginal

benefits of adding more processors decreases. Larger circuit sizes, e.g. by adding more key updates

to the MT constructions, will continue to benefit from increased processors [WZC+18].

In VeRSA-Amtz, the dominant cost consists of proving invariant proofs for large subranges

over the registry’s life. While proving a single invariant proof (Wesolowski proof of homomor-

phism [Wes19, BBF19]) is mostly a sequential task, at any one time there will be approximately

logN (for N total epochs) such invariant proofs being proved in the background, one for each sub-

range length. These tasks can be easily parallelized given logN processors such that the epoch update

cost for VeRSA-Amtz is constant instead of logarithmically increasing over time. It is reasonable to

assume computational resources supporting logN parallelism. For example, in our experiments with

32 cores, it would take a registry publishing epochs at 5 minute latency thousands of years to reach

232 epochs.

Improving throughput via sharding. A second way to increase throughput is by sharding the key

space and running separate instances of a verifiable registry. If perfectly sharded, i.e., key updates

are evenly distributed across shards, then the throughput of the system is expected to increase

proportionally to the number of shards (assuming the total computing resources are also increased

proportionally). However, client auditing costs will increase proportionally: clients must audit each

139

25 210 215

batch size

10−1

101

103

tim
e

(s
)

1 cpu
16 cpu

25 210 215

of key updates

10−1

101

103

23 26 29

version number

10−2

10−1

100

Figure 5.14: (Left) Batch computation of RSA membership proofs for varying levels of hardware parallelism.
(Middle) Update computation of an individual RSA membership proof over a range of key updates. (Right)
Verification costs of RSA membership proofs with respect to version number of entry.

shard assuming keys are distributed randomly across shards. If we can guarantee that each client will

only be interacting with a small number of shards, then the throughput gains of sharding may come

with little increase in client cost.

5.5.4 Key Lookup Costs

The VeRSA constructions achieve higher key update throughput than Merkle tree solutions, how-

ever they also incur large costs for computing membership proofs for key lookups. In the full

version [TFZ+21], we describe techniques for batch membership proof computation to manage

these costs. We evaluate these costs and find that VeRSA can reasonably compute lookup proofs

for registries storing on the order of millions of keys, however for hundreds of millions or billions

of keys, the costs of producing timely lookup proofs are infeasible. In contrast, producing lookup

proofs for Merkle tree registries is extremely low cost (order of milliseconds) even for registries with

billions of keys.

Figure 5.14 (left) shows the time to compute all membership proofs for a batch of keys. As a

concrete example, consider a registry with 1 million keys: Figure 5.14 indicates that membership

proofs for all keys can be computed using a single thread every ≈ 3 hours. In the time between

batch computations, membership proofs become outdated as the registry updates, and if queried

must be updated individually. Figure 5.14 (right) shows the cost of updating a single membership

proof with respect to the number of key updates made to the registry. With an update throughput of

60 key updates per second, in the 3 hour batch update cycle of our example, ≈ 213 key updates are

made, which can be individually applied to respond to a lookup proof in ≈ 10 seconds. This strategy

140

does not incur any storage overhead on top of the storage of the lookup proofs themselves. More

advanced caching strategies for batch updating frequently queried keys may be employed to further

improve lookup costs. Nonmembership proofs for lookups of all possible non-member keys cannot

be precomputed efficiently and must be responded to in a delayed fashion by batch computation of a

set of non-member lookups together on some schedule.

Lookup proofs are small and of constant size: 0.8 KB for VeRSA, comparable to the 1 KB proof

sizes of MT-VR. Figure 5.14 plots the verification time of a lookup proof with respect to the version

number. Verification increases linearly with version number because the verifier must compute an

RSA exponentiation to an exponent of the form H(k)u. Despite this trend, we find that the cost

of verification remains feasible for clients if version numbers do not get too large (< 1 second for

version numbers less than 1000). We believe this range of version numbers is reasonable for our

envisioned applications of binary transparency and PKI for E2EE messaging. As an example for a

potential application of binary transparency, we crawled version history for a random sample of 1000

software packages available in the Ubuntu 22.04 main repository. These packages had a mean of 3.4

versions (median 3), with a maximum value of 20. We also manually recorded the version history

of the ten most popular apps on the iOS App Store finding a median of 52.5 (maximum of 127)

versions published in 2021. If a setting must support large version numbers u, we provide details for

a dictionary variant that increases lookup proof size by logtu for some branching factor t but allows

for verification in time logt× the time to verify a constant-size lookup proof of version t (see the full

version [TFZ+21]).

141

CHAPTER 6

ETHICS DISCUSSION

The promise of end-to-end encryption is to ensure that the messaging platform cannot read nor

interfere with conversations between its users. Unfortunately these same properties hamper the ability

of the platform to perform critical safety services on behalf of its users. We have seen in WhatsApp

the negative effects of safety systems being unable to see message content directly: hate speech

and political disinformation campaigns are a few examples of abuse evading moderation found

on WhatsApp. Such failings have led to calls for the rollback of end-to-end encrypted messaging

and highlight an ongoing tension between communicating in private and holding communications

accountable online.

In this chapter, we examine this tension through the lens of competing values: most pertinently,

the values of privacy and accountability. Nissenbaum famously argued for the notion of “privacy in

public” [Nis17]. This work will concern itself with a related notion one might call “accountability in

private”. It will be important to distinguish, in this chapter, the use of the term privacy when it refers

to the value versus when it refers to descriptive properties of communication such as confidentiality,

deniability, and anonymity. We will use privacy to refer to the former and describe communications in

private to refer to the latter. Further, we will focus on one-to-one messaging as a starting application

which provides a good case study for understanding the privacy-accountability tension while avoiding

additional complexities of group messaging and more expressive social media.

First to illustrate the competing values, let us draw an analogy to the common example pertaining

to privacy of a family within their home. Just as a family has legitimate claims to privacy within their

home, users of messaging platforms have claims to privacy for their communication. At the same

time, misbehavior of bad actors, for example, domestic abuse within the home or propagation of hate

speech online is behavior that does not have a legitimate claim to privacy, and rather, the bad actor

should be held accountable for such actions. These two values come into conflict when mechanisms

needed to hold bad actors accountable would at the same time be violating the privacy of good actors

by, for example, subjecting them to undue surveillance.

