
BurnBox

Nirvan Tyagi

Self-Revocable Encryption in a World of Compelled Access

Usenix Security 2018

Muhammad Haris
Mughees

Thomas Ristenpart Ian Miers

1

Compelled Access Setting

file 1

file 2

file 3

2

Compelled Access Setting

file 1

file 2

file 3

3

Compelled Access Setting

file 1

file 2

file 3

e.g.,
border crossing,
airport security,
police checkpoints

4

Compelled Access Setting

file 1

file 2

file 3

e.g.,
border crossing,
airport security,
police checkpoints

e.g.,
journalists,
dissidents, activists 5

Compelled Access Setting

file 1

file 2

file 3

e.g.,
border crossing,
airport security,
police checkpoints

e.g.,
journalists,
dissidents, activists 6

> 50% increase

Contributions

● BurnBox: Cloud storage secure in compelled access setting

○ Allow users to honestly comply with authorities while preserving

confidentiality

○ Secure deletion: permanently delete files

○ Temporary revocation: self-revoke access to files temporarily

● Formal compelled access security notions and analysis

● Proof-of-concept prototype

7

Deniable/Steganographic file systems hide files by
deceiving authority

file 1

file 2

file 3

8

Real Duress

[CDNO96, ANS98,

ADW97, Truecrypt]

file 1

file 2

file 3

9

Deniable/Steganographic file systems hide files by
deceiving authority

[CDNO96, ANS98,

ADW97, Truecrypt]

fake 1

fake 2

fake 3

file 1

file 2

file 3

10

Deniable/Steganographic file systems hide files by
deceiving authority

[CDNO96, ANS98,

ADW97, Truecrypt]

file 1

file 2

file 3

Limitation: High usability burden where deception is inherent to security
● Maintenance of “realistic-looking” fake content
● Ability to convincingly lie about duress key

11

Deniable/Steganographic file systems hide files by
deceiving authority

fake 1

fake 2

fake 3

[CDNO96, ANS98,

ADW97, Truecrypt]

file 1

file 2

file 3

12

Deniable/Steganographic file systems hide files by
deceiving authority

fake 1

fake 2

fake 3

Limitation: High usability burden where deception is inherent to security
● Maintenance of “realistic-looking” fake content
● Ability to convincingly lie about duress key Is this really

your key?

[CDNO96, ANS98,

ADW97, Truecrypt]

file 1

file 2

file 3

13

Deniable/Steganographic file systems hide files by
deceiving authority

fake 1

fake 2

fake 3

Limitation: High usability burden where deception is inherent to security
● Maintenance of “realistic-looking” fake content
● Ability to convincingly lie about duress key Is this really

your key?

[CDNO96, ANS98,

ADW97, Truecrypt]

A Different Approach
1. Allow users to honestly comply at compelled access

checkpoints

14

A Different Approach
1. Allow users to honestly comply at compelled access

checkpoints

15

Strawman: burner device or full wipe of device

A Different Approach
1. Allow users to honestly comply at compelled access

checkpoints

16

Strawman: burner device or full wipe of device

BurnBox: selective temporary self-revocation of sensitive files

A Different Approach
1. Allow users to honestly comply at compelled access

checkpoints

17

Strawman: burner device or full wipe of device

BurnBox: selective temporary self-revocation of sensitive files

2. Designed specifically for use with the cloud

BurnBox: secure against passive cloud adversaries

Threat Model Untrusted Cloud Storage
● Write-only store
● Passive attacker

18

file 1

file 2

file 3

Threat Model Untrusted Cloud Storage
● Write-only store
● Passive attacker

19

file 1

file 2

file 3

Threat Model Untrusted Cloud Storage
● Write-only store
● Passive attacker

20

file 1

file 2

file 3

Threat Model Untrusted Cloud Storage
● Write-only store
● Passive attacker

Compelling Agent
● Access to local device
● User passwords
● Cloud history

21

file 1

file 2

file 3

Threat Model Untrusted Cloud Storage
● Write-only store
● Passive attacker

Compelling Agent
● Access to local device
● User passwords
● Cloud history

Offline Restoration Cache
● Inaccessible to

compelling agent
● Inaccessible to user

during checkpoint

22

file 1

file 2

file 3

BurnBox Overview

23

file 1

file 2

file 3

Offline Restoration Cache

Local Device

24

file 1

file 2

file 3

BurnBox Overview

file 1

file 2

file 3

Untrusted Cloud Storage
f0c531

39731a

0dea2d

25

BurnBox Overview

file 1

file 2

file 3

Before Compelled Access

User selectively deletes
and revokes sensitive files

f0c531

39731a

0dea2d

26

BurnBox Overview

file 1

revoke

delete

Before Compelled Access

User selectively deletes
and revokes sensitive files

f0c531

39731a

0dea2d

27

BurnBox Overview

file 1

During Compelled Access

Deleted files and revoked
files are inaccessible and
are cryptographically
indistinguishable

