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Contributions

● BurnBox: Cloud storage secure in compelled access setting

○ Allow users to honestly comply with authorities while preserving 

confidentiality

○ Secure deletion: permanently delete files

○ Temporary revocation: self-revoke access to files temporarily

● Formal compelled access security notions and analysis

● Proof-of-concept prototype
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Limitation: High usability burden where deception is inherent to security
● Maintenance of  “realistic-looking” fake content
● Ability to convincingly lie about duress key
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Strawman: burner device or full wipe of device

BurnBox: selective temporary self-revocation of sensitive files

2. Designed specifically for use with the cloud

BurnBox: secure against passive cloud adversaries



Threat Model Untrusted Cloud Storage
● Write-only store
● Passive attacker
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● Access to local device
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Threat Model Untrusted Cloud Storage
● Write-only store
● Passive attacker

Compelling Agent
● Access to local device
● User passwords
● Cloud history

Offline Restoration Cache
● Inaccessible to 

compelling agent
● Inaccessible to user 

during checkpoint
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Forensic analysis
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Efficiency and other approaches?

Related asymptotically better approaches not secure against threat model

● Puncturable pseudorandom functions [GMM86]

● History-independent data structures [NT01]
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Erasable index uses:

● Storage on the order of number of files

● Linear time search by filename

In practice, this is actually fine



Security Analysis
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● Provide formal security models 

● Limit leakage to well-specified access pattern history

○ Pseudonymous operation history 

Adversary observing:

Cloud communication history

Encrypted cloud contents

Erasable index on local device

Pseudonymous operation history
E.g.,
Add file A at 1:00
Access file A at 4:30

Open question: Inference attacks on file accesses? 

[CGPR15,NKW15]



Prototype
● Implemented as file system in userspace (FUSE)

○ Available at github.com/mhmughees/burnbox

○ About as efficient as standard client-side 

encryption
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Untrusted App

Container

OS Kernel

Persistent Storage 

File System

BurnBox (FUSE)

Trusted App

Userspace

(e.g. HDD, SSD)

● Best effort to address application and OS leakage 

[CHKGKS08,DLJKSXSW12]

○ Memory-locked pages

○ Containers for untrusted applications

○ Guidelines for off-the-shelf OS configurations
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