Motivating this work are two ongoing trends in the usage of online communication systems. Both

of these trends exert destabilizing forces on society’s existing norms around one-to-one messaging.

142

There are two such norms which we describe by their deployment setting. The first is plaintext

messaging in which messages sent between users can be read and processed by the platform. The

second setting, in the early stages of its adoption, is end-to-end encrypted messaging in which

messages sent between users are encrypted using keys held only by the communicating partners,

preventing the platform from learning the communication content. In the plaintext setting, platforms

are trusted to view user messages and intervene to protect users from certain types of spam and abuse.

In the encrypted setting, platforms generally perform few safety services on behalf of users.

Now consider the first destabilizing trend. Internet companies owning messaging platforms are

increasingly collecting sensitive data about users and using that data for purposes not aligned with

user interests, e.g., targeted advertising; this represents a threat to the value of privacy on plaintext

systems. In contrast, the second trend considers accountability. Online messaging has always harbored

bad actors, but the growth in popularity of online messaging and its increased usage as a primary

form of communication has made it an expedient target for nefarious activity. Recent years have

exposed coordinated attacks hosted on messaging platforms leading to real and amplified societal

harm. Mitigations for these types of abuses are actively being developed for the plaintext setting but

do not translate to the encrypted setting due to a lack of information flow needed to enable the abuse

mitigation systems; this represents a threat to the value of accountability and safety on encrypted

systems. These trends point towards an ongoing shift in norms, as evidenced by the significant

amount of public discourse on the topic, and motivates new techniques to address the conflicting

values.

As a pluralist society that subscribes to different values, it is inevitable that there will be conflicts

and we will have to decide on appropriate recourse [Ber13]. Flanagan and Nissenbaum [FN14] offer

three paths: (1) Society may trade-off one value for the other choosing to satisfy one but not the

other; (2) Society may balance values compromising and appealing to each value in some limited

capacity; or (3) Society may resolve the tension by changing the parameters of the setting. In the

example of family privacy in the home above, society employs a complex balancing solution encoded

in our legal system with certain parties such as judges and police entrusted with special privileges.

In this dissertation, we aim to dissolve the tension for certain settings in online communication

by introducing new technological tools in the form of cryptographic protocols. Modern cryptography

can be used to enforce precise and restricted information flows under specified conditions. We

143

propose new protocols to address a number of different types of abuse and associated mitigations

seen on online messaging. However, as we will see, even with these new protocols, limitations in

the setting or cryptography will mean that the full tension is not dissolved. In these cases, we will

again appeal to balancing and seek out an appropriate compromise for the conflicting values. The

following sections will discuss each dissertation chapter in turn, discussing the values at play and the

manner in which the proposed technology addresses conflicting values.

Secure reporting for content moderation. In this chapter, we proposed the use of cryptographic

reports for enabling content moderation. Specifically, the key insight for addressing the privacy and

accountability conflict is that information needed to enable content moderation does not need to

be made available to the moderator until a user report identifying the misbehavior is made. Until

that time, communication content is cryptographically hidden, and users have the ability to provide

cryptographic key material in a report to unlock the necessary information for the moderator to

effectively moderate.

More formally, we may codify the above as an information flow in the language of contextual

integrity [Nis04]. There does not exist a “one-size-fits-all” description for the information flow as it

will vary depending on the type of abuse being addressed; in this work, we discuss two examples,

reporting for sender abuse, and reporting for viral forwarding abuse. We will describe the information

flow to generically capture both settings. The sender of information is the reporting user. The recipient

is the moderator of the platform. The moderator is a special party entrusted to maintain the safety

of the platform. The subject of the flow is variable depending on the type of abuse being addressed

and the information needed to mitigate the abuse. For reporting sender abuse, the subject is the

sender of the message. For reporting viral forwarding abuse, the subject may consist further of the

source sender of the message or even the identities of all users affected by the forwarded message.

Similarly, the transmission principle will also depend on the abuse type. Ideally, the flow should

only be transmitted to the moderator if an abuse has occurred. In the user reporting approach, we

approximate this by transmitting when a user detects and reports abuse to the moderator.

Prior to our work, such a transmission principle could not be enforced. In the plaintext setting,

the moderator would have access to all the information regardless of whether an abuse had occurred.

Here, the moderator as a special party was simply trusted to not abuse this power. In contrast, in

144

the encrypted setting, there was no mechanism for users to report content to the moderator. In fact,

messaging systems were designed to explicitly prevent this type of reporting by supporting deniability

meaning any report a user may make claiming that an abusive message was sent by a sender could

have just as easily been forged by the reporting user themself.

In our work, cryptographic protocols are developed to carefully enforce the specified transmission

principle and subject. That is, the relevant information is only transmitted to the moderator upon

a report from a user; and even then, the information remains deniable to any party other than the

moderator. This protocol removes additional trust assumptions needed for the special moderator

party.

Even so, our user reporting approach makes some compromises. The transmission principle relies

on a user report, but what if a user abuses their reporting power and reports non-abusive messages

that should not be revealed to the platform moderator? This concern is especially relevant to the

case of viral forwarding where a report may erroneously reveal a large amount of information to the

platform (some of which may not have been privy even to the reporting user). Here again, moderators

will need to be trusted to not abuse such erroneous reports. In future work, cryptography may again

be used to help further minimize these compromises. Transparency mechanisms may be enacted to

disincentivize moderators from acting on erroneous reports or more advanced transmission principles

may be enforced. For example, instead of transmitting on a single user’s report, transmission only

occurs following a threshold number of user reports.