Before Compelled Access

User selectively deletes
and revokes sensitive files

file 1

revoke

delete

f0c531

39731a

0dea2d

28

BurnBox Overview

file 1

revoke

delete

After Compelled Access

User restores access to
revoked files with access
to restoration key

During Compelled Access

Deleted files and revoked
files are inaccessible and
are cryptographically
indistinguishable

Before Compelled Access

User selectively deletes
and revokes sensitive files

f0c531

39731a

0dea2d

29

BurnBox Overview

file 1

file 2

During Compelled Access

Deleted files and revoked
files are inaccessible and
are cryptographically
indistinguishable

Before Compelled Access

User selectively deletes
and revokes sensitive files

After Compelled Access

User restores access to
revoked files with access
to restoration key

f0c531

39731a

0dea2d

30

BurnBox Overview

cc64c3

5707dd

1be052

Conventional client-side encryption

f0c531

39731a

0dea2d

f1.txt
f2.txt
f3.txt

31

f0c531

39731a

0dea2d

file 1

file 2

file 3

filename
encryption

key
encrypted

file

Device State

cc64c3

5707dd

1be052

Compelled access reveals local keys

f0c531

39731a

0dea2d

f1.txt
f2.txt
f3.txt

32

f0c531

39731a

0dea2d

file 1

file 2

file 3

filename
encryption

key
encrypted

file

Device State

cc64c3

1be052

Delete rows of sensitive files

f0c531

39731a

0dea2d

f1.txt

f3.txt
33

f0c531

0dea2d

file 1

file 2

file 3

filename
encryption

key
encrypted

file

Device State

5707ddf2.txt 39731a

cc64c3

1be052

Delete rows of sensitive files

f0c531

39731a

0dea2d

f1.txt

f3.txt
34

f0c531

0dea2d

file 1

file 2

file 3

filename
encryption

key
encrypted

file

Device State

5707ddf2.txt 39731a

Problem 1: How to support revocation?
Problem 2: Secure deletion of persistent state is hard.

Forensic analysis

cc64c3

1be052

f0c531

39731a

0dea2d

f1.txt

f3.txt
35

f0c531

0dea2d

file 1

file 2

file 3

filename
encryption

key
encrypted

file

Device State

5707ddf2.txt 39731a

Revocation: use public-key encryption

restoration
ciphertext

E(pk,cc64c3)

E(pk,39731a)

E(pk,1be052)

cc64c3

1be052

f0c531

39731a

0dea2d

f1.txt

f3.txt
36

f0c531

0dea2d

file 1

file 2

file 3

filename
encryption

key
encrypted

file

Device State

5707ddf2.txt 39731a

Revocation: use public-key encryption

restoration
ciphertext

E(pk,39731a)

RevokeE(pk,cc64c3)

E(pk,1be052)

cc64c3

1be052

f0c531

39731a

0dea2d

f1.txt

f3.txt
37

f0c531

0dea2d

file 1

file 2

file 3

filename
encryption

key
encrypted

file

Device State

5707ddf2.txt 39731a

Revocation: use public-key encryption

restoration
ciphertext

Revoke

DeleteE(pk,39731a)

E(pk,cc64c3)

E(pk,000000)

cc64c3

1be052

f0c531

39731a

0dea2d

f1.txt

f3.txt
38

f0c531

0dea2d

file 1

file 2

file 3

filename
encryption

key
encrypted

file

Device State

5707ddf2.txt 39731a

Revocation: use public-key encryption

restoration
ciphertext

Revoke

Delete

Problem 1: How to support revocation?
Problem 2: Secure deletion of persistent state is hard.

E(pk,39731a)

E(pk,cc64c3)

E(pk,000000)

Erasable Index

cc64c3...f1.txt

f2.txt 5707dd...

f3.txt 1be052...

f4.txt ca46b6...

● File keys stored in append-only table

39

Erasable Index

cc64c3...f1.txt

f2.txt 5707dd...

f3.txt 1be052...

f4.txt ca46b6...