Sender-anonymous blocklisting. In this chapter, we develop a protocol for sender-anonymous

blocklisting where the blocklist is controlled and held in private to the recipient user. One might

argue that the platform can determine which senders are “safe” and protect users from spam and

other abuse through other mechanisms, filtering or otherwise. However, we appeal to the value of

autonomy to justify providing blocklisting powers to users; they may choose to block others based on

concerns for safety or they may choose to block based on other reasons. Importantly, if user-chosen

blocklists are made public to the platform, such information is sensitive and may influence users into

making different blocklisting decisions, hindering their autonomy. On the other hand, prior to our

work, it was not known how to do platform-level blocking with a hidden blocklist in anonymous

messaging, raising a conflict between privacy and autonomy. Our work introduces new cryptography

145

that dissolves this conflict showing it is possible to support both together.

Verifiable public key infrastructure. This chapter investigates the trust assumptions needed to

enable communications in private for encrypted messaging. When discussing trust assumptions, it

is important to distinguish between the trust assumptions in an abstracted cryptographic protocol

(i.e., mathematical adversaries) and the sociotechnological trust assumptions that arise from today’s

modern computing ecosystem (i.e., open source review, binary build pipelines, etc.) [BNP23]. This

work considers the cryptographic trust assumptions.

When formalizing privacy in terms of contextual integrity and information flow, there often

exists the notion of special parties that are entrusted with certain privileges. As Nissenbaum discusses,

a conflict of interest between parties does not lend itself to a stable trust relationship [Nis01]. For

distribution of public keys, users are required to trust the platform to enable communications in

private. This trust relationship is tenuous. As discussed earlier, a motivating trend of this work is

the overstepping of platforms in collecting sensitive information about users. In this chapter, new

cryptography is developed to rearrange these trust dependencies so that users may audit the key

distribution process hosted by the platform.

146

CHAPTER 7

CONCLUDING THOUGHTS

Looking forward, I want to ensure that most user interactions with internet services, even beyond

messaging, are both private and accountable by default. Much progress has been made over the past

decade, but there is a lot to do to realize this vision. As the internet gets increasingly converted to

privacy-preserving technologies, accountability issues will continue to arise in emerging applications.

Communication and messaging are a low level functionality that will be built on to create highly

expressive privacy-preserving applications. Supporting these applications will require fundamentally

rethinking many parts of our internet architecture and developing new cryptography.

147

BIBLIOGRAPHY

[ABM15] Michel Abdalla, Fabrice Benhamouda, and Philip MacKenzie. Security of the J-PAKE password-
authenticated key exchange protocol. In IEEE S&P, 2015.

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle diffie-hellman assumptions and an analysis
of DHIES. In CT-RSA, 2001.

[ACD19] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Security notions, proofs, and modu-
larization for the signal protocol. In EUROCRYPT, 2019.

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. Structure-
preserving signatures and commitments to group elements. In CRYPTO, volume 6223 of Lecture Notes in
Computer Science, pages 209–236. Springer, 2010.

[AKTZ17] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas Zacharias. Mcmix: Anonymous
messaging via secure multiparty computation. In USENIX Security, 2017.

[AM18] Mustafa Al-Bassam and Sarah Meiklejohn. Contour: A practical system for binary transparency. 11025:94–
110, 2018.

[AR20] Shashank Agrawal and Srinivasan Raghuraman. KVaC: Key-value commitments for blockchains and
beyond. In ASIACRYPT (3), volume 12493 of Lecture Notes in Computer Science, pages 839–869. Springer,
2020.

[AS16] Sebastian Angel and Srinath T. V. Setty. Unobservable communication over fully untrusted infrastructure.
In OSDI, 2016.

[ASB+17] Ruba Abu-Salma, M. Angela Sasse, Joseph Bonneau, Anastasia Danilova, Alena Naiakshina, and Matthew
Smith. Obstacles to the adoption of secure communication tools. In IEEE Symposium on Security and
Privacy, pages 137–153. IEEE Computer Society, 2017.

[BBF19] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumulators with applications to iops
and stateless blockchains. In CRYPTO (1), volume 11692 of Lecture Notes in Computer Science, pages
561–586. Springer, 2019.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO, 2004.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and bootstrapping
for SNARKS and proof-carrying data. In STOC, pages 111–120. ACM, 2013.

[BCD+17] Foteini Baldimtsi, Jan Camenisch, Maria Dubovitskaya, Anna Lysyanskaya, Leonid Reyzin, Kai Samelin,
and Sophia Yakoubov. Accumulators with applications to anonymity-preserving revocation. In EuroS&P,
pages 301–315. IEEE, 2017.

[BCG+20a] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu. Zexe:
Enabling decentralized private computation. In IEEE S&P, 2020.

[BCG+20b] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu. ZEXE:
enabling decentralized private computation. In IEEE Symposium on Security and Privacy, pages 947–964.
IEEE, 2020.

[BCK+14] David A. Basin, Cas J. F. Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf Sasse, and Pawel Szalachowski.
ARPKI: attack resilient public-key infrastructure. In CCS, pages 382–393. ACM, 2014.

148

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Recursive proof composition
from accumulation schemes. In TCC (2), volume 12551 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2020.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via cycles
of elliptic curves. In CRYPTO (2), volume 8617 of Lecture Notes in Computer Science, pages 276–294.
Springer, 2014.

[BDFG21] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo infinite: Proof-carrying data from additive
polynomial commitments. In CRYPTO (1), volume 12825 of Lecture Notes in Computer Science, pages
649–680. Springer, 2021.

[Ben87] Josh Daniel Cohen Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale University, USA, 1987.

[Ber13] Isaiah Berlin. The crooked timber of humanity: Chapters in the history of ideas. Princeton University Press,
2013.

[BF99] Dan Boneh and Matthew K. Franklin. An efficient public key traitor tracing scheme. In CRYPTO, volume
1666 of Lecture Notes in Computer Science, pages 338–353. Springer, 1999.

[BFR+13] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath T. V. Setty, Andrew J. Blumberg, and Michael
Walfish. Verifying computations with state. In SOSP, pages 341–357. ACM, 2013.

[BGB04] Nikita Borisov, Ian Goldberg, and Eric A. Brewer. Off-the-record communication, or, why not to use PGP.
In WPES, 2004.