● File keys stored in append-only table

● Secure deletion of row keys with trusted hardware [RRBC13]
○ Trusted hardware assumed to manage small “effaceable” storage
○ E.g., TPM, iOS/Android keystore APIs

effaceable storage

key tree

40

Erasable Index

cc64c3...f1.txt

f2.txt 5707dd...

f3.txt 1be052...

f4.txt ca46b6...

● File keys stored in append-only table

● Secure deletion of row keys with trusted hardware [RRBC13]
○ Trusted hardware assumed to manage small “effaceable” storage
○ E.g., TPM, iOS/Android keystore APIs

effaceable storage

key tree

41

Erasable Index

cc64c3...f1.txt

f2.txt 5707dd...

f3.txt 1be052...

f4.txt ca46b6...

● File keys stored in append-only table

● Secure deletion of row keys with trusted hardware [RRBC13]
○ Trusted hardware assumed to manage small “effaceable” storage
○ E.g., TPM, iOS/Android keystore APIs

effaceable storage

key tree

42

Erasable Index

cc64c3...f1.txt

f2.txt 5707dd...

f3.txt 1be052...

f4.txt ca46b6...

● File keys stored in append-only table

● Secure deletion of row keys with trusted hardware [RRBC13]
○ Trusted hardware assumed to manage small “effaceable” storage
○ E.g., TPM, iOS/Android keystore APIs

effaceable storage

key tree

43

Erasable Index

cc64c3...f1.txt

f2.txt 5707dd...

f3.txt 1be052...

f4.txt ca46b6...

● File keys stored in append-only table

● Secure deletion of row keys with trusted hardware [RRBC13]
○ Trusted hardware assumed to manage small “effaceable” storage
○ E.g., TPM, iOS/Android keystore APIs

effaceable storage

key tree

44

Erasable Index

cc64c3...f1.txt

f2.txt 5707dd...

f3.txt 1be052...

f4.txt ca46b6...

● File keys stored in append-only table

● Secure deletion of row keys with trusted hardware [RRBC13]
○ Trusted hardware assumed to manage small “effaceable” storage
○ E.g., TPM, iOS/Android keystore APIs

effaceable storage

key tree

45

Efficiency and other approaches?

Related asymptotically better approaches not secure against threat model

● Puncturable pseudorandom functions [GMM86]

● History-independent data structures [NT01]

46

Erasable index uses:

● Storage on the order of number of files

● Linear time search by filename

In practice, this is actually fine

Security Analysis

47

● Provide formal security models

● Limit leakage to well-specified access pattern history

○ Pseudonymous operation history

Adversary observing:

Cloud communication history

Encrypted cloud contents

Erasable index on local device

Pseudonymous operation history
E.g.,
Add file A at 1:00
Access file A at 4:30

Open question: Inference attacks on file accesses?

[CGPR15,NKW15]

Prototype
● Implemented as file system in userspace (FUSE)

○ Available at github.com/mhmughees/burnbox

○ About as efficient as standard client-side

encryption

Untrusted App

Container

OS Kernel

Persistent Storage

File System

BurnBox (FUSE)

Trusted App

Userspace

(e.g. HDD, SSD)

48

Prototype
● Implemented as file system in userspace (FUSE)

○ Available at github.com/mhmughees/burnbox

○ About as efficient as standard client-side

encryption

Untrusted App

Container

OS Kernel

Persistent Storage

File System

Trusted App

Userspace

(e.g. HDD, SSD)

49

BurnBox (FUSE)

Prototype
● Implemented as file system in userspace (FUSE)

○ Available at github.com/mhmughees/burnbox

○ About as efficient as standard client-side

encryption

Untrusted App

Container

OS Kernel

Persistent Storage

File System

BurnBox (FUSE)

Trusted App

Userspace

(e.g. HDD, SSD)

50

Prototype
● Implemented as file system in userspace (FUSE)

○ Available at github.com/mhmughees/burnbox

○ About as efficient as standard client-side

encryption

51

Untrusted App

Container

OS Kernel

Persistent Storage

File System

BurnBox (FUSE)

Trusted App

Userspace

(e.g. HDD, SSD)

● Best effort to address application and OS leakage

[CHKGKS08,DLJKSXSW12]

○ Memory-locked pages

○ Containers for untrusted applications

○ Guidelines for off-the-shelf OS configurations

Contributions
● BurnBox: Cloud storage secure in compelled access setting

○ Allow users to honestly comply with authorities while preserving

confidentiality

○ Secure deletion: permanently delete files

○ Temporary revocation: self-revoke access to files temporarily

● Formal compelled access security notions and analysis

● Proof-of-concept prototype
○ github.com/mhmughees/burnbox

52