[BGG18] Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol for constructing the public
parameters of the pinocchio zk-snark. In Financial Cryptography Workshops, volume 10958 of Lecture
Notes in Computer Science, pages 64–77. Springer, 2018.

[BGJP23] James Bartusek, Sanjam Garg, Abhishek Jain, and Guru-Vamsi Policharla. End-to-end secure messaging
with traceability only for illegal content. In EUROCRYPT (5), volume 14008 of Lecture Notes in Computer
Science, pages 35–66. Springer, 2023.

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-snark parameters in the
random beacon model. IACR Cryptol. ePrint Arch., 2017:1050, 2017.

[BKLZ20] Benedikt Bünz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. Flyclient: Super-light clients for cryptocur-
rencies. In IEEE Symposium on Security and Privacy, pages 928–946. IEEE, 2020.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assumptions. In EUROCRYPT,
2003.

[BNP23] Ero Balsa, Helen Nissenbaum, and Sunoo Park. Cryptography, trust and privacy: It’s complicated. In
CSLAW. ACM, 2023.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-diffie-
hellman-group signature scheme. In PKC, 2003.

[Bon16] Joseph Bonneau. Ethiks: Using ethereum to audit a CONIKS key transparency log. In Financial Cryptogra-
phy Workshops, volume 9604 of Lecture Notes in Computer Science, pages 95–105. Springer, 2016.

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round zero-knowledge
protocols. In CRYPTO, volume 3152 of Lecture Notes in Computer Science, pages 273–289. Springer, 2004.

149

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 409–426.
Springer, 2006.

[BS04] Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation. In CCS, 2004.

[BS17] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography. 2017. Version 0.4.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The case of dynamic groups.
In CT-RSA, 2005.

[But] Vitalik Buterin. The dawn of hybrid layer 2 protocols. https://vitalik.ca/general/2019/08/28/
hybrid_layer_2.html.

[BW88] Johannes Buchmann and Hugh C. Williams. A key-exchange system based on imaginary quadratic fields. J.
Cryptol., 1(2):107–118, 1988.

[CA89] David Chaum and Hans Van Antwerpen. Undeniable signatures. In CRYPTO, volume 435 of Lecture Notes
in Computer Science, pages 212–216. Springer, 1989.

[Cam98] Jan Camenisch. Group signature schemes and payment systems based on the discrete logarithm problem.
PhD thesis, ETH Zurich, Zürich, Switzerland, 1998.

[CBM15] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous messaging system
handling millions of users. In IEEE S&P, 2015.

[CC18] Pyrros Chaidos and Geoffroy Couteau. Efficient designated-verifier non-interactive zero-knowledge proofs
of knowledge. In EUROCRYPT (3), volume 10822 of Lecture Notes in Computer Science, pages 193–221.
Springer, 2018.

[CCD+17] Katriel Cohn-Gordon, Cas J. F. Cremers, Benjamin Dowling, Luke Garratt, and Douglas Stebila. A formal
security analysis of the signal messaging protocol. In IEEE EuroS&P, 2017.

[CCDW20] Weikeng Chen, Alessandro Chiesa, Emma Dauterman, and Nicholas P. Ward. Reducing participation costs
via incremental verification for ledger systems. IACR Cryptol. ePrint Arch., 2020:1522, 2020.

[CDGM19] Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and Harjasleen Malvai. Seemless: Secure end-to-end
encrypted messaging with less trust. In CCS, pages 1639–1656. ACM, 2019.

[CDNO97] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryption. In CRYPTO, volume
1294 of Lecture Notes in Computer Science, pages 90–104. Springer, 1997.

[CDR14] Vincent Cheval, Stéphanie Delaune, and Mark Ryan. Tests for establishing security properties. In TGC,
volume 8902 of Lecture Notes in Computer Science, pages 82–96. Springer, 2014.

[CF10] Henry Corrigan-Gibbs and Bryan Ford. Dissent: accountable anonymous group messaging. In CCS, 2010.

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications. In Public Key Cryptography,
volume 7778 of Lecture Notes in Computer Science, pages 55–72. Springer, 2013.

[CFH+22] Matteo Campanelli, Dario Fiore, Semin Han, Jihye Kim, Dimitris Kolonelos, and Hyunok Oh. Succinct
zero-knowledge batch proofs for set accumulators. In CCS, pages 455–469. ACM, 2022.

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In CRYPTO, volume 839 of Lecture Notes in
Computer Science, pages 257–270. Springer, 1994.

150

https://vitalik.ca/general/2019/08/28/hybrid_layer_2.html
https://vitalik.ca/general/2019/08/28/hybrid_layer_2.html

[CGJ+17] Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk, and Ian Miers. Fairness in an unfair
world: Fair multiparty computation from public bulletin boards. In CCS, pages 719–728. ACM, 2017.

[Cha90] David Chaum. Zero-knowledge undeniable signatures. In EUROCRYPT, volume 473 of Lecture Notes in
Computer Science, pages 458–464. Springer, 1990.

[CHI+21] Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio, Tarik Riviere, Abhi Shelat,
Muthu Venkitasubramaniam, and Ruihan Wang. Diogenes: Lightweight scalable RSA modulus generation
with a dishonest majority. In IEEE Symposium on Security and Privacy, pages 590–607. IEEE, 2021.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas P. Ward. Marlin:
Preprocessing zksnarks with universal and updatable SRS. In EUROCRYPT (1), volume 12105 of Lecture
Notes in Computer Science, pages 738–768. Springer, 2020.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps.
In CRYPTO, 2004.

[CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In CRYPTO, 2006.

[CMS96] Jan Camenisch, Ueli M. Maurer, and Markus Stadler. Digital payment systems with passive anonymity-
revoking trustees. In ESORICS, volume 1146 of Lecture Notes in Computer Science, pages 33–43. Springer,
1996.

[CMZ14] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic MACs and keyed-verification anonymous
credentials. In CCS, 2014.

[CPZ20] Melissa Chase, Trevor Perrin, and Greg Zaverucha. The signal private group system and anonymous
credentials supporting efficient verifiable encryption. In CCS, 2020.

[CvH91] David Chaum and Eugène van Heyst. Group signatures. In EUROCRYPT, 1991.

[CW09] Scott A. Crosby and Dan S. Wallach. Efficient data structures for tamper-evident logging. In USENIX
Security Symposium, pages 317–334. USENIX Association, 2009.

[Dam91] Ivan Damgård. Towards practical public key systems secure against chosen ciphertext attacks. In CRYPTO,
volume 576 of Lecture Notes in Computer Science, pages 445–456. Springer, 1991.

[DFN06] Ivan Damgård, Nelly Fazio, and Antonio Nicolosi. Non-interactive zero-knowledge from homomorphic
encryption. In TCC, volume 3876 of Lecture Notes in Computer Science, pages 41–59. Springer, 2006.

[DGRW18] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. Fast message franking: From
invisible salamanders to encryptment. In CRYPTO (1), volume 10991 of Lecture Notes in Computer Science,
pages 155–186. Springer, 2018.

[DGS+18] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo Valsorda. Privacy pass:
Bypassing internet challenges anonymously. PoPETs, 2018.

[DHM+20] Ivan Damgård, Helene Haagh, Rebekah Mercer, Anca Nitulescu, Claudio Orlandi, and Sophia Yakoubov.
Stronger security and constructions of multi-designated verifier signatures. In TCC (2), volume 12551 of
Lecture Notes in Computer Science, pages 229–260. Springer, 2020.

[DKPW12] Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel Wichs. Message authentication, revisited. In
EUROCRYPT, 2012.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The second-generation onion router. In
USENIX Security, 2004.

151

[DSB+16] Sergej Dechand, Dominik Schürmann, Karoline Busse, Yasemin Acar, Sascha Fahl, and Matthew Smith. An
empirical study of textual key-fingerprint representations. In USENIX Security Symposium, pages 193–208.
USENIX Association, 2016.

[EMBB17] Saba Eskandarian, Eran Messeri, Joseph Bonneau, and Dan Boneh. Certificate transparency with privacy.
Proc. Priv. Enhancing Technol., 2017(4):329–344, 2017.

[Fac17] Facebook. Messenger secret conversations technical whitepaper, 2017. https://about.fb.com/
wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf.

[FDP+14] Sascha Fahl, Sergej Dechand, Henning Perl, Felix Fischer, Jaromir Smrcek, and Matthew Smith. Hey,
NSA: stay away from my market! future proofing app markets against powerful attackers. In CCS, pages
1143–1155. ACM, 2014.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications. In CRYPTO,
2018.

[FN14] Mary Flanagan and Helen Nissenbaum. Values at play in digital games. MIT Press, 2014.

[FPS20] Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind schnorr signatures and signed elgamal
encryption in the algebraic group model. In EUROCRYPT, 2020.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In CRYPTO, 1986.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In STOC, pages
416–426. ACM, 1990.

[FTY96] Yair Frankel, Yiannis Tsiounis, and Moti Yung. "indirect discourse proof": Achieving efficient fair off-line
e-cash. In ASIACRYPT, volume 1163 of Lecture Notes in Computer Science, pages 286–300. Springer,
1996.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and succinct
nizks without pcps. In EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages 626–645.
Springer, 2013.

[GKK+19] Lorenzo Grassi, Daniel Kales, Dmitry Khovratovich, Arnab Roy, Christian Rechberger, and Markus
Schofnegger. Starkad and poseidon: New hash functions for zero knowledge proof systems. IACR Cryptol.
ePrint Arch., 2019:458, 2019.

[GLR17] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via committing authenticated encryption.
In CRYPTO (3), volume 10403 of Lecture Notes in Computer Science, pages 66–97. Springer, 2017.

[GM17] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge from simulation-
extractable snarks. In CRYPTO, 2017.

[Gro07] Jens Groth. Fully anonymous group signatures without random oracles. In ASIACRYPT, 2007.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASIACRYPT, volume 6477
of Lecture Notes in Computer Science, pages 321–340. Springer, 2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT (2), volume 9666 of
Lecture Notes in Computer Science, pages 305–326. Springer, 2016.

[HG11] Ryan Henry and Ian Goldberg. Formalizing anonymous blacklisting systems. In IEEE S&P, 2011.

152

https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf

[HG13] Ryan Henry and Ian Goldberg. Batch proofs of partial knowledge. In ACNS, 2013.

[HHK+21] Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Seung Jin Yang, and Raluca Ada Popa. Merkleˆ2: A
low-latency transparency log system. In IEEE Symposium on Security and Privacy. IEEE Computer Society,
2021.

[HNC+22] Yiqing Hua, Armin Namavari, Kaishuo Cheng, Mor Naaman, and Thomas Ristenpart. Increasing adversarial
uncertainty to scale private similarity testing. In USENIX Security Symposium, pages 1777–1794. USENIX
Association, 2022.

[HYWS11] Qiong Huang, Guomin Yang, Duncan S. Wong, and Willy Susilo. Efficient strong designated verifier
signature schemes without random oracle or with non-delegatability. Int. J. Inf. Sec., 10(6):373–385, 2011.

[IAV22] Rawane Issa, Nicolas Alhaddad, and Mayank Varia. Hecate: Abuse reporting in secure messengers with
sealed sender. In USENIX Security Symposium, pages 2335–2352. USENIX Association, 2022.

[JKK14] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal password-protected secret sharing
and T-PAKE in the password-only model. In ASIACRYPT, 2014.

[JKKX16] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. Highly-efficient and composable
password-protected secret sharing (or: How to protect your bitcoin wallet online). In EuroS&P, 2016.

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier proofs and their applications.
In EUROCRYPT, volume 1070 of Lecture Notes in Computer Science, pages 143–154. Springer, 1996.

[KCDF17] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan Ford. Atom: Horizontally scaling strong
anonymity. In SOSP, 2017.

[KHP+13] Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perrig, Collin Jackson, and Virgil D. Gligor. Accountable
key infrastructure (AKI): a proposal for a public-key validation infrastructure. In WWW, pages 679–690.
International World Wide Web Conferences Steering Committee / ACM, 2013.

[KLD20] Albert Kwon, David Lu, and Srinivas Devadas. XRD: scalable messaging system with cryptographic privacy.
In NSDI, pages 759–776. USENIX Association, 2020.

[KM21] Anunay Kulshrestha and Jonathan R. Mayer. Identifying harmful media in end-to-end encrypted com-
munication: Efficient private membership computation. In USENIX Security Symposium, pages 893–910.
USENIX Association, 2021.

[KP05] Caroline Kudla and Kenneth G. Paterson. Non-interactive designated verifier proofs and undeniable
signatures. In IMACC, volume 3796 of Lecture Notes in Computer Science, pages 136–154. Springer, 2005.

[KPS18] Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. xjsnark: A framework for efficient verifiable
computation. In IEEE Symposium on Security and Privacy, pages 944–961. IEEE Computer Society, 2018.

[KV02] Dennis Kügler and Holger Vogt. Offline payments with auditable tracing. In Financial Cryptography,
volume 2357 of Lecture Notes in Computer Science, pages 269–281. Springer, 2002.

[Lan16] Adam Langley. Pond, 2016. https://github.com/agl/pond.

[Lau14] Ben Laurie. Certificate transparency. Commun. ACM, 57(10):40–46, 2014.

[LdV17] Isis Agora Lovecruft and Henry de Valence. HYPHAE: Social secret sharing, 2017. https://
patternsinthevoid.net/hyphae/hyphae.pdf.

153

https://github.com/agl/pond
https://patternsinthevoid.net/hyphae/hyphae.pdf
https://patternsinthevoid.net/hyphae/hyphae.pdf

[LGG+22] Derek Leung, Yossi Gilad, Sergey Gorbunov, Leonid Reyzin, and Nickolai Zeldovich. Aardvark: An
asynchronous authenticated dictionary with applications to account-based cryptocurrencies. In USENIX
Security Symposium, pages 4237–4254. USENIX Association, 2022.

[LGZ18] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Karaoke: Distributed private messaging immune to
passive traffic analysis. In OSDI, 2018.

[LKMS04] Jinyuan Li, Maxwell N. Krohn, David Mazières, and Dennis E. Shasha. Secure untrusted data repository
(SUNDR). In OSDI, pages 121–136. USENIX Association, 2004.

[LLK13] Ben Laurie, Adam Langley, and Emilia Käsper. Certificate transparency. RFC, 6962:1–27, 2013.

[LM19] Russell W. F. Lai and Giulio Malavolta. Subvector commitments with application to succinct arguments. In
CRYPTO (1), volume 11692 of Lecture Notes in Computer Science, pages 530–560. Springer, 2019.

[LNS20] Jonathan Lee, Kirill Nikitin, and Srinath T. V. Setty. Replicated state machines without replicated execution.
In IEEE Symposium on Security and Privacy, pages 119–134. IEEE, 2020.

[LP16] Adam Langley and Trevor Perrin. Replacing group signatures with HMAC in Pond, 2016. https:
//moderncrypto.org/mail-archive/messaging/2014/000409.html.

[LPY15] Benoît Libert, Thomas Peters, and Moti Yung. Short group signatures via structure-preserving signatures:
Standard model security from simple assumptions. In CRYPTO, 2015.

[LRTY22] Linsheng Liu, Daniel S. Roche, Austin Theriault, and Arkady Yerukhimovich. Fighting fake news in
encrypted messaging with the fuzzy anonymous complaint tally system (FACTS). In NDSS. The Internet
Society, 2022.

[Lun17] Joshua Lund. Technology preview: Sealed sender for Signal, 2017. https://signal.org/blog/
sealed-sender/.

[LV04a] Fabien Laguillaumie and Damien Vergnaud. Designated verifier signatures: Anonymity and efficient
construction from any bilinear map. In SCN, volume 3352 of Lecture Notes in Computer Science, pages
105–119. Springer, 2004.

[LV04b] Fabien Laguillaumie and Damien Vergnaud. Multi-designated verifiers signatures. In ICICS, volume 3269
of Lecture Notes in Computer Science, pages 495–507. Springer, 2004.

[LWB05] Helger Lipmaa, Guilin Wang, and Feng Bao. Designated verifier signature schemes: Attacks, new security
notions and a new construction. In ICALP, volume 3580 of Lecture Notes in Computer Science, pages
459–471. Springer, 2005.

[LYK+19] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket Kate, and Andrew K. Miller.
Honeybadgermpc and asynchromix: Practical asynchronous MPC and its application to anonymous commu-
nication. In CCS, 2019.

[LZH+23] Junzuo Lai, Gongxian Zeng, Zhengan Huang, Siu Ming Yiu, Xin Mu, and Jian Weng. Asymmetric group
message franking: Definitions and constructions. In EUROCRYPT (5), volume 14008 of Lecture Notes in
Computer Science, pages 67–97. Springer, 2023.

[MB02] Petros Maniatis and Mary Baker. Secure history preservation through timeline entanglement. In USENIX
Security Symposium, pages 297–312. USENIX, 2002.

[MBB+15] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, and Michael J. Freedman.
CONIKS: bringing key transparency to end users. In USENIX Security Symposium, 2015.

154

https://moderncrypto.org/mail-archive/messaging/2014/000409.html
https://moderncrypto.org/mail-archive/messaging/2014/000409.html
https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/

[Mer87] Ralph C. Merkle. A digital signature based on a conventional encryption function. In CRYPTO, volume 293
of Lecture Notes in Computer Science, pages 369–378. Springer, 1987.

[MKA+21] Ian Martiny, Gabriel Kaptchuk, Adam Aviv, Dan Roche, and Eric Wustrow. Improving Signal’s sealed
sender. In NDSS, 2021.

[MKL+20] Sarah Meiklejohn, Pavel Kalinnikov, Cindy S. Lin, Martin Hutchinson, Gary Belvin, Mariana Raykova,
and Al Cutter. Think global, act local: Gossip and client audits in verifiable data structures. CoRR,
abs/2011.04551, 2020.

[Nis01] Helen Nissenbaum. Securing trust online: Wisdom or oxymoron. BUL Rev., 81:635, 2001.

[Nis04] Helen Nissenbaum. Privacy as contextual integrity. Wash. L. Rev., 79:119, 2004.

[Nis17] Helen Nissenbaum. Protecting privacy in an information age: The problem of privacy in public. Law and
Philosophy, 2017.

[NKJ+17] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Linus Gasser, Ismail Khoffi,
Justin Cappos, and Bryan Ford. CHAINIAC: proactive software-update transparency via collectively signed
skipchains and verified builds. In USENIX Security Symposium, pages 1271–1287. USENIX Association,
2017.

[Ove83] Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notes in Computer
Science. Springer, 1983.

[OWWB20] Alex Ozdemir, Riad S. Wahby, Barry Whitehat, and Dan Boneh. Scaling verifiable computation using
efficient set accumulators. In USENIX Security Symposium, pages 2075–2092. USENIX Association, 2020.

[PEB21] Charlotte Peale, Saba Eskandarian, and Dan Boneh. Secure complaint-enabled source-tracking for encrypted
messaging. In CCS, pages 1484–1506. ACM, 2021.

[PH23] Alistair Pattison and Nicholas Hopper. Poster: Committee moderation on encrypted messaging platforms.
In IEEE Symposium on Security and Privacy. IEEE, 2023.

[PHE+17] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George Danezis. The loopix anonymity
system. In USENIX Security, 2017.

[PM16] Trevor Perrin and Moxie Marlinspike. The double ratchet algorithm, 2016. https://signal.org/docs/
specifications/doubleratchet/.

[PP15] Tobias Pulls and Roel Peeters. Balloon: A forward-secure append-only persistent authenticated data structure.
In ESORICS (2), volume 9327 of Lecture Notes in Computer Science, pages 622–641. Springer, 2015.

[RMA+23] Nathan Reitinger, Nathan Malkin, Omer Akgul, Michelle L. Mazurek, and Ian Miers. Is cryptographic
deniability sufficient? Non-expert perceptions of deniability in secure messaging. In IEEE Symposium on
Security and Privacy, pages 947–964. IEEE, 2023.

[RMM22] Michael Rosenberg, Mary Maller, and Ian Miers. Snarkblock: Federated anonymous blocklisting from
hidden common input aggregate proofs. In IEEE Symposium on Security and Privacy, pages 948–965.
IEEE, 2022.

[Rya14] Mark Dermot Ryan. Enhanced certificate transparency and end-to-end encrypted mail. In NDSS. The
Internet Society, 2014.

[SAGL18] Srinath T. V. Setty, Sebastian Angel, Trinabh Gupta, and Jonathan Lee. Proving the correct execution of
concurrent services in zero-knowledge. In OSDI, pages 339–356. USENIX Association, 2018.

155

https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zksnarks without trusted setup. In CRYPTO (3),
volume 12172 of Lecture Notes in Computer Science, pages 704–737. Springer, 2020.

[SHT21] Kavya Sreedhar, Mark Horowitz, and Christopher Torng. A fast large-integer extended gcd algorithm and
hardware design for verifiable delay functions and modular inversion. IACR Cryptology ePrint Archive,
2021/1292, 2021.

[SKM03] Shahrokh Saeednia, Steve Kremer, and Olivier Markowitch. An efficient strong designated verifier signature
scheme. In ICISC, volume 2971 of Lecture Notes in Computer Science, pages 40–54. Springer, 2003.

[SKM23] Sarah Scheffler, Anunay Kulshrestha, and Jonathan R. Mayer. Public verification for private hash matching.
In IEEE Symposium on Security and Privacy. IEEE, 2023.

[Sno01] Alex C. Snoeren. Hash-based IP traceback. In SIGCOMM, pages 3–14. ACM, 2001.

[SP01] Dawn Xiaodong Song and Adrian Perrig. Advanced and authenticated marking schemes for IP traceback.
In INFOCOM, pages 878–886. IEEE Comptuer Society, 2001.

[STV+16] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic, Linus Gasser, Nicolas Gailly,
Ismail Khoffi, and Bryan Ford. Keeping authorities "honest or bust" with decentralized witness cosigning.
In IEEE Symposium on Security and Privacy, pages 526–545. IEEE Computer Society, 2016.

[SWKA00] Stefan Savage, David Wetherall, Anna R. Karlin, and Thomas E. Anderson. Practical network support for
IP traceback. In SIGCOMM, pages 295–306. ACM, 2000.

[TAKS07] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. Blacklistable anonymous credentials:
blocking misbehaving users without ttps. In CCS, 2007.

[TBB+17] Joshua Tan, Lujo Bauer, Joseph Bonneau, Lorrie Faith Cranor, Jeremy Thomas, and Blase Ur. Can unicorns
help users compare crypto key fingerprints? In CHI, pages 3787–3798. ACM, 2017.

[TBP+19] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos, Charalampos Papamanthou, Nikos Triandopou-
los, and Srinivas Devadas. Transparency logs via append-only authenticated dictionaries. In CCS, pages
1299–1316. ACM, 2019.

[TD17] Alin Tomescu and Srinivas Devadas. Catena: Efficient non-equivocation via bitcoin. In IEEE Symposium
on Security and Privacy, pages 393–409. IEEE Computer Society, 2017.

[TFZ+21] Nirvan Tyagi, Ben Fisch, Andrew Zitek, Joseph Bonneau, and Stefano Tessaro. VeRSA: Verifiable registries
with efficient client audits from rsa authenticated dictionaries. IACR Cryptol. ePrint Arch., page 627, 2021.

[TFZ+22] Nirvan Tyagi, Ben Fisch, Andrew Zitek, Joseph Bonneau, and Stefano Tessaro. VeRSA: Verifiable registries
with efficient client audits from RSA authenticated dictionaries. In ACM CCS, 2022.

[TGL+17] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich. Stadium: A distributed
metadata-private messaging system. In SOSP, pages 423–440. ACM, 2017.

[TGL+19a] Nirvan Tyagi, Paul Grubbs, Julia Len, Ian Miers, and Thomas Ristenpart. Asymmetric message franking:
Content moderation for metadata-private end-to-end encryption. In CRYPTO, 2019.

[TGL+19b] Nirvan Tyagi, Paul Grubbs, Julia Len, Ian Miers, and Thomas Ristenpart. Asymmetric message franking:
Content moderation for metadata-private end-to-end encryption. IACR Cryptol. ePrint Arch., page 565,
2019.

[TKCS11] Patrick P. Tsang, Apu Kapadia, Cory Cornelius, and Sean W. Smith. Nymble: Blocking misbehaving users
in anonymizing networks. IEEE Trans. Dependable Sec. Comput., 2011.

156

[TKPS22] Ioanna Tzialla, Abhiram Kothapalli, Bryan Parno, and Srinath T. V. Setty. Transparency dictionaries with
succinct proofs of correct operation. In NDSS. The Internet Society, 2022.

[TLMR21] Nirvan Tyagi, Julia Len, Ian Miers, and Thomas Ristenpart. Orca: Blocklisting in sender-anonymous
messaging. IACR Cryptol. ePrint Arch., page 1380, 2021.

[TLMR22] Nirvan Tyagi, Julia Len, Ian Miers, and Thomas Ristenpart. Orca: Blocklisting in sender-anonymous
messaging. In USENIX Security Symposium, 2022.

[TMR19a] Nirvan Tyagi, Ian Miers, and Thomas Ristenpart. Traceback for end-to-end encrypted messaging. In ACM
CCS, 2019.

[TMR19b] Nirvan Tyagi, Ian Miers, and Thomas Ristenpart. Traceback for end-to-end encrypted messaging. IACR
Cryptol. ePrint Arch., page 981, 2019.

[TMS+23] Kurt Thomas, Sarah Meiklejohn, Michael A. Specter, Xiang Wang, Xavier Llorà, Stephan Somogyi, and
David Kleidermacher. Robust, privacy-preserving, transparent, and auditable on-device blocklisting. CoRR,
abs/2304.02810, 2023.

[TXN20] Alin Tomescu, Yu Xia, and Zachary Newman. Authenticated dictionaries with cross-incremental proof
(dis)aggregation. IACR Cryptol. ePrint Arch., 2020:1239, 2020.

[TY98] Yiannis Tsiounis and Moti Yung. On the security of elgamal based encryption. In PKC, 1998.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In
TCC, volume 4948 of Lecture Notes in Computer Science, pages 1–18. Springer, 2008.

[vdHLZZ15] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vuvuzela: scalable private
messaging resistant to traffic analysis. In SOSP, pages 137–152. ACM, 2015.

[VWO+17] Elham Vaziripour, Justin Wu, Mark O’Neill, Jordan Whitehead, Scott Heidbrink, Kent E. Seamons, and
Daniel Zappala. Is that you, alice? A usability study of the authentication ceremony of secure messaging
applications. In SOUPS, pages 29–47. USENIX Association, 2017.

[WCFJ12] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson. Dissent in numbers: Making
strong anonymity scale. In OSDI, pages 179–182. USENIX Association, 2012.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In EUROCRYPT (3), volume 11478 of Lecture
Notes in Computer Science, pages 379–407. Springer, 2019.

[WGH+] Barry Whitehat, Alex Gluchowski, HarryR, Yondon Fu, and Philippe Castonguay. Roll up / roll back snark.
https://ethresear.ch/t/roll-up-roll-back-snark-side-chain-17000-tps/.

[WZC+18] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion Stoica. DIZK: A distributed
zero knowledge proof system. In USENIX Security Symposium, pages 675–692. USENIX Association,
2018.

[YRC15] Jiangshan Yu, Mark Ryan, and Cas Cremers. How to detect unauthorised usage of a key. IACR Cryptol.
ePrint Arch., page 486, 2015.

[ZWZ+21] Ye Zhang, Shuo Wang, Xian Zhang, Jiangbin Dong, Xingzhong Mao, Fan Long, Cong Wang, Dong Zhou,
Mingyu Gao, and Guangyu Sun. Pipezk: Accelerating zero-knowledge proof with a pipelined architecture.
In ISCA, pages 416–428. IEEE, 2021.

157

https://ethresear.ch/t/roll-up-roll-back-snark-side-chain-17000-tps/

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	Introduction
	Preliminaries
	Pseudocode Security Games
	Groups and Hardness Assumptions
	Idealized Models
	Cryptographic Primitives

	Secure Reporting for Content Moderation
	Asymmetric Message Franking
	Meaningful Deniability in Messaging
	Syntax and Security Notions
	Construction
	Security Analysis

	Message Tracing
	Traceback Setting in Messaging
	Syntax and Security Notions
	Construction
	Security Analysis
	Evaluation

	Follow-up Work

	Sender-Anonymous Blocklisting
	Sender Anonymity in Messaging
	Background: Signal and Sealed Sender
	Limitations of Sealed Sender

	Outsourced Blocklisting
	Blocklisting from Group Signature
	Group Signature Syntax and Security
	Construction of Group Signature
	Security Analysis
	Outsourced Blocklisting from Group Signatures

	Extending Blocklisting with One-time Use Tokens
	Evaluation

	Verifiable Public Key Infrastructure
	Auditing Public Key Infrastructure in Messaging
	Versioned Invariant Proofs for RSA Authenticated Dictionaries
	RSA Authenticated Dictionary
	Versioned Invariant Update Proofs and Strong Key Binding

	Authenticated History Dictionaries
	Syntax and Security Notions
	AHD Constructions
	Security Analysis

	Client Checkpoint Auditing
	Evaluation
	Implementation
	Client Auditing Costs
	Server Epoch Update Costs
	Key Lookup Costs

	Ethics Discussion
	Concluding Thoughts
	Bibliography

